Supporting Information

[1,2,3]Triazolo[1,5-*a*]pyridyl Phosphines Reflecting the Influence of Phosphorus Lone Pair Orientation on Spectroscopic Properties

Rafael Ballesteros-Garrido,^a Laurence Bonnafoux,^a Fernando Blanco,^{*c} Rafael Ballesteros,^{*b} Frédéric R. Leroux,^{*a} Belén Abarca,^{*b} Françoise Colobert,^{*a} Ibon Alkorta^d and José Elguero^d

Table of Contents

Experimental Section

Copies of ¹ H, ¹³ C, ¹³ CDEPT NMR NMR spectra	SI-2
Theoretical Section	
Absolute energies (Hartrees) of the optimized isomers at the B3LYP/6-31g(d,p) computational level	SI-22
Cartesian coordinates of the optimized isomers (TZP-PX ₂) at B3LYP/6-31g(d,p) level	SI-23
Crystal Structure Analysis	SI-34

Experimental Section

7-(Diphenylphosphino)-3-methyl-[1,2,3]triazolo[1,5-*a*]**pyridine** (**4a**): Starting from 3-methyl-[1,2,3]triazolo[1,5-*a*] pyridine (**3a**, 1.0 g, 7.5 mmol) in toluene (50 mL). The crude product was purified by filtration on silicagel to afford 7- (diphenylphosphino)-3-methyl-[1,2,3]triazolo[1,5-*a*]pyridine (**4a**; 1.0 g, 42%) as a colorless solid. mp 142 – 144 °C. – ¹H NMR (300 MHz, CDCl₃): δ = 7.60 (d, *J* = 8.8 Hz, 1 H, H4), 7.45-7.30 (m, 10 H, PPh₂), 7.05 (dd, *J* = 8.8, 6.9 Hz, 1 H, H5), 6.37 (d, *J* = 6.8 Hz, 1 H, H6), 2.62 (s, 3 H, CH₃). – ¹³C NMR (75 MHz, CDCl₃): δ = 138.4 (d, *J* = 22 Hz, C7) 134.5(d, *J* = 1.2 Hz, 1 C, C3), 134.2 (d, *J* =

21 Hz, 4 CH, *o*-Ph), 132.6 (d, J = 8,3 Hz, 2 C, *ipso*-Ph), 131.3 (s, 1 C, C3a), 129.7 (s, 2 CH, *p*-Ph), 128.84 (d, J = 7.7 Hz, 4 CH, *m*-Ph), 123.1(s, CH, C5), 120.8 (s, CH, C6), 117.2 (s, CH, C4), 10.5 (s, CH₃). – ³¹P NMR (161 MHz, CDCl₃): $\delta = -15.4$. – MS (EI): m/z(%) = 317.1 (63) [M⁺], 288 (100) [M⁺ - N₂], 212.1 (39) [M⁺ - N₂ - Ph], 183.1 (93). – HRMS for C₁₉H₁₇N₃P: calcd. 318.1155; found 318.1145.

7-(Diphenylphosphine)-[1,2,3]triazolo[1,5-*a*]**pyridine** (**4b**): Starting from [1,2,3]triazolo[1,5-*a*]**pyridine** (**3b**, 0.4 g, 3.4 mmol) in toluene (17 mL). The crude product was purified by filtration on silicagel to afford 7-(diphenylphosphine)-[1,2,3]triazolo[1,5-*a*]**pyridine** (**4b**, 0.5 g, 44%) as a colorless solid. mp 160 – 162 °C. – ¹H NMR (300 MHz, CDCl₃): δ = 7.98 (d, *J* = 2.4 Hz, 1 H, H3), 7.61 (d, *J* = 8.8 Hz, 1 H, H4), 7.30-7.21 (m, 10 H, PPh₂), 7.01 (dd, *J* = 8.8, 6.9 Hz, 1 H, H5), 6.32 (d, *J* = 6.8 Hz, 1 H, H6). – ¹³C NMR (75 MHz, CDCl₃): δ = 138.5 (d, *J* = 22.4 Hz, 1 C, C7) 133.9(d, *J* = 21.1 Hz, 4 CH, *o*-Ph), 133.2 (s, 1 C, C3a), 132.3 (d, *J* =

8.2 Hz, 2 CH, *ipso*-Ph), 129.6 (s, 2 CH, *p*-Ph) 128.7 (d, J = 7.8 Hz, 4 CH, *m*-Ph) , 125.6 (d, J = 1.6 Hz, 1 C, C3), 124.5 (s, 1 CH, C5), 120.8 (s, 1 CH, C6), 117.2 (s, 1 CH, C4). – ³¹P NMR (161 MHz, CDCl₃): $\delta = -15.0. -$ MS (EI): m/z(%) = 303.1 (78) [M⁺], 275.1 (10) [M⁺ - N₂], 274.1 (55) [M⁺ - N₂ - H], 198.1 (23) [M⁺ - N₂ - Ph], 183.1 (93). – HRMS for C₁₈H₁₄N₃P: [M+H⁺] calcd. 304.0998; found 304.0969.

SI-5

7-(Diphenylphosphino)-3-phenyl-[1,2,3]triazolo[1,5-*a***] pyridine** (4c): Starting from 3-phenyl-[1,2,3]triazolo[1,5-*a*] pyridine (**3c**, 0.4 g, 2.1 mmol) in toluene (14 mL). The crude product was purified by filtration on silicagel to afford 7-(diphenylphosphine)-[1,2,3]triazolo[1,5-*a*]pyridine (**4c**; 1.1 g, 52%) as a yellow oil. – ¹H NMR (300 MHz, CDCl₃): 7.98 (m, 3 H, H4 + 3-*o*-Ph), 7.52-7.33 (m, 13 H, PPh₂ + 3-*m*-Ph+ 3-*p*-Ph), 7.17 (dd, J = 8.8, 6.9 Hz, 1 H, H5), 6.45 (d, J = 6.9 Hz, 1 H, H6). – ¹³C NMR (75 MHz, CDCl₃): $\delta = 139.3$ (d, J =23.3 Hz, 1 C, C7), 137.8 (d, J = 1.9 Hz, 1 C, C3), 134.2 (d, J = 21.2 Hz, 4 CH, P(*o*-Ph)₂), 132.4 (d, J = 8.3 Hz, 2 C, *ipso*-PPh₂), 131.6 (s, 1 C, C3a), 130.2 (s, C, 3-*ipso*-Ph), 129.8 (s, 2 C, P(*p*-Ph)₂), 128.9 (d, J = 7.8 Hz, 4 CH, P(*m*-Ph)₂),

128.8 (s, 2 CH. 3-*o*-Ph), 127.7 (s, 1 CH, 3-*p*-Ph), 126.6 (s, 2 CH, 3-*m*-Ph), 124.9 (s, 1 CH, C5), 120.9 (s, 1 CH, C6), 117.9 (s, 1 CH, C4). – ³¹P NMR (161 MHz, CDCl₃): δ = -14.6. – MS (EI): mz/z(%) = 379.1 (8) [M⁺], 351.1.1 (37) [M⁺ - N₂], 350.1 (20) [M⁺ - N₂ - H], 185.1 (72) [P(Ph)₂], 183.1 (100). – HRMS for C₂₄H₁₈N₃P: [M+O+Li⁺] calcd. 402.1343; found 402.1316.

7-(Dicyclohexylphosphino)-3-methyl-[1,2,3]triazolo[1,5-*a***] pyridine** (5a): Starting from 3-methyl-[1,2,3]triazolo[1,5-*a*] pyridine (**3a**, 1.0 g, 7.5 mmol) in toluene (50 mL). The crude product was purified by filtration on silicagel to afford 7-(dicyclohexylphosphino)-3-methyl-[1,2,3]triazolo[1,5-*a*] pyridine (**5a**; 1.0 g 45%) as a colorless solid. mp 93 – 95 °C. – ¹H NMR (300 MHz, CDCl₃): δ = 7.56 (d, *J* = 8.2 Hz, 1 H, H4), 7.15-7.00 (m, 2 H, H6 + H5), 2.73-2.57 (m, 2 H, PCy₂), 1.94 (dd, *J* = 16.5, 8.6 Hz, 2 H, PCy₂), 1.72 (d, *J* = 7.5 Hz, 2 H, PCy₂), 1.53 (m, 4H, PCy₂), 1.14 (m, 12 H, PCy₂). – ¹³C NMR (75 MHz, CDCl₃): δ =

