Supplementary information

for

Synthesis, characterisation and magnetic properties of octahedral chromium(III) compounds with six C-donor ligands

Pablo J. Alonso, Ana B. Arauzo, M. Angeles García-Monforte, Inés García-Rubio, Antonio Martín, Babil Menjón,* and Conrado Rillo

Figures S1–S3: Simulation of EPR spectra registered for	
$[NBu_4][trans-Cr(C_6F_5)_4(CN^tBu)_2]$ (2) at representative	
stages of the observed evolution	Pages S1–S3
Figure S4 : EPR spectra of [NBu ₄][<i>trans</i> -Cr(C ₆ F ₅) ₄ (CN-Xy) ₂] (3) compared with typical spectra of 2	Page S4
Figure S5: Bulk magnetic properties of 3	Page S5

Figure S1. Comparison between experimental (red lines) and simulated (blue lines) EPR spectra of a polycrystalline sample of **2** measured at X-band (upper part) and at Q-band (lower part). Experimental spectra correspond to those given in Figures 5c (X-band) and 6c (Q-band). Simulated spectra correspond to type C contribution (Table 3).

Figure S2. Comparison between experimental (red lines) and simulated (blue lines) EPR spectra of a polycrystalline sample of **2** measured at X-band (upper part) and at Q-band (lower part). Experimental spectra correspond to those given in Figures 5d (X-band) and 6d (Q-band). Simulated spectra have been calculated considering coexistence of type C (80%) and type D (20%) contributions (Table 3).

Figure S3. Comparison between experimental (red lines) and simulated (blue lines) EPR spectra of a polycrystalline sample of **2** measured at X-band (upper part) and at Qband (lower part). Experimental spectra correspond to those given in Figures 5e (Xband) and 6e (Q-band). Simulated spectra correspond to type D contribution (Table 3).

MAGNETIC FIELD / mT

Figure S4. EPR spectra of **3** (red solid line) compared with typical spectra of **2** (black broken line): a) X-band; b) Q-band..

Figure S5. a) Magnetization *vs.* the reduced applied magnetic field, $M(\mu_0 H/k_B T)$, of a powder sample of **3** at 1.8 K (dotted line corresponds to the evolution calculated with a Brillouin function with S = 3/2 and g = 1.92); b) Thermal dependence of the magnetic susceptibility, χ (empty circles, ordinate scale on the left) and its inverse, χ^{-1} (full circles, ordinate scale on the right) of the same sample (dotted lines correspond to the predicted evolution following the Curie law).