


Electronic Supplementary Information (ESI)

Fig. S1 Powder diffraction pattern of $Bi_5[GaCl_4]_3$ crystals synthesized from dichloromethane. Observed pattern in black and calculated peak pattern in gray. * marks the unassigned peak in the diffractogram. This peak cannot be associated with any known reactant and is viewed as a sign of impurity in the sample.

Fig. S2 Raman spectra below 500 cm⁻¹ of the liquid GaCl₃-dichloromethane and Ga-GaCl₃-dichloromethane systems at room-temperature. Pure dichloromethane is shown for reference and the strong solvent band at 285 cm⁻¹ is marked *.

Fig. S4 Raman spectra below 500 cm⁻¹ of the liquid GaCl₃-benzene and Ga-GaCl₃-benzene systems at room-temperature. Pure Bz is shown for reference and the strong solvent band at 112 cm^{-1} is marked *.

GaCl₃- C ₆ H ₆ Ref. 9a	Assignment	$\begin{array}{c} \textbf{Ga-GaCl}_3\textbf{-}\\ \textbf{C}_6\textbf{H}_6^*\\ \textbf{Ref. 9b} \end{array}$	Assignment	Ga-GaCl ₃ -C ₆ H ₆ This work	Assignment	Ga-GaCl ₃ - CH ₂ Cl ₂ This work	Assignment
463	Ga ₂ Cl ₆					461	C_{2}
	2 0	410	C CI -				Ga_2Cl_6
413	Ga_2Cl_6	418	Ga_2Cl_7			413	Ga_2Cl_6
393	GaCl ₃	394	Ga_2Cl_7				
367	GaCl ₃	370	Ga_2Cl_7 and	368	Ga_2Cl_7 and	370	GaCl ₃ or Ga ₂ Cl ₇
			Ga_3Cl_{10}		Ga_3Cl_{10}		and Ga ₃ Cl ₁₀
344	Ga_2Cl_6	346	$GaCl_4$	343	GaCl ₄	343	Ga ₂ Cl ₆ or GaCl ₄
Obscured	Ga_2Cl_6						
325	Ga-C	260	Ga_2Cl_7			322	Ga-C
			and/or				
			Ga_3Cl_{10}				
168	Ga_2Cl_6					168	Ga_2Cl_6
140	GaCl ₃	150	GaCl ₄				
109	Ga_2Cl_6					110	Ga_2Cl_3

Table S1 Raman bands (cm⁻¹) of the dichloromethane and benzene system compared with literature data.^[9]

*Saturated with gallium metal

Tabel S2 Calculated breathing mode Raman frequencies for the B_{15}^{3+} cluster together with CM, DCM, TCM and Bz benzene. For reference the experimental Raman frequency of the naked B_{15}^{3+} cluster in benzene solution is listed.^[5a]

Model system	Raman bands (cm ⁻¹)
Bi ₅ ³⁺ -CM	141/154
Bi ₅ ³⁺ -DCM	140/153
Bi ₅ ³⁺ -TCM	154
Bi ₅ ³⁺ -Bz	142/167
Bi_{5}^{3+}	139

 $\label{eq:solution} \textbf{Tabel S3} \ \text{List of solvents used reactions; polarity and solubility of gallium(III) chloride.}$

Solvent	Dielectric constant (20 °C unless otherwise indicated)	Solubility	Observation
Hexane, C ₆ H ₁₄	1.890	< 50 mol %	Light yellow colored solution
n-Heptane,C ₇ H ₁₆	1.92	< 50 mol%	Light yellow colored solutions
Benzene, C_6H_6	2.284	>50 mol%	Amber colored solution
Toluene, C_7H_8	2.379 (25 °C)	>50 mol%	Amber colored solution
Chloroform, CHCl ₃ Tetrahydrofuran (THF), C ₄ H ₈ O	4.806 7.5 8 (25 °C)	>50 mol% >50 mol%	Red/yellow solution Amber colored solution, grayish solid within minutes
Dichloromethane (DCM) CH_2Cl_2 , Acetone, C_3H_6O	9.08 20.7 (25 °C)	>50 mol% >50 mol%	Amber colored solution Heat release upon mixing, yellow/grayish solution
Acetonitrile, C ₂ H ₃ N	37.5	>50 mol%	Heat release upon mixing, yellow/grayish solution gel like solid within minutes
Dimethylsulfoxide, (DMSO), C ₂ H ₆ OS	46.7	>50 mol%	Heat release upon mixing, yellowish solution, gel like solid within minutes

^{*} The polarity information (dielectric constants) found in CRC Handbook of Chemistry and Physics, 63rd edition, 1982-1983, CRC Press and in solvent supplier information.