137.1 (d, J = 41.2 Hz, 1C, C7) 134.2 (s, 1 C, C3), 131.5 (s, 1 C, C3a), 124.1 (d, J = 25.9 Hz, 1 CH, C6), 122.5 (d, J = 9 Hz, 1 CH. C5), 117.8 (s, 1 CH, C4), 32.4 (d, J = 11 Hz, 2 CH, (CH)-PCy₂), 30.9 (d, J = 19 Hz, 2 CH₂, CH₂), 29.9 (d, J = 9 Hz, 2 CH₂, CH₂), 26.7 (d, J = 3.2, Hz, 2 CH₂, CH₂), 26.6 (bs, 2 CH₂, CH₂), 26.2-25.9 (bs, 2 CH₂, CH₂), 10.4 (s, CH₃). - ³¹P (161 MHz, CDCl₃): $\delta = 6.5$. - MS (EI): m/z(%) = 329.2 (35) [M⁺], 301.2 (33) [M⁺ - N₂], 246. (81) [M⁺ - Cy], 218.2 (100) [M⁺ - N₂ - Cy], 137 (66) [M⁺ - N₂ - 2Cy]. - HRMS for C₁₉H₂₈N₃P [M+Li]: calcd. 336.2176; found 336.2215.

ppm (f1)

7-(Dicyclohexylphosphino)-[1,2,3]triazolo[1,5-*a***]pyridine** (**5b**): Starting from [1,2,3]triazolo[1,5-*a*]**pyridine** (**3b**, 0.4 g, 3.4 mmol) in toluene (17 mL). The crude product was purified by filtration on silicagel to afford 7-(dicyclohexylphosphino)-[1,2,3]triazolo[1,5-*a*]**pyridine** (**5b**; 0.6 g, 58%) as a colorless solid. mp 124 – 126 °C. – ¹H NMR (300 MHz, CDCl₃): δ = 8.07 (s, 1 H, H3), 7.73-7.65 (m, 1 H, H4), 7.21-7.10 (m, 2 H, H5 + H6), 2.72-2.55 (m, 2 H, CH-PCy₂), 2.02-1.90 (m, 2 H, CH₂), 1.79-1.70 (m, 2 H, CH₂), 1.63-1.51 (m, 4 H,

CH₂), 1.35.1.16 (m 10 H, CH₂). – ¹³C NMR (75 MHz, CDCl₃): $\delta = 137.1$ (d, J = 41.8 Hz, 1 C, C7), 133.7 (s, 1 C, C3a), 125.6 (s, 1 C, C3), 124.6 (d, J = 25.9 Hz, 1 CH, C6) , 124.1(d, J = 8.2 Hz, 1 CH, C5), 118.2 (s, 1 CH, C4), 32.6 (d, J = 11.3 Hz, 2 CH, (CH)-PCy₂), 30.9 (d, J = 19.1 Hz, 2 CH₂, CH₂), 30.0 (d, J = 9.0 Hz, 2 CH₂, CH₂), 26.7 (d, J = 3.6 Hz, 2 CH₂, CH₂), 26.6 (s, 2 CH₂, CH₂), 26.8 (d, J = 1.1 Hz, 2 CH₂, CH₂). – ³¹P NMR (161 MHz, CDCl₃): $\delta = 7.0.$ – MS (EI): m/z(%) = 315.2 (42) [M⁺], 287.2 (33) [M⁺ - N₂], 232.1 (57) [M⁺ - Cy], 204.2 (100) [M⁺ - N₂ - Cy], 151,1 (45) [M⁺ - 2Cy + 2H], 123 (25) [M⁺ - N₂ - 2Cy + 2H]. – HRMS for C₁₈H₂₆N₃P [M+Li]: calcd. 322.2019; found 322.1975.

1	1			<u> </u>			1	1
9.0 ppm (f1)	8.0	7.0	6.0	5.0	4.0	3.0	2.0	1.0 0.0

7-(Dicyclohexylphosphino)-3-phenyl-[1,2,3]triazolo[1,5-*a***] pyridine** (5c): Starting from 3-phenyl-[1,2,3]triazolo[1,5-*a*] pyridine (**3c**, 0.3 g, 1.3 mmol) in toluene (25 mL). The crude product was purified by filtration on silicagel to afford 7-(dicyclohexylphosphino)-3-methyl-[1,2,3]triazolo[1,5-*a*] pyridine (**5c**; 0.3 g, 52%) as a colorless solid. mp 93 – 95 °C. – ¹H NMR (300 MHz, CDCl₃): δ 8.00 (m, 3 H, H4 + 3-*o*-Ph), 7.51 (, *J* = 7.6, 7.6 Hz, 2 H, 3-*m*-Ph), 7.37 (m, 1 H, 3-*p*-Ph), 7.25-7.20 (m, 2 H, H5 + H6), 2.82-2.60 (m, 2 H, CH-PCy₂), 2.02-1.91 (m, 2 H, CH₂), 1.81-1.70 (m, 3 H, CH₂), 1.63-1.51 (m, 5 H, CH₂), 1.39-1.04 (m 10 H, CH₂). – ¹³C NMR (75 MHz, CDCl₃): δ = 137.8 (s, 1 C, C3), 137.6 (d, *J* = 44.5 Hz, 1 C, C7), 131.7 (s, 1 C, C3a), 130.7 (s, 1 C, 3-*ipso*-Ph), 128.9 (s, 2 CH, 3-*o*-Ph)

127.7 (s, CH, 3-*p*-Ph), 126.6 (s, 2 CH, 3-*m*-Ph), 125.1 (d, J = 27.6 Hz, 1 CH, C6), 24.6 (d, J = 8.7 Hz, 1 CH, C5), 118.8 (s, 1 CH, C4), 32.7 (d, J = 27.6 Hz, 2 CH, (CH)-PCy₂), 31.1 (d, J = 19.3 Hz, 2 CH₂, CH₂), 30.2 (d, J = 9.0 Hz, 2 CH₂, CH₂), 26.9 (s, 2 CH₂, CH₂), 26.8 (d, J = 3.5 Hz, 2 CH₂, CH₂), 26.7 (s, 2 CH₂, CH₂), 26.2 (s, 2 CH₂, CH₂). $-{}^{31}P$ NMR (161 MHz, CDCl₃): $\delta = 6.5$. - MS (EI): m/z(δ) = 391.2 (25) [M⁺], 363.2 (80) [M⁺ - N₂], 280. (100) [M⁺ - N₂ -Cy], 199.1 (90), 146.1 (90). - HRMS for C₂₄H₃₀N₃P [M+O+Li]: calcd. 414.2280; found. 414.2270.

7-(Di-iso-propylphosphino)-3-methyl-[1,2,3]triazolo[1,5-a] pyridine (6a): Starting from 3-methyl-[1,2,3]triazolo[1,5-*a*] pyridine (**3a**, 1 g, 7.5 mmol) in toluene (17 mL). The crude product was purified by filtration on silicagel to afford 7-(di-*iso*-propylphosphino)-3-methyl-[1,2,3]triazolo[1,5-*a*]pyridine (**6a**, 0.9 g, 48%) as a brown oil. – ¹H NMR (300 MHz, CDCl₃): δ = 7.60 (d, *J* = 8.6 Hz, 1 H, H4), 7.21-7.06 (m, 2 H, H5 + H6), 2.97-2.78 (m, 2 H, P(CH(CH₃)₂)₂), 2.61 (s, 3 H, 3-CH₃), 1.21 (dd, *J* = 16.1, 7.0 Hz, 6 H, P(CH(CH₃)₂)₂), 0.88 (dd, *J* = 13.2, 7.0 Hz, 6 H, P(CH(CH₃)₂)₂).

¹³C NMR (75 MHz, CDCl₃): δ = 137.4 (d, *J* = 41.8 Hz, C7), 134.4 (s, 1 C, C3a), 131.6 (s, 1 C, C3), 124.4 (d, *J* = 26.1 Hz, 1 CH, C6), 122.7 (d, *J* = 8.3 Hz, 1 CH, C6), 117.9 (s, 1 CH, C4), 22.6 (d, *J* = 10.4 Hz, 2 CH, P(*C*H(CH₃)₂)₂), 20.7 5 (d, *J* = 14.5 Hz, 2 CH₃, P(CH(*C*H₃)₂)₂), 20,5 (d, *J* = 4.6 Hz, 2 CH₃, P(CH(*C*H₃)₂)₂), 10.4 (s, 3-CH₃). – ³¹P NMR (161 MHz, CDCl₃): δ = 16.1. – MS (EI): m/z(%) = 249.2 (56) [M⁺], 221.2 (11) [M⁺ - N₂], 206.1 (26) [M⁺ - ⁱProp], 178.1 (100) [M⁺ - N₂ - ⁱProp], 136.1 (64) [M⁺ - N₂ - 2Cy]. – HRMS for C₁₃H₂₀N₃P [M+Li]: calcd. 256.1550; found 256.1519.

