Supporting Information

Switching and Fluorescence Signal Amplification with Metal Ions in Allosteric Systems Based on 1, 3-*Alternate* Thiacalix[4]crown

Manoj Kumar*, Vandana Bhalla, Abhimanew Dhir

Department of Chemistry, UGC Centre for Advanced Studies,

Guru Nanak Dev University, Amritsar, Punjab -143005- INDIA

- **3** Synthetic details of **7** and **8**.
- 4 Job's Plot of 4 with Fe^{3+} ions.
- 5 Fluorescence spectra of 7 in response to the presence of Fe^{3+} ions.
- 6 Reversibility of Fe^{3+} coordination to 4 by TBACL.
- 7 Job's Plot of **5** with Hg^{2+} ions.
- 8 Fluorescence spectra of 8 in response to the presence of Hg^{2+} ions.
- 9 Reversibility of Hg^{2+} coordination to 5 by TBAI.
- 10 Fluorescent response of sensor 4 to Fe^{3+} over other selected metal ions.
- 11 Fluorescent response of sensor 5 to Hg^{2+} over other selected metal ions.
- 12 Fluorescence spectra of $4 (1 \times 10^{-5} \text{ M})$ in response to the presence of \mathbf{K}^+ ions.
- **13** Fluorescence spectra of **5** (1 X 10^{-5} M) in response to the presence of **K**⁺ ions.
- 14 Fluorescence emission spectra of 4 on addition of K^+ ions and further addition of Fe^{3+} ions.
- 15 Fluorescence emission spectra of 5 on addition of K^+ ions and further addition of Hg^{2+} ions.
- 16 UV-vis spectra of 4 in response to the presence of Fe^{3+} ions.

- 17 UV-vis spectra of 4 in response to the presence of various metal ions.
- 18 UV-vis spectra of 5 in response to the presence of Hg^{2+} ions.
- 19 UV-vis spectra of 5 in response to the presence of various metal ions.
- ¹H NMR spectra of 5 in CDCl₃/CD₃CN (8:2). (A) Free ligand (B) in presence of 1.0 equiv of mercury perchlorate; (C) in presence of 1.0 equiv of potassium perchlorate; (D) addition of 1.0 equiv of mercury perchlorate to ligand/potassium complex.
- **21** ¹H NMR Spectrum of **4**.
- $22 \qquad ^{13}C \text{ NMR Spectrum of } 4.$
- 23 Mass Spectrum of 4.
- **24**¹H NMR Spectrum of**5.**
- $25 \qquad ^{13}C \text{ NMR Spectrum of } 5.$
- 26 Mass Spectrum of 5.
- **27**¹H NMR Spectrum of**7.**
- 28 Mass Spectrum of 7.
- **29**¹H NMR Spectrum of**8.**
- 30 Mass Spectrum of 8.
- 31 IR Spectrum of 4.
- 32 IR Spectrum of 5.
- **33** SPECFIT data of **4**.
- **34** SPECFIT data of **5**.
- **35** Table S1 for quantum yield values.
- **36** Fitting curves for $4.Fe^{3+}$ and $5.Hg^{2+}$ complex superimposed with experimental data.

25,27-Bis[2-(anthracenyl)iminoethoxy]-26,28-dipropyloxythiacalix[4]arene in 1,3alternate conformation[7]:

