Supporting Information for

Selective heterolytic P-P bond cleavage of white phosphorus by frustrated carbene-borane Lewis pairs

Dirk Holschumacher, Thomas Bannenberg, Kerstin Ibrom, Constantin G. Daniliuc, Peter G. Jones and Matthias Tamm*

* Institut für Anorganische und Analytische Chemie, Technische Universität
Carolo-Wilhelmina, Hagenring 30, D-38106 Braunschweig, Germany.
Fax: +49 (251) 391-5309; Tel: +49 (251) 391-5387; E-mail: m.tamm@tu-bs.de

Contents:

- **1. Experimental Details**
- 2. NMR Characterisation
- 3. X-ray crystal structure determination
- 4. Computational Details

Energies of all optimized structures

Structures and XYZ coordinates

1. Experimental Details

Materials and Methods: All operations with air and moisture-sensitive compounds were performed in a glove box under a dry argon atmosphere (MBraun 200B) or on a high vacuum line using Schlenk techniques. All solvents were purified by a solvent purification system from MBraun and stored over molecular sieve (4 Å) prior to use. Elemental analysis (C, H, N) succeeded by combustion MS on a Finnigan MAT 95 (EI), Finnigan MAT 95 XL (ESI), respectively and HR-MS from Bruker-Demo QTOF micro. Unless otherwise indicated, all starting materials were obtained from Aldrich and were used without further purification. 1,3-Di*tert.*-butylimidazolin-2-ylidene (1)^[1] and B(C₆F₅)₃^[2] were prepared according to literature procedures.

A. J. Arduengo III., US Patent 5 077 414, 1991, b) A. J. Arduengo, III; H. Bock, H. Chen, M. Denk, D. A. Dixon, J. C. Green, W. A. Herrmann, N. L. Jones, M. Wagner, R. West J. Am. Chem. Soc. 1994, 116, 6641-6649

^[2] C. Wang, G. Erker, G. Kehr, K. Wedeking, R. Fröhlich, *Organometallics* 2005, 24, 4760-4773

(3): To 20 ml of a solution of P_4 (0.98 mmol, 121 mg) in toluene/benzene (5:1) were added $B(C_6F_5)_3$ (0.98 mmol, 0.500 g) and 1,3-Di-*tert*.-butylimidazolin-2-ylidene **1** (0.98 mmol 0.177 g). The solution was

mixed at ca. 5 °C and stirred at rt for 4 hours. During this time the colour of the solution changed from yellow to purple and a smooth pale yellow precipitate was formed. The solvent was decanted carefully and the solid was washed 4 times with 3 ml toluene and following 3 times with 5 ml pentane. The crude product was dried in vacuo and recrystallized from THF/pentane at -35 °C. The product was collected as a white solid after filtration and drying in vacuo. Yield 523 mg (67 %, based on elemental analysis). Crystals for **3** were obtained from a mixture of THF/pentane at -35 °C.

elemental analysis: theoretical for C₂₉H₂₀BF₁₅N₂P₄·2 THF: N 2.92, C 46.28, H 3.78, found: N 2.99, C 45.76, H 3.65.

2. NMR Characterisation

The NMR spectra were obtained on Bruker Avance II 600, DRX 400 and Avance II 300 instruments. Frequencies and referencing methods are listed in tables 1-5. For referencing the ¹⁹F, ³¹P and ¹¹B spectra the observation frequencies of a dilute solution of the reference compound in THF-d₈ (¹⁹F, virtual internal referencing) or the neat external standard (³¹P, ¹¹B, virtual external referencing) had been determined earlier. The β -deuterium atoms of THF-d₈ were always used as the lock signal. Standard two-dimensional techniques (HSQC, HMBC) as well as ¹³C triple resonances spectra (selective decoupling for all three ³¹P signals under ¹H broadband decoupling conditions) were used to assign the spectra.

