

S.I. 0: ¹H NMR spectrum of the ligands Cl_1TPA , Cl_2TPA , and Cl_3TPA , in $CDCl_3$.

	$Cl_1TPAFeCl_2$	$Cl_2TPAFeCl_2$	$Cl_3TPAFeCl_2$
$\pi = > \pi^*$	259 (8.3)	267 (9.4)	269 (13.3)
MLCT	392 (1.2)	373 (0.6)	/

Wavelengths in nm, (molecular extinction coefficients in mol^1.cm²)

<u>S.I.</u> 1: Normalized UV-vis. traces of the new $Cl_{1-3}TPAFeCl_2$ compounds, and numerical data.

(sh.)

Wavelengths in nm, (molecular extinction coefficients in mol⁻¹.cm²)

<u>S.I.</u> 2: Normalized UV-vis. traces of the new $Cl_{1-3}TPAFe(OTf)_2$ compounds, and numerical data.

S.I. 3a: ¹H NMR spectrum of complex Cl₁FeCl₂ in CD₃CN, R.T.

S.I. 3b: ¹H NMR spectrum of complex $Cl_1Fe(OTf)_2$ dissolved in CD_3CN , R.T. Insert: ¹⁹F NMR in CD_3CN .

S.I. 4a: ¹H NMR spectrum of complex Cl_2FeCl_2 in CD_3CN , R.T.

<u>**S.I.**</u> ¹H NMR spectrum of complex $Cl_2Fe(OTf)_2$ dissolved in CD_3CN , R.T. Insert: ¹⁹F NMR in CD_3CN .

S.I. 5a: ¹H NMR spectrum of complex Cl_3FeCl_2 in CD_3CN , R.T.

 $\underbrace{\text{S.I. 5b:}}_{CD_3CN,~R.T.}$ ^1H NMR spectrum of complex Cl_3Fe(OTf)_2 dissolved in CD_3CN, R.T. Insert: ^{19}F NMR in CD_3CN.

S.I. 6: Spectral absorption changes versus time for oxygenation of $Cl_1TPAFeCl_2$, at room temperature in CH_3CN under O_2 -saturated atmosphere. Conditions: one scan every 10 minutes for two hours, then every hour for three days.

S.I. 7: Y/X scale : Abs <u>versus</u> time (min). Variation of absorbance at a single wavelength (380 nm) of Cl₁TPAFeCl₂ in CH₃CN under O₂-saturated atmosphere (see S.I. 6). Experimental points: blue dots. Reactivity of Cl₁TPAFeCl₂ with O₂ occurred within two kineticallydistinct steps (see reference 18 in text) quantified by fitting (red trace) experimental data, using the following function:

 $f(t) = A_0 + A_1 exp^{-k_1 t} + A_2 exp^{-k_2 t}$ final values: $A_0 = 0.37815 \pm 0.000583$ $A_1 = 0.15533 \pm 0.00268$ $A_2 = 0.021113 \pm 0.00256$ $k_1 = 0.0064276 \pm 0.000147 mn^{-1}$ $k_2 = 0.00086632 \pm 0.0000164 mn^{-1}$

8: 1HNMR spectrum of TPAFeCl₂ in d5 pyridine, S.I. demonstrating the high-spin state of the metal even in pyridine. A similar spectrum is obtained in CD₃CN [see: D. Mandon; A. Machkour; S. Goetz; R. Welter, Inorg. Chem., 2002, 41, 5363 - 5372, and L. Benhamou; M. Lachkar; D. Mandon; R. Welter, Dalton Trans., 2008, 6996 - 7003]. Insert: diamagnetic region. A, spectrum of d5 pyridine (pure

solvent, for comparison purpose); B, spectrum of $TPAFeCl_2$. The asterisks denote the presence of small amounts of diethyl ether, which appears at these frequencies in d5 pyridine.

No change occurs upon addition of small amounts of acetic acid in the medium.

<u>S.I. 9:</u> UV-visible spectrum of TPAFeCl₂ in pyridine. The MLCT band at λ = 389 nm and 472 nm (shoulder) is shifted by comparison with the λ = 427 nm absorption measured in CH₃CN. No change occurs upon addition of small amounts of acetic acid in the medium. Insert: smooth conversion into the μ -oxo diferric derivative in pyridine.

To be compared with data obtained in CH₃CN and reported in: N. K. Thallaj; O. Rotthaus; L. Benhamou; N. Humbert; M. Elhabiri; M. Lachkar; R. Welter; A.-M. Albrecht-Gary; D. Mandon, *Chem. Eur. J.*, **2008**, *14*, 6742 - 6753.