Electronic Supplementary Information

for

Gold(III) Six-membered N^CN Pincer Complexes: Synthesis, Structure, Reactivity and Theoretical Calculations.

Giuseppe Alesso, Maria Agostina Cinellu, Sergio Stoccoro, Antonio Zucca, Giovanni Minghetti, Carlo Manassero, Silvia Rizzato, Ole Swang, and Manik Kumer Ghosh

Description of the supramolecular structure of 1[AuCl₄]Cl

In compound $1[AuCl_4]Cl$ the HN^CH^NH dications and counterions $[AuCl_4]^-$ and Cl⁻ are linked into a complex three-dimensional framework by a combination of two weak independent C-H^{...}Cl interactions and one N-H^{...}Cl hydrogen bond (Figure S1 and Table S2). However, the structure of $1[AuCl_4]Cl$ can be easily analyzed in terms of two more simple one- and two-dimensional substructures. In the first substructure the two N-H protons of the $[HN^CH^NH]^{2+}$ moiety are hydrogen bonded to the Cl(4) chloride anion. Propagation by translation then generates helical chains running along the [1 0 0] direction (Figure S2). The second substructure consist of layers parallel to (1 0 0), as shown in Figure S2, generated by weak C-H^{...}Cl interactions (H^{...}Cl distances 2.826 and 2.897 Å)¹. The Cl(3) chloride ligand of the tetrachloroaurate anion, and the symmetry generated Cl(3') atom, located in *trans* position, are hydrogen bonded to a methylenic group and a aryl ring of two different HN^CH^NH dications (Figure S3). In the literature there exist many examples of structures containing the same type of intermolecular interactions to form a supramolecular architecture.²

Figure S1. A schematic representation of the hydrogen bonding structure in [HN^CH^NH][AuCl₄]Cl, **1**[AuCl₄]Cl. Only atoms involved in hydrogen bonding are labeled. Hydrogen bonds are represented by dotted lines. The arrows indicate the continuation of the hydrogen-bonded network.

Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2010

Donor – HAcceptor	<i>D</i> – H	НА	DA	<i>D</i> – H… <i>A</i>
$N(1) - H(1)^{}Cl(4)$	0.970	2.063	3.026(12)	171.8
$C(11) - H(7)^{}Cl(3)$	0.970	2.826	3.737(23)	156.8
$C(7) - H(3)^{i}Cl(3)$	0.970	2.896	3.847(27)	166.7

Table S1. Hydrogen-bond geometry (Å, °) for 1[AuCl₄]Cl¹

Symmetry codes: (i) -x, y, $z+\frac{1}{2}$

Figure S2 a) Part of the crystal structure of $1[AuCl_4]Cl$, showing the formation of helical chains parallel to the $[1 \ 0 \ 0]$ direction. The broken lines indicate the N-H^{...}Cl hydrogen bond between dipyridinium dications and chloride anion. b) A view of the helical chain along *a*-axis.

Figure S3. A partial packing diagram for 1[AuCl₄]Cl, viewed along the *a*-axis, showing the hydrogen-bonded layer structure. Dashed lines show C-H^{...}Cl hydrogen bonds.

Table S2. Principa	l bond and non-b	ond parameters	of compound 2.
--------------------	------------------	----------------	----------------

Disiances, A	Distances	5, Å
--------------	-----------	------

Hg – Cl 2.308(2)	Hg – C(2) 2.066(7)
Hg N(1) 2.730(7)	Hg N(2) 2.820(9)
N(1) – C(12) 1.280(12)	N(1)-C(8) 1.330(9)
C(8)-C(7) 1.502(11)	C(7) – C(1) 1.594(16)
C(1) - C(2) 1.417(11)	C(1) – C(6) 1.367(16)
N(2) – C(18) 1.291(13)	N(2) – C(14) 1.340(10)
C(14) – C(13) 1.489(11)	C(13) – C(3) 1.529(11)
C(3) - C(2) 1.397(13)	C(3) – C(4) 1.347(11)
Angles, °	
Cl - Hg - C(2) 173.6(2)	N(1) Hg N(2) 108.2(2)

CI - Hg - C(2) = 1/3.0(2)	N(1) Hg
C(12) - N(1) - C(8) 119.3(7)	N(1) - C(8)
C(8) - C(7) - C(1) 114.1(8)	C(7) - C(1)
C(7) - C(1) - C(6) 120.0(8)	C(2) - C(1)
C(1) - C(2) - C(3) 116.7(8)	C(18) - N(2)
N(2) – C(14) – C(13) 116.6(8)	C(14) - C(14)
C(13) - C(3) - C(2) 119.2(6)	C(13) - C(3)
C(2) - C(3) - C(4) 121.0(8).	

N(1) - C(8) - C(7) 116.7(7) C(7) - C(1) - C(2) 117.8(8) C(2) - C(1) - C(6) 122.2(10) C(18) - N(2) - C(14) 116.0(9) C(14) - C(13) - C(3) 112.5(7) C(13) - C(3) - C(4) 119.7(9)

Table S3. ¹H NMR data of N^CH^N, Hg(N^C^N)Cl, 2, and [Au(N^C^N)Cl][X], 3[X], in DMSO-d₆

	CH ₂	H^2	H^5	$\mathrm{H}^{4},\mathrm{H}^{6}$	$H^{3'}, H^{3''}$	$H^{4'}, H^{4''}$	$H^{5'}, H^{5''}$	$H^{6'}, H^{6''}$
N^CH^N	4.05	7.17-7.21	7.17-7.21	7.08	7.25	7.68	7.17-7.21	8.46
2	4.10		7.24-7.27	7.24-7.27	7.38	7.71	7.11	8.43
3 [X]	4.46		7.24-7.30	7.24-7.30	8.10	8.37	7.81	9.21
$X = \frac{1}{2} [Hg_2Cl_6]$	4.94							
3 [X]	4.46		7.23-7.27	7.23-7.27	8.09	8.35	7.78	9.28
X = Cl	5.09							
3 [X]	4.45		7.20-7.32	7.20-7.32	8.10	8.37	7.81	9.21
$\mathbf{X} = [\mathbf{PF}_6]$	4.95							

References

¹ a) A. Bondi, J. Phys. Chem., 1964, 68, 441; b) L.Brammer, E. A. Bruton and P. Sherwood, *Cryst. Growth Des.*, 2001, 1, 277. ² a) T.K. Hagos, S. D. Nogai, L. Dobrzańska and S. Cronje, *Acta Cryst.*, 2008, E64, m1357; b) Z.-F. Zhang, J.-H. Qin, S.-Q. Wang and G.-R. Qua, *Acta Cryst.*, 2007, C63, o622; c) X.-P. Zhang, G. Yanga and N. S. Weng *Acta Cryst.*, 2006, E62, m2018; d) S.A. Bourne and L. J. Moitsheki, *Polyhedron*, 2008, 27, 263.