Table 1 ¹H-NMR spectrum of **3**, 600.1 MHz, THF-d₈, δ (TMS) = 0

δ [ppm]	multiplicity	no. of H	J [Hz]	assignment
8.45	d	1	$J_{1-H,3-H} = 1.9$	1-H
7.47	d	1		3-Н
1.84	S	9		$C(CH_3)_3$ at N-1
1.54	S	9		C(CH ₃) ₃ at N-2

Table 2 ¹³C-NMR spectrum of **3**, 150.9 MHz, THF-d₈, δ (THF-d₈) = 25.3

δ [ppm]	Type of C	multiplicity ¹	$J [\mathrm{Hz}]^1$	assignment
148.80	Cq	"dm"	Splitting: 240.5	$B(C_6F_5)_3$: C_{ortho}
≈ 139.2	C_q	"dt"	Splittings: $246.4, \ge 13.7$	$B(C_6F_5)_3$: C_{para}
≈ 137.6	C_q	"ddd"	Splittings: 246.7, ≥ 20.9, ≥ 11.3	$B(C_6F_5)_3$: C_{meta}
≈ 136.3	C_q	dd	$J_{\rm P-1,C} \approx 106, {\rm J}_{\rm P-4,C} \approx 44^{*}$	C-2
133.98	CH	S		C-1
127.72	CH	br. s	$J_{\rm P-2,C} = 8.9^{**}$	C-3
≈ 123.4	C_q	v br. m	$(v_{\frac{1}{2}} \approx 155 \text{ Hz})$	$B(C_6F_5)_3$: C_{ipso}
63.30	C_q	S		$C(CH_3)_3$ at N-1
61.25	C_q	S		$C(CH_3)_3$ at N-2
30.33	q	d	$J_{\rm P-2,C} = 9.3^2$	C(CH ₃) ₃ at N-1
29.21	q	S		$C(CH_3)_3$ at N-2

*derived from HMBC; **derived from ${}^{13}C{}^{31}P_{sel}, {}^{1}H$, irradiation at $\delta({}^{31}P) = -200.2$ ppm

¹ Where spectra of higher order are observed merely a description of the multiplicity and splittings instead of couplings constants are given.

	1 ,) 0) L(5) (Int.,Int.)
δ [ppm]	multiplicity	Splitting [Hz]	assignment
-126.0	"br. d"	$\approx 68 \; (v_{1/2} \approx 50 \; \text{Hz})$	$B(C_6F_5)_3$: F_{ortho}
-162.6	"t"	20.4	$B(C_6F_5)_3$: F_{meta}
-166.1	"≈ t"	19.0	$B(C_6F_5)_3$: F_{para}

Table 3 ¹⁹F-NMR spectrum of **3**, 376.4 MHz, THF-d₈, $\delta[(CFCl_3)_{virt..int}] = 0$

Table 4 ³¹P-NMR spectrum of **3**, 121.5 MHz, THF-d₈, $\delta[(85 \% H_3PO_4)_{virt., ext.}] = 0$

δ [ppm]	multiplicity	Splitting [Hz]	assignment
-159.5	dtsept	$J_{P-1,P-4} = 285.3, J_{P-2,P-4} = 172.7, J_{P-4,Fortho} = 63.3$	P-4
-200.2	br. m	$J_{\text{P-1,P-2}} = 173.2$	P-1
-327.4	tsept	$J_{\text{P-2,Fortho}} = 12.3$	P-2

Table 5 ¹¹B-NMR spectrum of **3**, 96.3 MHz, THF-d₈, $\delta[(BF_3 \cdot O(CH_2CH_3)_2)_{virt., ext.}] = 0$

δ [ppm]	multiplicity	Splitting [Hz]
-13.9	br. d	$36 (v_{1/2} \approx 79 \text{ Hz})$

Please note:

The following spectra, which were recorded on a 600 MHz-NMR spectrometer show impurities due to decomposition in solution during prolonged measurements within two days.

NMR spectra of freshly prepared samples measured on a 400 MHz NMR-spectrometer are also shown; these show no impurities.

-160

-170

-180

-190

-200

-210

-220

-230

-240

-250

-260

-270

-280

-290

-300

-310

-320

....

-330 ppm

¹¹B-NMR spectrum of **3**

o: different impurities and probehead background signal resp.

NAME	hod97726 at	
EXPNO	- 3	
PROCNO	1	
Date	20090625	
Time_	16.01	
INSTRUM	av300	
PROBHD	5 mm PABBO BB-	
PULPROG	zaroa	
TD	32768	
SOLVENT	THF	
NS	512	
DS	4	
SWH	21008.404	Ηz
FIDRES	0.641126	Ηz
AQ	0.7799284	sec
RG	287	
DW	23.800	use
DE	6.00	use
ΤE	300.0	K
D1	1.00000000	sec
TDO	1	
NUC1	11B	
P1	9.70	use
PL1	4.00	dB
SF01	96.2936310	MHz
SI	16384	
SF	96.2935819	MHz
SR	-49.11	Ηz
WDW	EM	
SSB	0	
LB	1.00	Ηz
GB	0	
PC	1.40	
FlP	50.865	ppm
F2P	-49.119	ppm

NMR spectroscopic illustration of the compound **3**, which were directly measured after synthesis on a DRX 400 spectrometer. In solution slow decomposition takes place after some hours.