7-(Di-*iso***-propylphosphino**)-[**1,2,3**]**triazolo**[**1,5***a*]**pyridine** (**6b**): Starting from [1,2,3]triazolo[1,5-*a*]**pyridine** (**3b**, 0.4 g, 3.4 mmol) in toluene (17 mL). The crude product was purified by filtration on silicagel to afford 7-(di-*iso*-propylphosphino)-[1,2,3]triazolo[1,5-*a*]**pyridine** (**6b**; 0.4 g, 50%) as a brown oil. – ¹H NMR (300 MHz, CDCl₃): $\delta = 8.02$ (d, J = 8.9 Hz, 1 H, H3), 7.71-7.62 (m, 1 H, H4), 7.17-7.09 (m, 2 H, H5 + H6), 2.77 (m, 2 H, P(CH(CH₃)₂)₂), 1.13 (dd, J = 15.9, 7.0 Hz, 6 H, P(CH(CH₃)₂)₂), 0.81 (dd, J = 13.4, 7.0 Hz, 6 H, P(CH(CH₃)₂)₂). – ¹³C NMR (75 MHz,

CDCl₃): $\delta = 137.5$ (d, J = 42.2 Hz, 1 C, C7) 133.6 (s, 1 C, C3a), 125.6 (s, 1 C, C3), 124.3 (d, J = 24.2 Hz, 1 CH, C6), 124.2 (d, J = 7,6.7 Hz, 1 CH, C5), 118.1 (s, 1 CH, C4), 22.5 (d, J = 10.9 Hz, 2 CH, P(*C*H(CH₃)₂)₂), 20.4 (d, J = 10.0 Hz, 2 CH₃, P(CH(CH₃)₂)₂), 20.2 (s, 2 CH₃, P(CH(CH₃)₂)₂). $- {}^{31}$ P NMR (161 MHz, CDCl₃): $\delta = 15.4. - MS$ (EI): m/z(%) = 235.2 (49) [M⁺], 207.2 (21) [M⁺ - N₂], 192.1 (100) [M⁺ - ⁱProp], 164.1 (39) [M⁺ - N₂ - ⁱProp], 149.1 (85) [M⁺ - 2ⁱProp], 122.1 (42) [M⁺ - N₂ - 2ⁱProp + H]. - HRMS for C₁₂H₁₈N₃P [M+Li]: calcd. 242.1393; found 242.1371.

7-(Di-*iso***-propylphosphino)-3-phenyl-[1,2,3]triazolo[1,5-***a***] pyridine** (6c): Starting from 3-phenyl-[1,2,3]triazolo[1,5-*a*] pyridine (3c, 0.4 g, 2.1 mmol) in toluene (14 mL). The crude product was purified by filtration on silicagel to afford 7-(di-*iso*propylphosphino)-3-phenyl-[1,2,3]triazolo[1,5-*a*]pyridine (6c; 0.3 g, 23%) as a brown oil. – ¹H NMR (300 MHz, CDCl₃): δ = 7.95-7.85 (m, 3 H, H4 + 3-*o*-Ph), 7.46-7.39 (m, 2 H, 3-*m*-Ph), 7.34-7.26 (m, 1 H, 3-*p*-Ph), 7.19-7.13 (m, 2 H, H5 + H6), 2.85 (m, 2 H, P(C*H*(CH₃)₂)₂), 1.17 (dd, *J* = 16.1, 7.0 Hz, 6 H, P(CH(CH₃)₂)₂), 0.84 (dd, *J* = 13.5, 7.0 Hz, 6 H, P(CH(CH₃)₂)₂). – ¹³C NMR (75 MHz, CDCl₃): δ = 138.2 (d, *J* = 43.6 Hz, 1 C, C7), 137.9 (s, 1 C, 3-*ipso*-Ph), 131.6 (s, 1 C, C3a), 130.6 (s, 1 C, C3), 128.9 (s, 2

CH, 3-*o*-Ph), 127.8 (s, 1 CH, 3-*p*-Ph), 126.7 (s, 2 CH, 3-*m*-Ph), 124.7 (d, J = 26.2 Hz, 1 CH, C6), 124.6 (d, J = 8.3 Hz, 1 CH, C5), 118.8 (s, 1 CH, C4), 22.8 (d, J = 10.7 Hz, 2 CH, P(CH(CH₃)₂)₂), 20.7 (d, J = 7.9 Hz, 2 CH₃, P(CH(CH₃)₂)₂), 20.5 (d, J = 1.7 Hz, 2 CH₃, P(CH(CH₃)₂)₂). $-^{31}$ P NMR (161 MHz, CDCl₃): $\delta = 17.3$. – MS (EI): m/z(%) = 311.2 (28) [M⁺], 283.2 (58) [M⁺ - N₂], 240.1 (55) [M⁺ - N₂ - ⁱProp], 198.1 (100) [HM⁺-N₂ - 2ⁱProp], 167.1 (51) [M⁺ - N₂ - 2ⁱProp + H]. – HRMS for C₁₈H₂₂N₃P [M+Li]: calcd. 318.1716; found 318.1721.

SI-19

7-(Diphenylphosphino)-6-bromo-3-methyl-[1,2,3]triazolo [1,5-a]pyridine (8):

At 0 °C butillihium (18.2 mmol, 11.6 mL, 1.3 eq) in hexanes (1.56 M) was added to a solution of di-*iso*-propylamine (18.2 mmol, 2.6 mL, 1.3 eq) in terahydrofurane (150 mL). Then it was colled to -40 °C and added to a stirred solution of 6-bromo-3-methyl-[1,2,3]triazolo[1,5-*a*]pyridine (7; 3.0 g, 14.1 mmol, 1.0 eq) in tetrahydrofurane (150 mL) at -40 °C. The mixtures was kept at -40 °C for one hour before diphenylphosphine chloride (0.9 g, 42 mmol, 1.3 eq) in tetrahydrofurane (5

mL) was added. After 1 h, the solution was allowed to reach room temperature. Water (20.0 mL) was added, followed by extraction with dichloromethane (3 x 20.0 mL). The combined organic layers were dried over sodium sulfate, filtered, and evaporated. The crude product was purified by chromatography on silicagel (ethyal acetate/cyclohexane 1:4) to afford 7-(diphenylphosphino)-6-bromo-3-methyl-[1,2,3]triazolo[1,5-*a*]pyridine (**8**; 3.2 g. 57%) as a yellow oil. – ¹H NMR (300 MHz, CDCl₃): 7.49-7.40 (m, 4H), 7.24 (d, J = 9.22 Hz, 1H, H4), 7.18-7.08 (m, 7H), 2.32 (s, 3H, CH₃). – ¹³C NMR (75 MHz, CDCl₃): $\delta = 135.4$ (s, C, C3), 133.9 (d, J = 47.30 Hz, 1 C, C7), 133.3 (d, J = 21.17 Hz, 4 CH, *o*-Ph), 132.3 (d, J = 10.17 Hz, 2 C, *ipso*-Ph), 130.62 (d, J = 1.5 Hz, C, C3a), 129.25 (s, 2 CH, *p*-Ph), 128.64 (d, J = 3.00 Hz, CH, C5), 128.50 (d, J = 6.96 Hz, 4 CH, *m*-Ph), 123.71 (d, J = 34.04 Hz, C, C6), 119.18 (s, CH, C4), 26.99 (s, CH₃). ³¹P NMR (161 MHz, CDCl₃): $\delta = -2.0$. – MS (EI): m/z(%) = 397.1 (25) [M⁺], 368.0 (60) [M⁺ - N₂], 288.1 (80) [M⁺ - N₂ - Br], 183.1 (100). – HRMS for C₁₉H₁₅⁷⁹BrN₃P: [M+H] calcd. 396.0265 found 396.0261. C₁₉H₁₅⁸¹BrN₃P: [M+H] calcd. 398.0245 found 398.0241.

ppm (f1)

0.0

Theoretical Section

Absolute energies (Hartrees) of the optimized isomers (TZP-PX₂) at the B3LYP/6-31g(d,p) computational level.

Х	Conf.	Point Group	Im. Freq.	ENERGY (h)	Dipole Moment	E rel (kJmol ⁻¹)	
Н	Α	CS	0	-737.808401912	4.17	0.01	
Н	В	C1	0	-737.808748475	4.87	0.91	
F	Α	CS	0	-936.336694348	6.05	0.00	
F	В	C1	0	-936.340463819	5.03	9.90	
Br	Α	CS	0	-5880.069393820	5.85	11 16	
Br	В	C1	0	-5880.073644260	5.18	11.10	
Me	Α	CS	0	-816.456196943	3.27	0.91	
Me	В	C1	0	-816.455888502	4.98	-0.01	
iPr	Α	C1	0	-973.713080150	3.07	7 29	
iPr	В	C1	0	-973.710267504	4.99	-7.38	
Су	Α	C1	0	-1207.197779300	2.93	7 54	
Су	В	C1	0	-1207.194909110	5.00	-7.54	
Ph	Α	C1	0	-1199.924468080	3.03	8 12	
Ph	В	C1	0	-1199.927565000	5.16	8.13	

Cartesian coordinates of the optimized isomers (TZP-PX₂) at B3LYP/6-31g(d,p) Level.

