Experimental Observation of Spin Delocalisation onto the Aryl-Alkynyl Ligand in the Complexes $[Mo(C=CAr)(Ph_2PCH_2CH_2PPh_2)(\eta-C_7H_7)]^+$ (Ar = C₆H₅, C₆H₄-4-F; C₇H₇ = Cycloheptatrienyl): an EPR and ENDOR Investigation.

Emma Carter^a, David Collison^{b,*}, Ruth Edge^b, Emma C. Fitzgerald^c, Hannah N. Lancashire^c, Damien M. Murphy^{a,*}, Joseph J.W. McDouall^c, Joseph Sharples^c and Mark W. Whiteley^{c,*}

 ^aSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, UK CF10 3AT, UK
^bEPSRC National Service for EPR Spectroscopy, School of Chemistry, University of Manchester, Manchester, M13 9PL, UK
^cSchool of Chemistry, University of Manchester, Manchester, M13 9PL, UK

SUPPLEMENTARY DATA

CW X-band ENDOR spectra CW Q-band ENDOR spectra Pulsed X-band EPR/ENDOR

(Figs 1-2)
(Fig 3)
(Figs 4-5)

Further details of EPR/ENDOR measurements

Details of the X-band cw EPR/ENDOR spectra were given in the main paper. Further pulsed (X-band) and cw (Q-band) measurements were also performed, and the details are given below:

Q-band cw EPR/ENDOR; measurements were performed on a Bruker ESP 300e series spectrometer using a Bruker ER5106QT resonator employing 12 dB RF power from a *3200L* RF amplifier, 250 kHz RF modulation depth and 150 μ W power. The ENDOR measurements were performed at 10 K (EPR measurements at 50 K).

X-band Pulsed EPR/ENDOR: All pulse-EPR spectra were recorded on a Bruker E580 Elexsys spectrometer (MW = 9.73 GHz) equipped with a liquid Helium cryostat from Oxford Inc. The spectra were taken at 40 K.

<u>Electron-spin-echo (ESE)-detected EPR</u>: The experiments were carried out with the pulse sequence $\pi/2$ - $\pi - \tau$ - *echo*, with pulse lengths $t_{\pi/2} = 16$ ns and $t_{\pi} = 32$ ns, and a τ value of 400ns.

<u>Pulsed ENDOR</u>: Pulsed Mims ¹H-ENDOR spectra were recorded (at a field position of 3478 G) on a Bruker E580 spectrometer (microwave frequency 9.73 GHz) equipped with a liquid helium cryostat from Oxford Inc. The experiments were carried out with the pulse sequence $\pi/2 - \tau - \pi/2 - \tau - echo$ with microwave pulse length $t_{\pi/2} = 16$ ns and an interpulse delay time τ ranging from 128 - 1000 ns. An rf pulse of variable frequency and a length of 10 µs was applied during a time interval T of 12 µs.

cw X-band ENDOR spectra

Figure 1: ³¹P ENDOR spectra [10 K] of $[4]^+$ recorded at magnetic field position (a) 3390 G, (b) 3413 G, (c) 3422 G, (d) 3431 G and (e) 3454 G. As expected no orientation selectivity observed, owing to the low g anisotropy, and dominant s character in the ³¹P coupling.

Figure 2; Experimental and simulated X-band ³¹P ENDOR spectrum of [4]⁺ (recorded at a magnetic field position of 3413 G). The simulation was obtained using the parameters; ${}^{31}P_a; A_1 = 63, A_2 = 63, A_3 = 71.8 \text{ MHz};$ ${}^{31}P_b; A_1 = 60.5, A_2 = 60.5, A_3 = 69.3 \text{ MHz};$ where $P_{a,b}$ represent the two slightly inequivalent ${}^{31}P$ nuclei. θ_H was defined as 90° in both

cases.

Figure 3: Q-band ¹H ENDOR spectra [50 K] of (a) $[4]^+$, (b) $[1]^+$ and (c) $[5]^+$ recorded at 12264.2 G (employing a 250 kHz RF modulation). * = ¹⁹F from BF₄. Note the unusual line shape of the cycloheptatrienyl ring protons. These were very broad and poorly resolved at 10 K (see Figure 7 in main paper).

Pulsed X-band EPR/ENDOR

Figure 4: X-band FSE-detected EPR spectrum of $[4]^+$ recorded at 40 K. The spectra were obtained with a standard 2-pulse sequence, $\pi/2$ - $\pi - \tau$ - *echo*, with integration of the echo.

Figure 5: Mims ENDOR spectra (40K) recorded for different values of tau for $[4]^+$.