Structure, solution chemistry, antiproliferative actions and protein binding properties of non-conventional platinum(II) compounds with sulfur and phosphorus donors

SUPPORTING INFORMATION

Carolin Mügge, ^{‡a} Claudia Rothenburger, ^{‡a} Antje Beyer, ^a Helmar Görls, ^a Chiara Gabbiani, ^b Angela Casini, ^c Elena Michelucci, ^d Ida Landini, ^e Stefania Nobili, ^e Enrico Mini, ^e Luigi Messori, *^b Wolfgang Weigand *^a

‡ These Authors contributed equally to this work.

^aInstitute of Inorganic and Analytical Chemistry, Friedrich-Schiller-University Jena, August-Bebel-Strasse 2, 07743 Jena, Germany, Fax: (+49) 3641 948102, E-mail: wolfgang.weigand@uni-jena.de

^b Laboratory of Metals in Medicine, Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy, *Fax:* (+39) 055 4573385, *E-mail: luigi.messori@unifi.it*

^c Institut des Sciences et Ingéniere Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL)CH-1015 Lausanne, Switzerland

^d Mass Spectrometry Center (CISM), University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino, Firenze, Italy

^e Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy.

Table of Contents:

- **Figure S1.** ${}^{31}P{}^{1}H$ NMR spectra of 7 and 8.
- Figure S2. Molecular Structures of 6.
- Figure S3. Molecular Structures of 7 and 8.
- Figure S4. Molecular Structures of 9 and 10.
- **Table S1.**Crystallographic data for compounds 6-10.
- Figure S5. Deconvoluted ESI-MS spectrum of 1.
- Figure S6. Deconvoluted ESI-MS spectrum of 2.
- Figure S7. Isotope pattern of the ESI-MS peak of 2 at charge State +8.
- Figure S8. Isotope pattern of the ESI-MS peak of 3 at charge State +8.
- Figure S9. Deconvoluted ESI-MS spectrum of 4 at charge State +8.

Figure S1. ³¹P{¹H} NMR spectra (81 MHz, CDCl₃) of 7 (top) and 8 (bottom), showing the structural differences of both compounds. 7 is a symmetric complex leading to one singlet at $\delta = 48.4$ ppm (\checkmark) with platinum satellites (${}^{1}J_{PPt}$ 2748 Hz). 8, bearing two different P atoms, gives a set of two doublets, each showing Pt satellites in an AB spin system. $\delta = 49.1$ ppm (\bigstar , ${}^{1}J_{PPt}$ 2720 Hz, ${}^{2}J_{PP}$ 12 Hz), 48.8 ppm (\bigstar , ${}^{1}J_{PPt}$ 2778 Hz, ${}^{2}J_{PP}$ 12 Hz). Due to a strong roof effect, the satellite signals at 65.9 ppm appear merged to a pseudo-singlet.

Figure S2. Molecular Structure of **6**. Disorders at the dithiolato moiety have been omitted for clarity. Thermal ellipsoids are given at the 50 % propability level.

Figure S3. Molecular Structures of **7** and **8**. Disorders at the dithiolato moiety have been omitted for clarity. Thermal ellipsoids are given at the 50 % propability level.

Figure S4. Molecular Structures of **9** and **10**. Disorders at the dithiolato moiety have been omitted for clarity. Thermal ellipsoids are given at the 50 % propability level.