X = H – CONFORMER A

0	1		
	X	Y	Z
Р	2.47357629	0.48971363	0
N	-1.10470363	-2.19390533	0
N	0.03852759	-1.54425426	0
N	-0.26361944	-0.21804293	0
С	-2.1386379	-1.32900536	0
Н	-3.16508985	-1.66408334	0
С	-1.64161059	-0.02657592	0
С	-2.14249081	1.29656742	0
н	-3.21476584	1.45777539	0
С	-1.25318385	2.34076993	0
Н	-1.61007728	3.36516126	0
С	0.14992357	2.09062364	0
н	0.84850242	2.91967933	0
С	0.65651112	0.81445395	0
н	2.47034526	-0.49104174	1.02929153
Н	2.47034526	-0.49104174	-1.02929153

X = H – CONFORMER B

0	1		
	Х	Y	Z
Р	-2.00610585	-0.46805794	-0.45088405
Ν	2.00414806	-2.0078043	-0.09244262
N	0.74035831	-1.65513247	-0.15917537
Ν	0.7092918	-0.29800267	-0.07771344
С	2.78979278	-0.91835158	0.03339731
Н	3.86376132	-0.99541531	0.10960963
С	1.98922113	0.22475733	0.04726034
С	2.13037593	1.62913365	0.14583226
Н	3.11976467	2.06143119	0.24198739
С	0.99899243	2.40650054	0.11633909
Н	1.07751353	3.48591603	0.19365363
С	-0.29135146	1.81543733	-0.01142884

н	-1.17265682	2.44627122	-0.030136
С	-0.44392802	0.45405456	-0.11063003
н	-2.01503813	-1.26254556	0.72654035
Н	-2.84756267	0.54991697	0.07867233

X = F – CONFORMER A

0	1		
	X	Y	Z
Р	2.45771948	0.55273653	0
Ν	-1.13968167	-2.20015489	0
Ν	0.00745039	-1.56031599	0
Ν	-0.28492878	-0.23588289	0
С	-2.16891164	-1.32690602	0
н	-3.19748718	-1.6552751	0
С	-1.66258438	-0.0303849	0
С	-2.14945441	1.29940396	0
н	-3.22063499	1.46856871	0
С	-1.2564316	2.34071452	0
Н	-1.60746003	3.36671964	0
С	0.14412758	2.07675044	0
Н	0.85130407	2.90033367	0
С	0.63415893	0.79467077	0
F	2.58318328	-0.48709226	1.21782151
F	2.58318328	-0.48709226	-1.21782151

X = F – CONFORMER B

0	1		
	Х	Y	Z
Р	-1.97543259	-0.53053286	-0.42583806
N	2.06225606	-2.01091742	-0.13696828
N	0.79285232	-1.67370226	-0.17943948
N	0.74577905	-0.32204578	-0.0813992
С	2.83431751	-0.91210983	-0.00404818
н	3.909821	-0.97652794	0.05892109
С	2.01732388	0.21873532	0.03671315
С	2.1283335	1.62575731	0.15744327
Н	3.11026949	2.07509778	0.25445997
С	0.98572207	2.38765231	0.14590652
н	1.04992397	3.46660976	0.23763617
С	-0.29590594	1.77650959	0.00865946
Н	-1.19598296	2.3787242	-0.01139904

С	-0.41526538	0.41551155	-0.09764496
F	-2.15702785	-1.1980826	1.02574419
F	-2.95040713	0.74742985	-0.22786462

X = Br – CONFORMER A

0	1		
	Х	Y	Z
Р	2.44059049	0.67951836	0
N	-1.12942036	-2.18034084	0
N	0.00997031	-1.52882659	0
N	-0.29485091	-0.20617202	0
С	-2.16748523	-1.31780728	0
Н	-3.19223087	-1.65728425	0
С	-1.67523108	-0.0160842	0
С	-2.1831281	1.30430636	0
Н	-3.25663032	1.4573971	0
С	-1.30421577	2.35735138	0
Н	-1.66731114	3.37911762	0
С	0.09875234	2.11387302	0
Н	0.79076707	2.94942774	0
С	0.61068265	0.83720252	0
Br	2.74664663	-0.67744249	1.77166048
Br	2.74664663	-0.67744249	-1.77166048

X = Br – CONFORMER B

0	1		
	Х	Y	Z
Р	-1.888118	-0.61044857	-0.50567459
N	2.09962536	-2.00009631	-0.1979877
Ν	0.83236259	-1.65910202	-0.27018395
N	0.78042279	-0.31211402	-0.13407861
С	2.86592588	-0.90629096	-0.0111907
н	3.93940822	-0.97163343	0.07961071
С	2.04813152	0.22411106	0.03632654
С	2.15972003	1.62585266	0.19168233
Н	3.13885448	2.07131492	0.32638973
С	1.01728491	2.38735424	0.16356829
Н	1.07679136	3.46421105	0.27908111
С	-0.261416	1.78397699	-0.01507369
Н	-1.15447146	2.39534732	-0.03569293
С	-0.38602892	0.42584396	-0.15968319
Br	-2.1792095	-1.48276147	1.56150146

Br	-3.44270627	1.03254358	-0.54771281
----	-------------	------------	-------------

X = Me – CONFORMER A

0	1		
	X	Y	Z
Р	-2.28352518	0.69956927	0
N	1.17309119	-2.28275173	0
N	0.06776135	-1.57302906	0
N	0.43503239	-0.2612605	0
С	2.25016175	-1.47314951	0
Н	3.25751809	-1.86121158	0
С	1.82196813	-0.14688055	0
С	2.40253635	1.14317084	0
Н	3.48263405	1.23875528	0
С	1.57571933	2.23638935	0
Н	1.99065888	3.238831	0
С	0.16117303	2.06550732	0
н	-0.48799825	2.93374201	0
С	-0.43045547	0.82440244	0
С	-2.592528	-0.45153464	-1.43409525
С	-2.592528	-0.45153464	1.43409525
н	-2.04007682	-1.38860527	-1.3485242
н	-2.32511043	0.05201878	-2.36722405
Н	-3.66695163	-0.65920544	-1.46350422
Н	-2.32511043	0.05201878	2.36722405
Н	-3.66695163	-0.65920544	1.46350422
н	-2.04007682	-1.38860527	1.3485242

X = Me – CONFORMER B

0	1		
	X	Y	Z
Р	-1.93138856	-0.46600015	-0.48860756
N	2.09727492	-1.99107766	0.03799244
N	0.83426144	-1.64783182	-0.07027934
N	0.7925357	-0.28687336	-0.05786972
С	2.87579038	-0.89320994	0.122646
Н	3.94862359	-0.95997859	0.22172233
С	2.06999328	0.24381806	0.06395543
С	2.21647887	1.65051144	0.09209348
Н	3.20597599	2.08316752	0.18602073
С	1.08903984	2.42618151	-0.00392963
н	1.16806034	3.50833219	0.01576237
С	-0.19874161	1.82971979	-0.1305922
Н	-1.06927254	2.46842628	-0.20914807

С	-0.36520703	0.46445138	-0.15865782
С	-2.151265	-1.38572309	1.11937984
С	-3.17243909	0.90262577	-0.24359725
Н	-1.37279612	-2.14623761	1.19360975
Н	-3.12606818	-1.88191814	1.09186256
Н	-2.1093263	-0.72881552	1.99315764
Н	-3.04889576	1.44572927	0.69871566
Н	-4.1649521	0.44234766	-0.252123
Н	-3.13300907	1.60763154	-1.0783399

X = iPr – CONFORMER A

0	1		
	X	Y	Z
Р	-0.03515391	-0.51161012	-1.11606106
N	0.14651796	2.25032292	2.50327772
Ν	0.05761858	1.32166291	1.5782489
N	0.1976736	1.94330628	0.37375498
С	0.33777874	3.45851495	1.93799945
Н	0.43440718	4.35743841	2.52798307
С	0.37562421	3.31148277	0.55227456
С	0.52523078	4.13530548	-0.58816791
Н	0.66538588	5.20255292	-0.45759764
С	0.48352924	3.55327875	-1.82858954
Н	0.59201123	4.15836242	-2.72262805
С	0.29797069	2.14625027	-1.95627166
Н	0.26921615	1.69253745	-2.94024816
С	0.15481577	1.32036494	-0.86605818
С	1.41049635	-1.13718389	-0.05737555
Н	1.31691701	-0.68713635	0.93543815
С	2.73545314	-0.68952845	-0.69417709
Н	2.85678793	-1.10987587	-1.69916044
Н	2.80998124	0.39894661	-0.77549819
С	1.36981292	-2.66598354	0.08465515
Н	1.34221417	-3.16539543	-0.89109656
Н	0.5089958	-3.00444859	0.66698926
С	-1.57273525	-0.93285189	-0.08453537
Н	-1.27871411	-0.97318987	0.96927809
С	-2.67005133	0.12987774	-0.24747331
Н	-2.38430686	1.08751599	0.19252476
Н	-2.91830936	0.29400185	-1.30275836
С	-2.10826457	-2.3041991	-0.53550778
Н	-2.43979247	-2.26971293	-1.57918057
н	-1.36609893	-3.10204811	-0.45261295

н	-3.58520514	-0.20358391	0.25531378
н	-2.96967256	-2.58908249	0.07988702
н	2.26978607	-3.01223523	0.60608539
н	3.57915341	-1.033861	-0.08504561

