Mercury^(II)-mediated formation of imide-Hg-imide

complexes

Can-liang Fang,^{*a*, *b*} Jin Zhou,^{*a*, *b*} Xiang-jun Liu,^{*a*} Ze-hui Cao,^{*a*} and Di-hua Shangguan*

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; E-mail: sgdh@iccas.ac.cn ^b Graduate School of the Chinese Academy of Sciences, Beijing 100039, China

Electronic Supporting Information

MS spectra of imide-Hg-imide:

Fig. S1c ESI-MS of complex 2-Hg-2

Fig. S1d ESI-MS of complex 3a-Hg-3a

¹H NMR of 1, 1-Hg-1

All ¹H NMR spectra were measured in DMSO-*d6* or CD₃OH on a Bruker AVANCE-400 NMR spectrometer (400 MHz) with TMS as an internal reference

Fig. S2a ¹H NMR spectra of ligand **1** and **1**-Hg-**1** (400 MHz, DMSO-*d6*). This figure clearly shows the complete disappearance of imido proton peak. However the methylene protons peak and DMSO solvent residual peak partly overlapped. Therefore ¹H NMR spectra (Fig. S2b) were also measured in CD₃OD to see the methylene protons peak shift.

Fig. S2b ¹H NMR spectra of ligand **1** and **1**-Hg-**1** complex (400 MHz, CD_3OD). This figure clearly shows the downfield shift of methylene protons peak.

X-ray photoelectron spectra of 2, 2-Hg-2

X-ray photoelectron spectroscopy data were obtained with an ESCALab220i-XL electron spectrometer from VG Scientific using 300W AlK α radiation. The base pressure was about 3×10^{-9} mbar. The binding energies were referenced to the C1s line at 284.8 eV from adventitious carbon.

Fig. S3 XPS spectrum of **2** and **2**-Hg-**2** (a: survey spectrum; b: high-resolution Hg 4f spectrum; c: high-resolution N 1s spectrum.)

Name	Area (P) CPS.eV	SF	Atom. %	Atom Ratio	Theoretical Ratio
C1s, 284.8eV	30060	1	72.54	28.00	28
O1s, 532.5eV	18163	2.93	14.96	5.77	6
N1s, 399.3eV	7522	1.8	10.08	3.89	4
Hg4f, 101.5eV	18893.6	18.89	2.41	0.93	1

Table S1 Atom Ratio of complex 3a-Hg-3a

Table S2 Atom Ratio of complex 2-Hg-2

Name	Area (P) CPS.eV	SF	At. %	Atom Ratio	Theoretical Ratio
C1s, 284.8eV	130291	1	68.31	15.73	16
N1s, 399.3eV	26527.3	1.8	8.21	1.89	2
O1s, 531.6eV	84561.2	2.93	17.37	4.00	4
Hg4f, 101.8eV	196098	18.89	5	1.15	1

IR spectra of 2, 3a and complexes

FTIR spectra were measured with a Bruker Tensor27 spectrometer with KBr discs

Fig. S4a IR spectrum of 2 (green) and 2-Hg-2(red).

Fig. S4b IR spectrum of 3 (green) and 3a-Hg-3a (red).

Fluorescence detection

Appropriate amount of various Naphthalimides was dissolved in DMSO/EtOH as stock solutions. Then 1µl of Naphthalimides solution was added into 200µl water or phosphate buffer (20 mM pH 7.50). All the fluorescence measurements were taken on a SpectraMax M5 (Molecular Devices Corporation, USA)

Fig. S5 Excitation and emission spectra of **3a** and **4a** in phosphate buffer at pH 7.50. (left, excitation spectra, fixed emission at 550 nm; right, emission spectra, fixed excitation at 440 nm.).

Fig. S6 The fluorescence change of 3a, 3b, 4a and 4b before and after adding 50 μM Hg(II) ions

Fig. S7 The fluorescence restoration of 3a (column red, 5 μ M 3a; yellow, adding 25 μ M Hg(II); green, adding 25 μ M Hg(II) and 0.5 mM Na₂S or 1 mM HCl)

Fig. S8 The linearity of the relative fluorescence change with the concentrate of Hg(II) ions

Fig. S9 Fluorescence intensities of 3a at different pH (phosphate buffer 20 mM) (3a, 5 µM)

¹H NMR spectra for products:

4-Bromo-1,8-naphthalimide

4-Bromo-N-(2-hydroxyethyl)-1, 8-naphthalimide

4-Bromo-N-(2-hydroxyethyl)-1, 8-naphthalimide

3a

3a

3b

3b

4a

4a

4b

4b