Dansyl-anthracene dyads for ratiometric fluorescence recognition of Cu^{2+} .

Kuljit Kaur and Subodh Kumar^{*}

Department of Chemistry, Guru Nanak Dev University, Amritsar-143005, India.

subodh_gndu@yahoo.co.in

$\begin{array}{c} 0.4 \\ 0.3 \\ 0.2 \\ 0.1 \\ 0 \\ 300 \\ 400 \\ 500 \\ 600 \\ 700 \\ 800 \\ 900 \end{array}$

Electronic Supplementary Information

Wavelength (nm)

Fig. S2: Effect of gradual addition of Cu^{2+} ions on the UV/Vis absorption spectrum of dyad 2

Fig S3. Species distribution in dyad 1 solution as a function of pH

Fig. S4. Plot of absorbance of probe- Cu^{2+} (1:1) complex (25 μ M, CH₃CN : H₂O (7 : 3), vs pH at 612 nm. The points refer to experimental values and line to curve fit.

Fig S5. Species distribution in dyad 1-Cu2+ (1:1) solution as a function of pH

Fig. S6: Effect of addition of Cu^{2+} on the UV/Vis absorption spectrum of probe 3(25 μ m, CH₃CN : H₂O (7:3), 0.1 mM HEPES, pH 7.0 ± 0.1).

Fig. S7: Fluorescence ratiometric response (I_{470}/I_{560}) of dyad 1 (1 μ M) upon addition of different metal ions (100 μ M) in CH₃CN-H₂O (7:3) HEPES buffer, pH 7.0. (λ_{ex} : 335 nm).

Fig. S8: (a) Fluorescence ratiometric response (I_{470}/I_{560}) of dyad **1** (1 µM) containing 5 µM Cu^{2+} and background metal ions (50 µM) in CH₃CN-H₂O (7:3) HEPES 0.01 M, pH 7.0 \pm 0.1. (λ_{ex} : 335 nm).

Fig. S9: Effect of different metal ions on the fluorescence spectrum of dyad 2 (1 μ M, CH₃CN : H₂O (7:3); 0.1 mM HEPES, pH 7.0 ± 0.1. λ_{ex} = 375 nm.

Fig. S10: Species distribution curve from fluorescence titration of dyad 1 with Cu^{2+} .

Fig. S11 : effect of Cu^{2+} (1000 μ M) on the fluorescence spectrum of dyad 3 (0.5 μ M, CH₃CN : H₂O (7:3); 0.1 mM HEPES, pH 7.0 \pm 0.1. (a) dyad **3** (b) dyad **3** + Cu²⁺ ions (λ_{ex} = 335 nm).

Fig. S12: Fluorescence spectra of (a) Dyad **5** (5 x 10^{-7} M) (b) Dyad **5** + Cu²⁺ ions in CH₃CN : H₂O (7:3) [0.1 mM HEPES, pH 7.0 ± 0.1]. $\lambda_{ex} = 335$ nm.

Spectral data

Fig. S14 : ¹H NMR spectrum of dyad 1 (CDCl₃).

Fig. S15: ¹³C NMR spectrum of dyad 1 (CDCl₃).

Fig. S16: DEPT-135 spectrum of dyad 1 (CDCl₃).

Fig. S17: High Resolution Mass spectrum of dyad 1.

Fig. S18: ¹H NMR spectrum of dyad 2 (CDCl₃).

Fig. S19: ¹³C NMR spectrum of dyad 2 (CDCl₃).

Fig. S20: DEPT-135 spectrum of dyad 2 (CDCl₃).

Fig. S21: High Resolution Mass spectrum of dyad 2.

Fig. S22: ¹H NMR spectrum of probe 3 (CDCl₃).

Fig. S23: ¹³C NMR spectrum of probe 3 (CDCl₃).

Fig. S24: High Resolution Mass spectrum of probe 3.

Fig. S25: ¹H NMR spectrum of probe 4 (CDCl₃).

Fig. S26: ¹³C NMR spectrum of probe 4 (CDCl₃).

Fig. S27: DEPT-135 NMR spectrum of probe 4 (CDCl₃).

Fig. S28: High Resolution Mass spectrum of probe 4.

Fig. S29: ¹H NMR spectrum of probe 5 (CDCl₃).

Fig. S30: ¹³C NMR spectrum of probe 5 (CDCl₃).

Fig. S31: High Resolution Mass spectrum of probe 5.