¹H NMR

3. X-Ray structure determination of 3.2THF

<u>Crystal data</u>: C₃₇H₃₆BF₁₅N₂O₂P₄, M = 960.37, monoclinic, $P2_1/n$, a = 15.2628(2), b = 12.8453(2), c = 21.2228(4) Å, $\beta = 94.111(2)^{\circ}$, Z = 4, V = 4150.14(2) Å³, $D_x = 1.537$ Mg m⁻³, $\mu = 0.29$ mm⁻¹, T = 100 K. <u>Data collection</u>: A crystal $0.26 \times 0.16 \times 0.09$ mm was used to record 160687 intensities to 20 56.6° on an Oxford Diffraction Xcalibur E diffractometer using monochromated Mo $K\alpha$ radiation. An absorption correction was performed on the basis of multi-scans. <u>Structure refinement</u>: The structure was refined anisotropically on F^2 using the program SHELXL-97 (G.M. Sheldrick, University of Göttingen, Germany). Hydrogen atoms were included using rigid methyl groups or a riding model. The final wR2 was 0.0631 for 556 parameters and all 9886 unique reflections, with conventional R1 ($F > 4\sigma(F)$) 0.0298; max. $\Delta\rho$ 0.43 e Å⁻³; S 0.87.

4. Computational Details

All computations were performed using the hybrid density functional method M05-2X implemented in the Gaussian09 program.^[1] For all main-group elements (C, H, N, B, F) the allelectron triple- ζ basis set (6-311G**) was used.^[2]

- Gaussian 09, Revision A.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
- [2] X. Cao and M. Dolg, J. Chem. Phys. 2001, 115, 7348.

Energies for all optimized structure:

Compound	E(0 K) ^a [Ha]	H(298 K) ^b [Ha]	G(298 K) ^b [Ha]
$tBu_2ImC-P_4-BR_3$ (4) (trans-trans)	-4114.484986	-4114.434616	-4114.570734
<i>t</i> Bu ₂ ImCH-P ₄ -BR ₃ (3) (<i>trans-trans</i>)	-4114.508198	-4114.457935	-4114.593018
<i>t</i> Bu ₂ ImCH-P ₄ -BR ₃ (5) (<i>trans-cis</i>)	-4114.504674	-4114.454632	-4114.587323
tBu ₂ ImCH-P ₄ -BR ₃ (6) (cis-trans)	-4114.511446	-4114.460983	-4114.597554

^{*a*}DFT energy incl. ZPE.

^{*b*} standard conditions T = 298.15 K and p = 1 atm.

(trans-trans)

Structure of the carben- P_4 -boran adduct (4) (atom, x-, y-, z-positions in Å): (Hydrogen and fluorine atoms are omitted for clarity)

В	1.638200	0.064600	-0.138200
Ν	-5.102400	1.019100	-0.047300
Ν	-5.124500	-1.144100	-0.341100
Р	-2.876800	0.285400	-1.655900
P	-1.603300	0.530900	0.163600
P	-1.512500	-1.340200	-0.926300
P	-0 017700	0 257100	-1 356500
F	4 001100	0 968200	-1 792600
- 	4.738600	3 453400	-2 213600
r r	3 363500	5 529000	_1 122000
с 	1 100000	J.J20000	-1.122000
г П	1.190000	J.010400	0.430800
r	0.419600	2.535400	0.900100
F.	2.230200	1.5/5000	2.4/4800
F.	1.466900	0.797300	4.8/4200
E'	0.188300	-1.568600	5.235100
F.	-0.295900	-3.1/3200	3.083500
F	0.465100	-2.419300	0.654700
F	4.155700	-0.340200	1.021000
F	5.964700	-2.228600	0.441300
F	5.496800	-3.989800	-1.576700
F	3.182400	-3.832600	-2.991100
F	1.371000	-1.982800	-2.425400
С	-6.078800	0.497700	0.769400
С	-6.087300	-0.838100	0.594500
С	-4.473700	-0.007500	-0.684600
С	-4.994400	2.508000	-0.333600
С	-3.663300	3.103000	0.126100
С	-5.224100	2.719900	-1.830000
С	-6.113800	3.220100	0.428200
С	2.188200	1.592700	-0.376200
С	3.272900	1.915400	-1.184200
С	3.681800	3.216100	-1.435000
С	2.987100	4.272800	-0.885700
С	1.886400	4,009400	-0.093700
C	1,514000	2,700100	0.130900
C	1.264100	-0.319000	1,404500
C	1.547800	0.426900	2.543600
C	1.185200	0.029500	3.820200
C	0 545900	-1 179600	4 012000
C	0.298400	-1 987900	2 920500
c	0.681900	-1 55/100	1 666300
c	2 674600	-1 079600	-0 656900
c	2 873200	-1 205300	0 033300
c	1 826800	-2 161000	-0 252000
c	4.020000	-2.101000	-0.232000
c	3 410000	-3.033900	-1.200900
	3.418000	-2.9/1400	-1.99/800
	∠.4898UU	-1.994400	-1.0/0500
	-5.045600	-2.542000	-0.91/200
C	-4.232300	-3.426800	0.022400