Compound	9	7	8	6	10
formula	$C_{39}H_{36}OP_2 PtS_2$	C ₂₉ H ₃₀ OP ₂ PtS ₂ , 0.5	$C_{31}H_{34}OP_2PtS_2$	C ₃₅ H ₄₄ OP ₂ PtS ₂ Si	C ₂₉ H ₃₀ OP ₂ PtS ₂
	CHC1 ₃	CH_4O, H_2O			
fw (g·mol ⁻¹)	961.20	749.72	743.73	829.94	715.68
$T^{\circ}C$	-90(2)	-90(2)	-90(2)	-90(2)	-90(2)
crystal system	triclinic	monoclinic	monoclinic	orthorhombic	monoclinic
space group	$P_{\overline{1}}$	P 2 ₁ /n	$P 2_1/c$	P bca	$P 2_1/n$
a/ Å	11.6368(13)	9.0685(3)	15.6013(6)	17.8444(14)	9.1382(3)
b/ Å	12.5618(13)	28.1277(9)	18.2591(7)	13.7455(11)	25.8648(9)
$oldsymbol{c}$ / Å	14.784(2)	12.3952(3)	10.9863(4)	28.9636(18)	12.1756(4)
$\alpha/^{\circ}$	87.969(8)	90	90	90	90
β°	78.924(7)	103.898(2)	104.966(2)	90	106.278(2)
y/o	64.993(4)	90	90	90	90
$V/Å^3$	1919.4(4)	3069.16(16)	3023.5(2)	7104.2(9)	2762.43(16)
Ζ	2	4	4	8	4
ho (g·cm ⁻³)	1.663	1.623	1.634	1.552	1.721
$\mu ({\rm cm}^{-1})$	40.88	48.39	49.08	42.18	53.68
measured data	12394	18527	20310	19282	15833
data with $I > 2\sigma(I)$	4729	4638	5116	3924	4081
unique data (R _{int})	8227/0.0557	6922/0.0698	6808/0.0591	6757/0.1662	6188/0.0636
wR ₂ (all data, on	0.1753	0.1845	0.0979	0.2660	0.1598
$\mathbf{F}^{\mathbf{z}}$) ^{a)}					
$R_1 (I > 2\sigma(I))^{a}$	0.0894	0.0638	0.0386	0.0876	0.0569
S ^{b)}	1.126	1.014	1.007	1.018	1.023
Res. dens./e-Å ⁻³	1.446 / - 1.670	2.860/-2.192	1.396/-1.953	2.655/-2.228	1.946/-1.788
absorpt method	NONE	NONE	NONE	NONE	NONE
CCDC No.	776102	776103	776104	776105	776106
^{a)} Definition of the R	indices: $R_1 = (\Sigma $	$F_0 - F_c = F_c _{J/\Sigma} F_0 = F_0 $	$= \{\Sigma[w(F_o^2 - F_c^2)^2]/\Sigma[w]$	$(F_o^2)^2]_{1/2}$ with $w^{-1} =$	$\Box^2(F_0^2) + (aP)^2 + bP;$
$P = [2F_c^2 + Max(F_O^2)/3;$	^{b)} $s = \{ \Sigma [w (F_o^2 - F_c^2)^2] \}$	$(N_{\rm o}-N_{\rm p})\}^{1/2}$.			

Table S1. Crystal data and refinement details for the X-ray structure determinations of 6, 7, 8, 9, and 10.

S5

Figure S5. Deconvoluted ESI-MS spectrum of 1, incubated with cyt c at a 1:3 ratio for 24 h at 37 °C. A low-intensity signal (3 % r.i.) of a [cyt c + $Pt(PPh_3)_2$] fragment can be observed at 13077.46 Da.

Figure S6. Deconvoluted ESI-MS spectrum of **2**, incubated with cyt c at a 3:1 ratio for 24 h at 37 °C. Weak signals corresponding to 2 Pt(dppe) units and Pt(dppe) + Pt(dppe)Cl bound to cyt c are observed in the 13500-13600 Da range. The signal at 14233.6 Da, belonging to [cyt c + 3 Pt(dppe)] is weaker (15 % r.i.) than the one at 14170.6 Da ([cyt c + 2 Pt(dppe) + Pt(dppe)Cl], 30 % r.i.).

Figure S7. Isotope pattern of the ESI-MS peak of **2**, assigned to cyt c with 3 $[Pt(dppe)]^{2+}$ fragments at Z = +8. Top, theoretical pattern; bottom, observed signal.

Figure S8. Isotope pattern of the ESI-MS peak of **3**, assigned to cyt c with 2 Pt(dppm) and 1 $[Pt(dppm)H_2O]^{2+}$ bound fragments at Z = +8. Top, theoretical pattern; bottom, observed signal.

Figure S9. Deconvoluted ESI-MS spectrum of **4**, incubated with cyt c at a 1:1 ratio for 96 h at 37 °C. Various adducts can be observed and progressive loss of the PTA ligands is indicated.