X = iPr – CONFORMER B

0	1		
	X	Y	Z
Р	0.23474269	-0.12196598	-0.89560264
Ν	-4.03800581	0.17186823	-1.46402253
Ν	-2.73047561	0.19240586	-1.34297818
Ν	-2.40883985	-0.70023955	-0.36570436
С	-4.57550019	-0.70501577	-0.59209984
н	-5.64071014	-0.86836871	-0.52893634
С	-3.55288612	-1.29657916	0.14899688
С	-3.41241414	-2.24475587	1.18877326
н	-4.29435909	-2.72203849	1.60050958
С	-2.15063597	-2.52565107	1.64667497
н	-2.00753412	-3.2424158	2.44887483
С	-1.00984479	-1.88540991	1.08177756
н	-0.02990634	-2.13105507	1.46909939
С	-1.11649136	-0.96902762	0.06009994
С	0.01933932	1.63064695	-0.1844801
н	-1.05415944	1.78909864	-0.33729095
С	0.74866904	2.66859257	-1.05352056
н	1.8373002	2.58437879	-0.98093961
Н	0.47241007	2.56844947	-2.10697011
С	0.32769469	1.7933896	1.30885685
Н	1.39411396	1.67086728	1.52570055
Н	-0.22553049	1.07341771	1.91951159
С	1.76833231	-0.85238545	-0.06481836
Н	1.64925466	-0.85339387	1.02592841
С	1.96945201	-2.29611465	-0.5628882
Н	1.10962813	-2.94013928	-0.36189605
Н	2.14307238	-2.30862599	-1.64403595
С	3.01213851	-0.0153043	-0.41055389
Н	3.12368387	0.10441695	-1.49409211
н	2.98654531	0.9798937	0.03850866
н	0.47772587	3.68025262	-0.72985524
Н	2.84527916	-2.74422671	-0.07900791
Н	0.04404078	2.79845721	1.6436738
н	3.91262626	-0.51971819	-0.04171317

X = Cy – CONFORMER A

0	1		
	Х	Y	Z
Р	-0.2978925	-0.04376948	-0.87395586
N	3.98641065	-1.25325842	-1.85780325
N	2.74861869	-0.82890237	-1.73967589
N	2.27746802	-1.29826414	-0.55024682
С	4.33512676	-1.98726295	-0.78288608
н	5.31434526	-2.43150796	-0.68651704
С	3.25476536	-2.04840989	0.09597002
С	2.94877431	-2.63814301	1.34501283
н	3.7054842	-3.22328379	1.85562105
С	1.69569091	-2.45275218	1.86901624
н	1.42899436	-2.89486345	2.82329242
С	0.7304235	-1.67574934	1.16561274
н	-0.25703953	-1.52987203	1.58809235
С	1.00094906	-1.08616609	-0.04704012
С	0.67159734	1.57220801	-1.0855398
н	1.61291886	1.33629847	-1.59433494
С	0.9856313	2.16898101	0.30317195
н	0.04491777	2.32301322	0.85138758
н	1.57852909	1.46402194	0.89681321
С	1.7313049	3.50903659	0.19489733
Н	1.9112057	3.91503698	1.19780235
Н	2.71899844	3.33730166	-0.25498391
С	0.95319514	4.51784577	-0.65998035
Н	1.5201506	5.45095271	-0.76156832
Н	0.01390398	4.77619301	-0.15028925
С	0.63551574	3.93460078	-2.04276938
н	1.57325543	3.78444916	-2.59551887
Н	0.03778423	4.64276751	-2.62942664
С	-0.10724346	2.59035384	-1.94326604
Н	-1.10281493	2.75713685	-1.50654609
Н	-0.2659198	2.19624058	-2.95217631
С	-0.38186511	-0.76032823	-2.62849167
Н	0.45901439	-0.35759953	-3.20609291
С	-0.28138873	-2.30021642	-2.63886314
Н	0.67781316	-2.6230293	-2.22556235
н	-1.06640294	-2.721716	-1.99397423
С	-0.43342808	-2.86831696	-4.06028492
Н	0.42043265	-2.53702827	-4.66714776
н	-0.38418858	-3.96354669	-4.0262826

			•
С	-1.73782034	-2.41267985	-4.72727715
н	-2.59196191	-2.85073835	-4.19122403
н	-1.79064106	-2.78675023	-5.75675887
С	-1.86178246	-0.88369315	-4.70575947
Н	-2.82431045	-0.57152412	-5.12899631
н	-1.08251065	-0.44606592	-5.34546914
С	-1.71720693	-0.32848003	-3.27944671
Н	-2.5473452	-0.69802446	-2.66124498
н	-1.81293629	0.76190168	-3.29661571

X = Cy – CONFORMER B

0	1		
	X	Y	Z
Р	0.24684146	-0.11556536	-0.8914266
Ν	-4.02242443	0.1493277	-1.49561693
Ν	-2.71584254	0.17642149	-1.36563615
N	-2.39726287	-0.70744852	-0.37922012
С	-4.5622934	-0.72371311	-0.62128757
Н	-5.62720766	-0.89135325	-0.56444114
С	-3.54244827	-1.30510023	0.13157952
С	-3.40577095	-2.24433109	1.17987504
Н	-4.28869225	-2.72240386	1.58860117
С	-2.14629983	-2.51466822	1.65041606
Н	-2.00604984	-3.22370963	2.45998083
С	-1.00439493	-1.87320719	1.08946105
Н	-0.02631157	-2.10933797	1.48727151
С	-1.10690217	-0.96633809	0.05887717
С	0.02260126	1.62976151	-0.17505612
Н	-1.05660542	1.77965769	-0.3117289
С	0.72212883	2.69547057	-1.04569384
Н	1.81131092	2.56354671	-1.00990616
Н	0.42595096	2.56997474	-2.09286704
С	0.37551786	4.11428315	-0.56260165
Н	0.9130197	4.85487401	-1.16702957
Н	-0.69581269	4.29589238	-0.7260726
С	0.69917844	4.30321997	0.92649421
Н	0.40753298	5.30808935	1.25442239
Н	1.78669975	4.23126619	1.07310657
С	0.00221135	3.24031033	1.7879926
Н	-1.08568604	3.38452758	1.73022133
Н	0.27764373	3.36179529	2.84283226
С	0.34586226	1.81512586	1.31832116
Н	1.41400899	1.63292584	1.49737923

н	-0.20273686	1.08080685	1.9193465
С	1.77794527	-0.85469036	-0.06593079
н	1.66382805	-0.85895369	1.02721452
С	1.97328837	-2.30681725	-0.56456701
н	1.09955633	-2.92304595	-0.3303247
н	2.04931988	-2.29086224	-1.66036177
С	3.24036699	-2.95143607	0.02004205
н	3.13104373	-3.04831963	1.10993113
н	3.35192412	-3.96934657	-0.37222732
С	4.48957224	-2.11747644	-0.29275242
н	4.66913344	-2.13095464	-1.37698239
н	5.37526917	-2.56256417	0.17592652
С	4.31310204	-0.66619844	0.17191618
н	5.18570216	-0.06540384	-0.11121738
н	4.26160478	-0.64089117	1.26976416
С	3.03802486	-0.02650351	-0.40446925
Н	3.13414517	0.05552001	-1.49636276
н	2.94419262	0.99383726	-0.02207201

X = Ph – CONFORMER A

0	1		
	Х	Y	Z
С	-0.05331964	-0.77534862	9.79719433
Н	-0.59151655	-1.49880989	10.3908511
С	1.18026017	-0.90595354	9.16374026
С	2.17852221	-1.89589699	9.00871842
Н	2.03973246	-2.86561284	9.47375397
С	3.29532763	-1.5953334	8.27350601
Н	4.08021901	-2.33185443	8.13802979
С	3.43693972	-0.30647687	7.68363081
Н	4.32694077	-0.06931538	7.11207137
С	2.47824605	0.6719156	7.80976924
С	1.40563601	2.44878675	5.74067577
С	1.79071078	2.3606945	4.39273267
Н	2.83924221	2.21933626	4.14489085
С	0.84458056	2.45877228	3.37122536
Н	1.15869964	2.38801804	2.33388253
С	-0.49940967	2.65599061	3.68698971
Н	-1.23867902	2.73616487	2.89498154
С	-0.89280747	2.75416921	5.02394595
Н	-1.93911841	2.90709644	5.27270298
С	0.04885448	2.65160905	6.04755844
н	-0.26200084	2.71148139	7.08351568

C	2.39026972	3.53636714	8.28533733
С	2.83788098	3.32556315	9.59906217
н	3.30193854	2.38119511	9.87075667
С	2.68630405	4.3133152	10.5701314
н	3.02585831	4.12539354	11.5847392
С	2.09884322	5.53679459	10.2431065
н	1.98041355	6.30627088	11.0001917
С	1.66746958	5.76356394	8.93655439
н	1.21079031	6.71258329	8.67016002
С	1.81358899	4.77370681	7.96346579
н	1.46696885	4.96544262	6.95304299
N	-0.53748064	0.46075341	9.56428972
N	0.30017646	1.14662909	8.82090601
N	1.35948	0.33618328	8.55922262
Р	2.78113163	2.30153009	6.97043361