С	-4.492400	-2.513200	-2.340000
С	-6.480700	-3.080600	-1.008600
Н	-6.914300	-3.294500	-0.034000
Н	-7.127400	-2.390800	-1.551100
Н	-6.446900	-4.021800	-1.554000
Н	-6.709300	-1.578800	1.054100
Н	-3.411300	2.770700	1.132200
Н	-3.770300	4.187500	0.140300
Н	-2.843800	2.863900	-0.543200
Н	-6.696800	1.097700	1.404700
Н	-3.207400	-3.079700	0.116900
Н	-4.689400	-3.450300	1.012500
Н	-4.218800	-4.442600	-0.373100
Н	-3.434400	-2.291500	-2.386100
Н	-4.637400	-3.502700	-2.771100
Н	-5.038600	-1.793000	-2.950900
Н	-7.100600	2.853300	0.147000
Н	-6.064300	4.273800	0.162000
Н	-5.981900	3.148100	1.508000
Н	-4.436700	2.272100	-2.431700
Н	-5.229000	3.791100	-2.030900
Н	-6.187100	2.305100	-2.129900

Structure of the abnormal carben- P_4 -boran adduct (3) (atom, x-, y-, z-positions in Å): (Hydrogen and fluorine atoms are omitted for clarity)

В	-1.806600	-0.102400	-0.138100
Ν	5.320800	-1.405600	-0.643300
Ν	5.258100	0.564800	0.276100
P	2.482700	-2.034100	-1.118100
P	1.164500	-1.213000	0.470800
P	1.248600	-0.214700	-1.476600
Ρ	-0.490900	-1.511900	-0.964900
F	-0.690700	0.502200	2.572800
F	1.137700	2.326400	3.114600
F	2.038900	4.015300	1.192600
F	1.045500	3.821000	-1.329900
F	-0.764600	1.978700	-1.929600
F	-3.075300	2.558800	-0.946000
F	-5.045300	2.840400	-2.677500
F	-6.141500	0.682700	-3.906400
F	-5.208000	-1.809200	-3.331100
F	-3.227000	-2.129000	-1.582100
F	-3.607700	1.335600	1.471900
F	-5.113500	0.448900	3.492100
F	-4.960400	-2.152600	4.272100
F	-3.269400	-3.843700	2.980000
F	-1.770900	-2.994500	0.977500
С	-0.892800	1.175500	0.296600
С	-0.354700	1.328000	1.570500
С	0.608700	2.272200	1.887500
С	1.067700	3.134700	0.913700
С	0.555600	3.039400	-0.365200
С	-0.398500	2.077500	-0.642600