To a solution of diamine **6** (0.10 g, 0.11 mmol) in a 1:1 mixture of chloroform and methanol (20 mL) was added a solution of 9-anthracene carbaldehyde (0.048 g, 0.21 mmol) in methanol (5 mL). The mixture was stirred for 24 h to separate a solid, which was filtered, washed and recrystallized from chloroform and methanol. The compound **4** was obtained in 81 % yield (0.115 g,) mp. 235°c.; vmax (KBr pellet, cm⁻¹) 1635 cm⁻¹; ; ¹H NMR (CDCl₃, 300 MHz): $\delta = 1.26$ [s, 18 H, C(CH₃)₃], 1.32 [s, 18 H, C(CH₃)₃], 0.67 [t, J = 6.9 Hz, 6 H, CH₃], 1.072 -1.186 [m, 4H, CH₂], 3.66 [t, J = 7.2 Hz, 4H, NCH₂], 3.90 [t, J = 7.5 Hz, 4 H, OCH₂], 4.45 [t, J = 8.25 Hz, 4H, OCH₂], 7.39 [s, 4H, ArH], 7.58 [s, 4H, ArH], 7.30 – 7.50 (m, 8H, ArH), 7.99 [d, J = 8.1, 4H, ArH], 8.43 [d, J = 8.4, 4H, ArH], 8.49 [s, 2H, ArH], 9.45 [s, 2H, HC = N]; FAB-MS m/z 1267 (M+1)⁺; Elemental Analysis Calcd for C₈₀H₈₆N₂O₄S₄: C, 75.82 % ; H, 6.95 % ; N, 2.21 % ; Found: C, 75.47 % ; H, 6.85 % ; N, 2.10%.

25,27-Bis[2-(anthracenyl)iminoethoxy]-26,28-dipropyloxythiacalix[4]arene in 1,3alternate conformation[8]:

To a solution of diamine **6** (0.10 g, 0.11 mmol) in a 1:1 mixture of chloroform and methanol (20 mL) was added a solution of 2-quinoline carboxaldehyde (0.037 g, 0.21 mmol) in methanol (5 mL). The mixture was stirred for 24 h to separate a solid, which was filtered, washed and recrystallized from chloroform and methanol. The compound **8** was obtained in 83% yield (0.11 g,) mp. 242°c; v_{max} (KBr pellet, cm⁻¹) 1635 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz): $\delta = 1.26$ [s, 18 H, C(CH₃)₃], 1.31 [s, 18 H, C(CH₃)₃], 0.65 [t, J = 7.5 Hz, 6H, CH₃], 1.08 -1.27 [m, 4H, CH₂], 3.40 [t, J = 7.5 Hz, 4H, NCH₂], 3.87 [t, J = 7.5 Hz, 4H, OCH₂], 4.25 [t, J = 7.5 Hz, 4H, OCH₂], 7.27 [s, 4H, ArH], 7.33 [s, 4H, ArH], 7.50 – 7.70 (m, 2H, ArH), 7.71 – 7.74 (m, 2H, ArH), 7.82 (d, J = 6 Hz, 2H, ArH) 8.03 – 8.20 (m, 4H, ArH), 8.32 [d, J = 9 Hz, 2H, ArH], 8.48 [s, 2H, HC = N]; FAB-MS m/z 1169 (M+1)⁺; Elemental Analysis Calcd for C₈₂H₈₈N₂O₇S₄: C, 71.92 %; H, 6.84 %; N, 4.79 %; Found: C, 71.97 %; H, 6.66 %; N, 4.59 %.

Figure S1. Job's plot of 4 with Fe^{3+} representing stoichiometry 1:1 (host: guest).

Figure S2. Fluorescence spectra of **7** (1 X 10⁻⁵ M) in response to the presence of Fe^{3+} ions (25 equiv.) in THF; $\lambda_{ex} = 340$ nm

Wavelength (nm) Figure S3. Reversibility of \mathbf{Fe}^{3+} coordination to 4 by Tetrabutyl ammonium chloride (TBACl). (a) 4 (1 X 10^{-5} M); (b) 5 + 20 equiv. Fe³⁺; (c) 4 + 20 equiv. Fe³⁺ + 12 equiv. (TBACl); (d) 4 + 20 equiv. Fe³⁺ + 12 equiv. (TBACl) + 30 equiv. Fe³⁺.

Figure S4. Job's plot of **5** with Hg^{2+} representing stoichiometry 1:1 (host: guest).