X = Ph – CONFORMER B

0	1		
	Х	Y	Z
С	-0.01776794	-0.51941012	9.21555969
Н	-0.64956824	-1.19245064	9.7751775
С	1.32225969	-0.66748095	8.85916391
С	2.36832215	-1.60637086	9.02023546
Н	2.18322981	-2.52288741	9.56900569
С	3.59390177	-1.32198697	8.47265665
Н	4.4148145	-2.02385395	8.57804953
С	3.81085495	-0.10776133	7.75849582
Н	4.78602155	0.10119538	7.33713581
С	2.80822618	0.81768254	7.59074654
С	4.70180462	2.46766396	6.26491394
C	5.66484489	3.01594152	7.12869742
Н	5.35382581	3.42553657	8.08636881
С	7.01235442	3.04783704	6.76912182
Н	7.74373133	3.47231284	7.45075881
С	7.41507821	2.54896188	5.52931399
Н	8.46209256	2.58229221	5.24230319
С	6.46582447	2.01653208	4.65504336
Н	6.77310608	1.63405578	3.68578965
C	5.11925689	1.97360552	5.0196077
Н	4.39000574	1.56268554	4.32919315
C	1.96648878	2.32712335	5.29370751
C	1.73172049	1.106031	4.64385491
Н	2.13046964	0.18547083	5.05994135

C	0.98307842	1.06202234	3.46738264
н	0.80380155	0.1089064	2.97801875
С	0.46361047	2.23745379	2.92217934
н	-0.12049415	2.20137915	2.00724725
С	0.68870768	3.45707154	3.5616222
н	0.27901682	4.37382425	3.14780886
С	1.42821226	3.49999645	4.74360462
н	1.58038394	4.44931108	5.24988183
N	-0.47408194	0.65734712	8.73864879
N	0.47870729	1.28779708	8.09064414
N	1.58480114	0.49995492	8.1535443
Р	2.94265816	2.51271005	6.85257511

Crystal Structure Analysis

Compound 4a)	
Crystal data	
<u>C₁₉H₁₆N₃P</u>	F(000) = 664
$M_r = 317.32$	
<u>Triclinic</u> , <u>P</u> Ī	$D_{\rm x} = 1.292 {\rm Mg m}^{-3}$
Hall symbol: <u>-P 1</u>	
<i>a</i> = <u>11.7432 (4)</u> Å	<u>Mo $K\alpha$</u> radiation, $\lambda = 0.71073$ Å
<i>b</i> = <u>12.4966 (4)</u> Å	Cell parameters from <u>9832</u> reflections
c = 13.3411(5) Å	$\theta = \underline{1.0} - \underline{27.5}^{\circ}$
$\alpha = 79.341(2)^{\circ}$	$\mu = 0.17 \text{ mm}^{-1}$
$\beta = 66.710 (2)^{\circ}$	T = 173 K
$\gamma = 65.127 (2)^{\circ}$	Block, colorless
$V = 1631.06 (10) \text{ Å}^3$	$\underline{0.25} \times \underline{0.25} \times \underline{0.15}$ mm
$Z = \underline{4}$	

Data collection

KappaCCD diffractometer	<u>5023</u> reflections with $\underline{I > 2\sigma(I)}$
diffactonicter	

Radiation source: <u>fine-focus sealed tube</u>	$R_{\rm int} = \underline{0.055}$
graphite	$\theta_{max} = \underline{27.5}^{\circ}, \ \theta_{min} = \underline{1.7}^{\circ}$
Detector resolution: ? pixels mm ⁻¹	$h = \underline{-15} \longrightarrow \underline{12}$
<u>phi and ω scans</u>	<i>k</i> = <u>−16</u> → <u>13</u>
18652 measured reflections	<i>l</i> = <u>−17</u> → <u>17</u>
7470 independent reflections	

Refinement

Refinement on $\underline{F^2}$	Secondary atom site location: <u>difference Fourier</u> <u>map</u>
Least-squares matrix: <u>full</u>	Hydrogen site location: <u>inferred from</u> <u>neighbouring sites</u>
$R[F^2 > 2\sigma(F^2)] = \underline{0.050}$	H-atom parameters constrained
$wR(F^2) = \underline{0.171}$	$\frac{w = 1/[\sigma^2(F_0^2) + (0.0966P)^2]}{\text{where } P = (F_0^2 + 2F_c^2)/3}$
S = 1.07	
<u>7470</u> reflections	$\Delta \rho_{max} = \underline{0.40} \ e \ \text{\AA}^{-3}$
<u>417</u> parameters	$\Delta \rho_{min} = -0.47 \text{ e } \text{\AA}^{-3}$
<u>0</u> restraints	Extinction correction: none
? constraints	Extinction coefficient: ?
Primary atom site location: <u>structure-invariant</u> <u>direct methods</u>	

Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\text{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.6124 (2)	-0.3827 (2)	1.3422 (2)	0.0395 (6)
C2	0.6151 (2)	-0.2723 (2)	1.30640 (19)	0.0312 (5)
C3	0.5773 (2)	-0.1859 (2)	1.2284 (2)	0.0372 (6)
Н3	0.5443	-0.2003	1.1799	0.045*
C4	0.5894 (3)	-0.0818 (2)	1.2242 (2)	0.0404 (6)
H4	0.5608	-0.0216	1.1742	0.049*
C5	0.6439 (2)	-0.0609 (2)	1.2930 (2)	0.0353 (6)
H5	0.6529	0.0123	1.2868	0.042*
C6	0.6837 (2)	-0.1435 (2)	1.36790 (19)	0.0300 (5)
C7	0.5641 (3)	-0.4536 (3)	1.3018 (3)	0.0577 (8)
H7A	0.6373	-0.4997	1.2393	0.087*
H7B	0.4884	-0.4005	1.2794	0.087*
H7C	0.5351	-0.5071	1.3603	0.087*
C8	0.9138 (2)	-0.23732 (19)	1.43027 (19)	0.0294 (5)
C9	0.9791 (2)	-0.30585 (19)	1.33780 (19)	0.0313 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)
Н9	0.9366	-0.2926	1.2865	0.038*
C10	1.1066 (2)	-0.39377 (19)	1.3202 (2)	0.0339 (6)
H10	1.1507	-0.4403	1.2569	0.041*
C11	1.1696 (2)	-0.4140 (2)	1.3942 (2)	0.0350 (6)
H11	1.2555	-0.4757	1.3828	0.042*
C12	1.1071 (2)	-0.3442 (2)	1.4846 (2)	0.0378 (6)
H12	1.1511	-0.3559	1.5344	0.045*
C13	0.9803 (2)	-0.2571 (2)	1.5022 (2)	0.0360 (6)
H13	0.9376	-0.2097	1.5649	0.043*
C14	0.7714 (2)	0.0111 (2)	1.41206 (19)	0.0316 (5)
C15	0.8758 (3)	0.0154 (2)	1.3173 (2)	0.0395 (6)
H15	0.9396	-0.0555	1.2801	0.047*
C16	0.8890 (3)	0.1216 (2)	1.2756 (2)	0.0450 (7)
H16	0.9607	0.1237	1.2100	0.054*
C17	0.7963 (3)	0.2244 (2)	1.3308 (2)	0.0445 (7)
H17	0.8041	0.2976	1.3025	0.053*
C18	0.6937 (3)	0.2215 (2)	1.4256 (2)	0.0464 (7)
H18	0.6312	0.2924	1.4632	0.056*
C19	0.6804 (2)	0.1150 (2)	1.4672 (2)	0.0385 (6)

H19	0.6092	0.1133	1.5333	0.046*
C20	0.2010 (2)	0.34932 (19)	1.1430 (2)	0.0311 (5)
C21	0.3104 (2)	0.32443 (18)	1.17410 (18)	0.0278 (5)
C22	0.3364 (2)	0.30972 (19)	1.27189 (19)	0.0324 (5)
H22	0.2663	0.3176	1.3410	0.039*
C23	0.4637 (2)	0.2842 (2)	1.2643 (2)	0.0350 (6)
H23	0.4830	0.2727	1.3292	0.042*
C24	0.5687 (2)	0.2742 (2)	1.16134 (19)	0.0333 (6)
H24	0.6565	0.2574	1.1590	0.040*
C25	0.5470 (2)	0.28808 (18)	1.06581 (19)	0.0275 (5)
C26	0.0580 (3)	0.3755 (2)	1.2121 (2)	0.0430 (6)
H26A	0.0003	0.4385	1.1772	0.065*
H26B	0.0402	0.4010	1.2839	0.065*
H26C	0.0390	0.3044	1.2209	0.065*
C27	0.8137 (2)	0.26614 (19)	0.95121 (18)	0.0295 (5)
C28	0.8276 (3)	0.3614 (2)	0.9784 (2)	0.0389 (6)
H28	0.7554	0.4364	0.9895	0.047*
C29	0.9449 (3)	0.3482 (2)	0.9895 (2)	0.0463 (7)
H29	0.9522	0.4135	1.0094	0.056*