С	-2.971500	0.198900	-1.245500
С	-3.521100	1.441700	-1.536300
С	-4.568900	1.619100	-2.425000
С	-5.135200	0.524600	-3.047500
С	-4.654300	-0.737700	-2.759200
С	-3.609500	-0.870200	-1.864100
С	-2.609400	-0.773600	1.124200
С	-3.499600	0.041900	1.813900
С	-4.287300	-0.388800	2.862400
С	-4.211400	-1.710800	3.262500
С	-3.351900	-2.565000	2.604300
С	-2.578500	-2.087600	1.557400
С	6.058500	-0.414800	-0.134800
С	3.975900	-1.049500	-0.560000
С	3.967600	0.189000	0.021800
С	5.878800	-2.681700	-1.197000
С	5.329700	-3.846500	-0.375100
C	5.487100	-2.782600	-2.670000
С	7.400200	-2.656800	-1.080200
С	5.632900	1.878800	0.882100
C	4.928300	1.989900	2.233200
С	5.168800	2.978100	-0.072300
С	7.143600	1.929300	1.063800
Н	7.493900	1.142000	1.732600
Н	7.399700	2.886400	1.514100
Н	7.666500	1.862800	0.108800
Н	7.127200	-0.406800	-0.065200
Н	3.130200	0.815100	0.265400
Н	5.588600	-3.725900	0.676900
Н	5.773400	-4.772700	-0.739600
Н	4.249200	-3.932200	-0.466300
Н	4.408900	-2.848400	-2.797700
Н	5.932600	-3.683800	-3.090400
Н	5.858200	-1.919300	-3.222600
Н	7.840200	-1.844600	-1.660100
Н	7.778700	-3.592700	-1.486700
Н	7.727600	-2.593000	-0.041800
Н	3.844500	1.990100	2.127200
Н	5.212600	2.931300	2.701600
Н	5.218500	1.169300	2.889000
Н	5.649700	2.872300	-1.044800
Н	5.433800	3.947400	0.348300
Н	4.088300	2.960600	-0.208300

Structure of the abnormal carben- P_4 -boran adduct (5) (atom, x-, y-, z-positions in Å): (Hydrogen and fluorine atoms are omitted for clarity)

-1.630400	-0.060400	-0.322200
4.432500	0.446900	0.421200
5.665900	-0.934100	-0.721400
1.692000	-0.339600	-0.228600
1.273600	0.639300	-2.189100
	-1.630400 4.432500 5.665900 1.692000 1.273600	-1.630400 -0.060400 4.432500 0.446900 5.665900 -0.934100 1.692000 -0.339600 1.273600 0.639300

P	1.259900	-1.549300	-2.018000
P	-0.654000	-0.455600	-2.131100
F	-0.181500	0.755600	2.263300
F	0.802700	3.147700	2.751000
F	0.556300	5.158100	0.960600
F	-0.776500	4.715100	-1.385700
F	-1.783200	2.309800	-1.914400
F	-3.787400	2.121000	-0.045200
F	-6.279700	1.894400	-0.896800
F	-7.134700	-0.368900	-2.121000
F	-5.407400	-2.442100	-2.479100
F	-2.882600	-2.244700	-1.631000
F	-2.897700	0.336900	2.139800
F	-3.186700	-1.367100	4.170300
F	-2.129000	-3.870100	4.017200
ਸ	-0.792500	-4.624400	1.774400
- न	-0.506500	-2.973200	-0.253000
C	-1.073700	1,402100	0.144100
C	-0.410300	1.694800	1.328100
C	0 114400	2 943400	1 616800
C	-0 001200	3 972200	0 706300
C	-0 660100	3 738500	-0 485700
C	-1 172100	2 479000	-0 731600
C	-3 18/900	-0 036200	-0.849900
c	_4 112900	0.030200	-0.669700
c	5 120600	0.979000	1 002100
C	-5.420000	0.004900	-1.092100
	-3.870300	-0.200000	-1.712000
	-4.990700	-1.316300	-1.896300
C	-3.688300	-1.181000	-1.45/600
C	-1.638100	-1.194400	0.857700
C	-2.346100	-0.880/00	2.015000
С	-2.516600	-1.742600	3.078900
С	-1.982700	-3.016200	3.004400
С	-1.302000	-3.392000	1.866400
С	-1.155700	-2.491900	0.821300
С	5.681600	0.075900	0.144600
С	3.556900	-0.357800	-0.308500
С	4.352300	-1.215800	-1.012100
С	4.064200	1.567400	1.355000
С	3.279100	2.609900	0.562500
С	3.256700	0.989000	2.514900
С	5.339700	2.205300	1.896700
С	6.838100	-1.648300	-1.305400
С	6.803300	-1.442100	-2.818600
С	6.714600	-3.127100	-0.944600
С	8.122100	-1.071300	-0.723000
Н	3.873100	2.985900	-0.271000
Н	3.029300	3.440400	1.222600
Н	2.348700	2.204400	0.173100
Н	2.319400	0.547300	2.185500
Н	3.012100	1.795500	3.204600
Н	3.839900	0.234300	3.043500
Н	5.931500	1.501800	2.484000
Н	5.042100	3.016000	2.558800
Н	5.950400	2.636500	1.102200
Н	5.895900	-1.856600	-3.255800
Н	7.657800	-1.946800	-3.267900
H	6.854200	-0.381300	-3.063100
н	6.699600	-3.259700	0.136900
н	7 570/00	-3 664400	-1 351500
н	5 810300	-3 566100	-1 363300
н	8 2/1100	-0 016000	-0 07/300
11 11	8 862000 0.241100	-1 610600	-1 155900
11 11	8 165000	_1 200200	1 350100
11 LI	6 565700	-1.200200 0 521000	0.559100
11 11	0.000/00	1 005000	1 600100
п	4.004300	-1.332300	-1.092100