Figure S6. Reversibility of Hg^{2+} coordination to **5** by Tetrabutyl ammonium iodide (TBAI). (a) **5** (1 X 10⁻⁵ M); (b) **5** + 16 equiv. Hg²⁺; (c) **5** + 16 equiv. Hg²⁺ + 15 equiv. (TBAI); (d) **5** + 16 equiv. Hg²⁺ + 15 equiv. (TBAI) + 20 equiv. Hg²⁺.

Figure S7. Fluorescent response of sensor **4** $(1 \times 10^{-5} \text{ M})$ to Fe^{3+} (20 equiv.) ions over other selected metal ions (100 equiv.).

Figure S8. Fluorescent response of sensor **5** $(1 \times 10^{-5} \text{ M})$ to Hg²⁺ (16 equiv.) ions over other selected metal ions (100 equiv.).

Figure S9. Fluorescence spectra of **4** (1 X 10⁻⁵ M) in response to the presence of \mathbf{K}^+ ions (200 equiv.) in THF; $\lambda_{\text{ex}} = 340$ nm.

Figure S 10. Fluorescence spectra of **5** (1 X 10⁻⁵ M) in response to the presence of \mathbf{K}^+ ions (410 equiv.) in THF; $\lambda_{ex} = 245$ nm.

Figure S11. Fluorescence emission spectra of **4** (1 X 10^{-5} M) on addition of K⁺ ions (200 equiv.) and further addition of Fe³⁺ ions (25 equiv.).

Wavelength (nm) Figure S12. Fluorescence emission spectra of **5** (1 X 10^{-5} M) on addition of K⁺ ions (410 equiv.) and further addition of Hg²⁺ ions (25 equiv.).

Figure S13. UV-vis spectra of **4** (1 X 10^{-5} M) in response to the presence of **Fe³⁺** ions (15 equiv.) in THF.

Figure S14. UV-vis spectra of **4** (1 X 10^{-5} M) in response to the presence of various metal ions (15 equiv.) in THF.

Figure S15. UV-vis spectra of **5** (1 X 10^{-5} M) in response to the presence of Hg^{2+} ions (13 equiv.) in THF.

Figure S15. Figure Magnified view of above figure.

Figure S16. UV-vis spectra of **5** (1 X 10^{-5} M) in response to the presence of ions various metal ions (13 equiv.) in THF.

Figure S17. ¹H NMR spectra of **5** in CDCl₃/CD₃CN (8:2). (A) Free ligand (B) in presence of 1.0 equiv of mercury perchlorate; (C) in presence of 1.0 equiv of potassium perchlorate; (D) addition of 1.0 equiv of mercury perchlorate to ligand/potassium complex. NMR frequency is 300 MHz.

Figure S18. ¹H NMR Spectrum of 4

Figure S21. ¹H NMR Spectrum of 5

Figure S22. ¹³C NMR Spectrum of 5

Figure S23. Mass Spectrum of 5

Figure S26. ¹H NMR Spectrum of 8

Figure S27. Mass Spectrum of 8

Figure S28. IR Spectrum of 4

31

Figure S29. IR Spectrum of 5

Figure S30. Concentration plot for 4.Fe³⁺ obtained from SPECFIT.

Figure S31. Percent complex formation plot of 4.Fe³⁺ for obtained from SPECFIT.

Figure S32. Concentration plot for 5.Hg²⁺ obtained from SPECFIT.

Figure S33. Percent complex formation lot for 5.Hg²⁺ obtained from SPECFIT.

Table S1 for Quantum Yield.

	Absorbance taken for QY at excitation wavelength	Qy of Sample
	$\mathbf{A}_{\mathbf{S}}$	(\$ s)
4 in free state	0.088	0.013
4.Fe ³⁺ complex	0.061	0.094
5 in free state	0.065	0.023
5.Hg ²⁺ complex	0.063	0.188

Figure S34. Curve fitting for 4.Fe³⁺ complex with respect to experimental data.

Figure S35. Curve fitting for $5.Hg^{2+}$ complex with respect to experimental data.