C30	1.0513 (3)	0.2405 (3)	0.9717 (2)	0.0471 (7)
H30	1.1327	0.2320	0.9776	0.057*
C31	1.0393 (3)	0.1452 (2)	0.9452 (2)	0.0414 (6)
H31	1.1124	0.0708	0.9336	0.050*
C32	0.9210 (2)	0.1571 (2)	0.93543 (19)	0.0335 (5)
H32	0.9133	0.0907	0.9179	0.040*
C33	0.6950 (2)	0.16067 (19)	0.86868 (18)	0.0275 (5)
C34	0.7543 (2)	0.1502 (2)	0.75569 (19)	0.0333 (5)
H34	0.7767	0.2126	0.7118	0.040*
C35	0.7809 (3)	0.0491 (2)	0.7067 (2)	0.0399 (6)
H35	0.8224	0.0422	0.6297	0.048*
C36	0.7470 (3)	-0.0413 (2)	0.7698 (2)	0.0390 (6)
H36	0.7643	-0.1099	0.7361	0.047*
C37	0.6880 (2)	-0.0322 (2)	0.8819 (2)	0.0375 (6)
H37	0.6644	-0.0944	0.9252	0.045*
C38	0.6632 (2)	0.0678 (2)	0.9310 (2)	0.0334 (5)
H38	0.6241	0.0730	1.0083	0.040*
N1	0.6568 (2)	-0.41861 (18)	1.42655 (19)	0.0437 (6)
N2	0.6899 (2)	-0.33688 (17)	1.44728 (18)	0.0393 (5)

N3	0.66415 (18)	-0.24727 (16)	1.37373 (15)	0.0303 (4)
N4	0.24543 (19)	0.34829 (16)	1.03269 (16)	0.0325 (5)
N5	0.37644 (19)	0.32475 (16)	0.99009 (16)	0.0308 (4)
N6	0.41582 (18)	0.31090 (15)	1.07653 (15)	0.0269 (4)
P1	0.74245 (6)	-0.12461 (5)	1.46897 (5)	0.03111 (18)
P2	0.66007 (6)	0.29830 (5)	0.92617 (5)	0.02817 (17)

Atomic displacement parameters (Å²)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0320 (13)	0.0374 (14)	0.0472 (16)	-0.0097 (11)	-0.0172 (13)	0.0011 (11)
C2	0.0229 (12)	0.0387 (13)	0.0291 (13)	-0.0088 (10)	-0.0090 (10)	-0.0024 (10)
C3	0.0315 (13)	0.0546 (16)	0.0282 (13)	-0.0174 (12)	-0.0139 (11)	0.0027 (11)
C4	0.0389 (14)	0.0525 (16)	0.0349 (15)	-0.0213 (12)	-0.0216 (12)	0.0162 (12)
C5	0.0326 (13)	0.0400 (14)	0.0355 (14)	-0.0170 (11)	-0.0154 (12)	0.0088 (11)
C6	0.0221 (11)	0.0355 (13)	0.0282 (13)	-0.0086 (9)	-0.0074 (10)	-0.0008 (10)
C7	0.064 (2)	0.0486 (17)	0.077 (2)	-0.0233 (15)	-0.0406 (19)	0.0013 (15)
C8	0.0305 (12)	0.0314 (12)	0.0255 (12)	-0.0114 (10)	-0.0106 (10)	0.0015 (9)
C9	0.0327 (13)	0.0324 (12)	0.0303 (13)	-0.0106 (10)	-0.0147 (11)	-0.0006 (10)
C10	0.0328 (13)	0.0298 (12)	0.0351 (14)	-0.0095 (10)	-0.0080 (11)	-0.0073 (10)

C11	0.0293 (13)	0.0311 (12)	0.0398 (15)	-0.0070 (10)	-0.0133 (11)	0.0007 (10)
C12	0.0366 (14)	0.0439 (14)	0.0358 (14)	-0.0120 (11)	-0.0201 (12)	0.0005 (11)
C13	0.0355 (14)	0.0417 (14)	0.0298 (13)	-0.0097 (11)	-0.0142 (11)	-0.0052 (10)
C14	0.0263 (12)	0.0351 (13)	0.0304 (13)	-0.0069 (10)	-0.0111 (11)	-0.0042 (10)
C15	0.0333 (14)	0.0385 (14)	0.0388 (15)	-0.0104 (11)	-0.0055 (12)	-0.0088 (11)
C16	0.0381 (15)	0.0454 (16)	0.0487 (17)	-0.0188 (12)	-0.0099 (13)	-0.0009 (13)
C17	0.0404 (15)	0.0368 (14)	0.063 (2)	-0.0151 (12)	-0.0257 (15)	0.0016 (13)
C18	0.0365 (15)	0.0357 (14)	0.0597 (19)	-0.0050 (11)	-0.0150 (15)	-0.0114 (13)
C19	0.0303 (13)	0.0401 (14)	0.0368 (15)	-0.0056 (11)	-0.0091 (12)	-0.0086 (11)
C20	0.0335 (13)	0.0293 (12)	0.0337 (14)	-0.0148 (10)	-0.0122 (11)	-0.0007 (10)
C21	0.0310 (12)	0.0218 (11)	0.0282 (12)	-0.0104 (9)	-0.0075 (11)	-0.0016 (9)
C22	0.0368 (14)	0.0308 (12)	0.0256 (13)	-0.0118 (10)	-0.0081 (11)	-0.0017 (10)
C23	0.0397 (14)	0.0373 (13)	0.0274 (13)	-0.0121 (11)	-0.0146 (12)	0.0002 (10)
C24	0.0328 (13)	0.0363 (13)	0.0324 (14)	-0.0103 (10)	-0.0152 (11)	-0.0032 (10)
C25	0.0278 (12)	0.0244 (11)	0.0310 (13)	-0.0086 (9)	-0.0112 (10)	-0.0043 (9)
C26	0.0355 (14)	0.0497 (15)	0.0439 (16)	-0.0198 (12)	-0.0117 (13)	0.0017 (12)
C27	0.0321 (12)	0.0327 (12)	0.0253 (12)	-0.0161 (10)	-0.0082 (10)	-0.0005 (9)
C28	0.0475 (16)	0.0343 (13)	0.0437 (16)	-0.0207 (11)	-0.0206 (13)	0.0013 (11)
C29	0.0613 (19)	0.0518 (16)	0.0471 (17)	-0.0350 (14)	-0.0281 (15)	0.0038 (13)

C30	0.0435 (16)	0.0662 (19)	0.0463 (17)	-0.0319 (14)	-0.0225 (14)	0.0072 (14)
C31	0.0335 (14)	0.0472 (15)	0.0431 (16)	-0.0134 (11)	-0.0166 (13)	0.0015 (12)
C32	0.0326 (13)	0.0367 (13)	0.0333 (14)	-0.0168 (10)	-0.0096 (11)	-0.0021 (10)
C33	0.0258 (12)	0.0317 (12)	0.0266 (12)	-0.0110 (9)	-0.0109 (10)	-0.0011 (9)
C34	0.0342 (13)	0.0394 (13)	0.0279 (13)	-0.0177 (11)	-0.0089 (11)	-0.0008 (10)
C35	0.0373 (14)	0.0476 (15)	0.0325 (14)	-0.0139 (12)	-0.0071 (12)	-0.0141 (12)
C36	0.0385 (14)	0.0352 (13)	0.0448 (16)	-0.0113 (11)	-0.0146 (13)	-0.0122 (11)
C37	0.0383 (14)	0.0290 (12)	0.0449 (16)	-0.0136 (10)	-0.0138 (13)	-0.0008 (11)
C38	0.0392 (14)	0.0329 (13)	0.0263 (13)	-0.0144 (10)	-0.0093 (11)	-0.0006 (10)
N1	0.0413 (13)	0.0394 (12)	0.0567 (15)	-0.0163 (10)	-0.0270 (12)	0.0087 (10)
N2	0.0393 (12)	0.0377 (12)	0.0435 (13)	-0.0145 (9)	-0.0231 (11)	0.0114 (10)
N3	0.0263 (10)	0.0340 (10)	0.0296 (11)	-0.0096 (8)	-0.0136 (9)	0.0048 (8)
N4	0.0313 (11)	0.0334 (11)	0.0364 (12)	-0.0142 (8)	-0.0135 (10)	-0.0013 (9)
N5	0.0323 (11)	0.0337 (10)	0.0305 (11)	-0.0131 (8)	-0.0138 (9)	-0.0029 (8)
N6	0.0300 (10)	0.0268 (9)	0.0266 (10)	-0.0112 (8)	-0.0117 (9)	-0.0020 (8)
P1	0.0272 (3)	0.0355 (3)	0.0261 (3)	-0.0079 (3)	-0.0091 (3)	-0.0014 (3)
P2	0.0303 (3)	0.0282 (3)	0.0269 (3)	-0.0116 (2)	-0.0105 (3)	-0.0013 (2)

Geometric parameters (Å, °)