Structure of the abnormal carben- P_4 -boran adduct (6) (atom, x-, y-, z-positions in Å): (Hydrogen and fluorine atoms are omitted for clarity)

В	1.250400	0.021100	0.067500
N	-4.665900	0.955600	0.138400
N	-4.387200	-1.130500	-0.420200
P	-2.729300	2.331400	-1.586600
P	-0.792800	1.350600	-2.078300
P	-0.905700	2.625600	-0.307200
P	-0.758800	0.421600	-0.058500
F	2.673900	0.920900	-2.437400
F	3.768600	3.298900	-2.804000
F	3.704900	5.181000	-0.846600
F	2.475600	4.615500	1.516800
F	1.359700	2.233900	1.915800
F	3.435900	0.611200	2.134800
F	3.709000	-0.610500	4.454600
F	2.020400	-2.604700	5.191900
F	0.024700	-3.368100	3.495400
F	-0.266800	-2.172600	1.145200
F	3.890800	-0.820700	-0.365300
F	4.786300	-2.828000	-1.877700
F	3.043300	-4.347300	-3.309800
F	0.376700	-3.801300	-3.186600
F	-0.538000	-1.825700	-1.724700
С	2.020000	1.423600	-0.206600
С	2.626600	1.778200	-1.403500
С	3.196200	3.020700	-1.631600
С	3.166100	3.980300	-0.640500
С	2.551500	3.686300	0.562600
C	1.994500	2.437200	0.746000
С	1.504000	-0.646200	1.545400
C	2.532400	-0.331000	2.426100
С	2.712200	-0.968300	3.643900
C	1.861200	-1.988200	4.021600
C	0.848900	-2.368500	3.162400
C	0.709700	-1.709400	1.956800
C	1.644700	-1.182800	-0.981600
C	2.990900	-1.526200	-1.064100
C	3,481200	-2.562100	-1.833600
C	2.598100	-3.338500	-2.563300
C	1.250700	-3.055600	-2.501600
C	0.808600	-1.999700	-1.721300
C	-5.047800	-0.299100	0.381000
С	-3.688700	0.932800	-0.855500
C	-3.544200	-0.381900	-1.196400
Č	-5.224500	2.155400	0.842700
C	-4.110200	2.814500	1.651600
C	-5.806800	3,100100	-0.206100
Č	-6.335600	1,709300	1.789700
č	-4.413800	-2.625200	-0.390000
ć	-3 095100	-3 095400	0 218600
č	-4.567900	-3.122100	-1.825300
-			

С	-5.594900	-3.084300	0.455500
Н	-3.661000	2.098000	2.339700
Н	-4.533100	3.638700	2.225600
Н	-3.330500	3.211900	1.009200
Н	-5.042300	3.471000	-0.885500
H	-6.252000	3.955300	0.301500
Н	-6.580300	2.596100	-0.786000
H	-7.151400	1.218100	1.257800
Н	-6.740900	2.600100	2.265400
Н	-5.959800	1.058300	2.579600
Н	-2.245000	-2.757300	-0.370300
H	-3.085600	-4.185000	0.249100
Н	-2.973900	-2.714600	1.232200
Н	-5.465700	-2.710200	-2.286000
Н	-4.647400	-4.208300	-1.812300
Н	-3.701600	-2.864000	-2.432800
H	-5.482200	-2.788300	1.498900
Н	-5.626800	-4.171900	0.429200
Н	-6.541300	-2.708600	0.063700
Н	-5.787700	-0.596200	1.095200
Н	-2.864400	-0.827300	-1.897500