C1—N1	1.350 (3)	C20—C26	1.484 (4)
C1—C2	1.383 (3)	C21—N6	1.374 (3)
C1—C7	1.495 (4)	C21—C22	1.417 (3)
C2—N3	1.379 (3)	C22—C23	1.356 (3)
C2—C3	1.411 (3)	C22—H22	0.9500
C3—C4	1.356 (4)	C23—C24	1.421 (3)
С3—Н3	0.9500	C23—H23	0.9500
C4—C5	1.420 (3)	C24—C25	1.363 (3)
C4—H4	0.9500	C24—H24	0.9500
C5—C6	1.365 (3)	C25—N6	1.396 (3)
С5—Н5	0.9500	C25—P2	1.830 (2)
C6—N3	1.393 (3)	C26—H26A	0.9800
C6—P1	1.828 (2)	C26—H26B	0.9800
С7—Н7А	0.9800	C26—H26C	0.9800
С7—Н7В	0.9800	C27—C32	1.393 (3)
С7—Н7С	0.9800	C27—C28	1.396 (3)
С8—С9	1.391 (3)	C27—P2	1.828 (2)
C8—C13	1.391 (3)	C28—C29	1.381 (4)
C8—P1	1.834 (2)	C28—H28	0.9500

C9—C10	1.392 (3)	C29—C30	1.377 (4)
С9—Н9	0.9500	С29—Н29	0.9500
C10—C11	1.383 (3)	C30—C31	1.379 (4)
С10—Н10	0.9500	С30—Н30	0.9500
C11—C12	1.380 (3)	C31—C32	1.390 (3)
C11—H11	0.9500	С31—Н31	0.9500
C12—C13	1.383 (3)	С32—Н32	0.9500
С12—Н12	0.9500	C33—C38	1.393 (3)
С13—Н13	0.9500	C33—C34	1.393 (3)
C14—C15	1.382 (3)	C33—P2	1.833 (2)
C14—C19	1.391 (3)	C34—C35	1.390 (3)
C14—P1	1.836 (3)	С34—Н34	0.9500
C15—C16	1.388 (4)	C35—C36	1.380 (4)
С15—Н15	0.9500	С35—Н35	0.9500
C16—C17	1.385 (4)	C36—C37	1.380 (4)
C16—H16	0.9500	С36—Н36	0.9500
C17—C18	1.366 (4)	C37—C38	1.387 (3)
С17—Н17	0.9500	С37—Н37	0.9500
C18—C19	1.392 (4)	С38—Н38	0.9500

С18—Н18	0.9500	N1—N2	1.339 (3)
С19—Н19	0.9500	N2—N3	1.361 (3)
C20—N4	1.354 (3)	N4—N5	1.329 (3)
C20—C21	1.399 (3)	N5—N6	1.362 (2)
N1—C1—C2	108.7 (2)	C21—C22—H22	120.8
N1—C1—C7	122.9 (2)	C22—C23—C24	121.3 (2)
C2—C1—C7	128.3 (2)	С22—С23—Н23	119.4
N3—C2—C1	104.09 (19)	C24—C23—H23	119.4
N3—C2—C3	118.3 (2)	C25—C24—C23	121.8 (2)
C1—C2—C3	137.5 (2)	C25—C24—H24	119.1
C4—C3—C2	118.5 (2)	C23—C24—H24	119.1
С4—С3—Н3	120.8	C24—C25—N6	115.4 (2)
С2—С3—Н3	120.8	C24—C25—P2	129.04 (18)
C3—C4—C5	121.3 (2)	N6—C25—P2	115.11 (15)
С3—С4—Н4	119.3	C20—C26—H26A	109.5
С5—С4—Н4	119.3	C20—C26—H26B	109.5
C6—C5—C4	121.6 (2)	H26A—C26—H26B	109.5
С6—С5—Н5	119.2	C20—C26—H26C	109.5
С4—С5—Н5	119.2	H26A—C26—H26C	109.5

C5—C6—N3	115.7 (2)	H26B—C26—H26C	109.5
C5—C6—P1	126.41 (19)	C32—C27—C28	118.4 (2)
N3—C6—P1	117.60 (16)	C32—C27—P2	124.74 (18)
C1—C7—H7A	109.5	C28—C27—P2	116.55 (17)
C1—C7—H7B	109.5	C29—C28—C27	120.9 (2)
Н7А—С7—Н7В	109.5	C29—C28—H28	119.6
C1—C7—H7C	109.5	C27—C28—H28	119.6
Н7А—С7—Н7С	109.5	C30—C29—C28	120.2 (3)
Н7В—С7—Н7С	109.5	С30—С29—Н29	119.9
C9—C8—C13	118.4 (2)	С28—С29—Н29	119.9
C9—C8—P1	125.26 (17)	C29—C30—C31	119.7 (2)
C13—C8—P1	116.27 (18)	С29—С30—Н30	120.1
C8—C9—C10	120.1 (2)	С31—С30—Н30	120.1
С8—С9—Н9	119.9	C30—C31—C32	120.5 (2)
С10—С9—Н9	119.9	C30—C31—H31	119.7
C11—C10—C9	120.5 (2)	C32—C31—H31	119.7
C11—C10—H10	119.7	C31—C32—C27	120.2 (2)
С9—С10—Н10	119.7	C31—C32—H32	119.9
C12—C11—C10	119.7 (2)	С27—С32—Н32	119.9

C12—C11—H11	120.2	C38—C33—C34	118.5 (2)
C10—C11—H11	120.2	C38—C33—P2	123.89 (18)
C11—C12—C13	119.7 (2)	C34—C33—P2	117.61 (17)
C11—C12—H12	120.1	C35—C34—C33	120.5 (2)
C13—C12—H12	120.1	С35—С34—Н34	119.8
C12—C13—C8	121.4 (2)	С33—С34—Н34	119.8
C12—C13—H13	119.3	C36—C35—C34	120.1 (2)
С8—С13—Н13	119.3	С36—С35—Н35	119.9
C15—C14—C19	119.0 (2)	С34—С35—Н35	119.9
C15—C14—P1	123.71 (18)	C37—C36—C35	120.1 (2)
C19—C14—P1	117.30 (19)	С37—С36—Н36	119.9
C14—C15—C16	121.1 (2)	С35—С36—Н36	119.9
C14—C15—H15	119.5	C36—C37—C38	119.9 (2)
C16—C15—H15	119.5	С36—С37—Н37	120.1
C17—C16—C15	119.1 (3)	С38—С37—Н37	120.1
C17—C16—H16	120.4	C37—C38—C33	120.9 (2)
C15—C16—H16	120.4	С37—С38—Н38	119.5
C18—C17—C16	120.6 (3)	С33—С38—Н38	119.5
C18—C17—H17	119.7	N2—N1—C1	110.3 (2)

C16—C17—H17	119.7	N1—N2—N3	105.79 (19)
C17—C18—C19	120.3 (2)	N2—N3—C2	111.09 (19)
C17—C18—H18	119.9	N2—N3—C6	124.42 (19)
C19—C18—H18	119.9	C2—N3—C6	124.48 (18)
C14—C19—C18	120.0 (2)	N5—N4—C20	110.82 (19)
C14—C19—H19	120.0	N4—N5—N6	105.73 (18)
C18—C19—H19	120.0	N5—N6—C21	111.64 (17)
N4—C20—C21	108.1 (2)	N5—N6—C25	123.53 (19)
N4—C20—C26	122.5 (2)	C21—N6—C25	124.82 (19)
C21—C20—C26	129.3 (2)	C6—P1—C8	102.22 (10)
N6—C21—C20	103.66 (19)	C6—P1—C14	98.57 (10)
N6—C21—C22	118.2 (2)	C8—P1—C14	102.27 (11)
C20—C21—C22	138.1 (2)	C27—P2—C25	100.09 (10)
C23—C22—C21	118.4 (2)	C27—P2—C33	102.77 (10)
C23—C22—H22	120.8	C25—P2—C33	101.79 (10)
N1—C1—C2—N3	0.5 (3)	P2-C33-C38-C37	177.59 (18)
C7—C1—C2—N3	177.9 (3)	C2—C1—N1—N2	-0.6 (3)
N1—C1—C2—C3	-176.1 (3)	C7—C1—N1—N2	-178.2 (3)
C7—C1—C2—C3	1.3 (5)	C1—N1—N2—N3	0.4 (3)

N3—C2—C3—C4	-0.9 (3)	N1—N2—N3—C2	-0.1 (3)
C1—C2—C3—C4	175.4 (3)	N1—N2—N3—C6	179.3 (2)
C2—C3—C4—C5	2.7 (4)	C1—C2—N3—N2	-0.2 (3)
C3—C4—C5—C6	-1.5 (4)	C3—C2—N3—N2	177.2 (2)
C4—C5—C6—N3	-1.5 (3)	C1—C2—N3—C6	-179.7 (2)
C4—C5—C6—P1	-174.67 (19)	C3—C2—N3—C6	-2.3 (3)
C13—C8—C9—C10	1.6 (4)	C5—C6—N3—N2	-176.0 (2)
P1—C8—C9—C10	-176.15 (18)	P1—C6—N3—N2	-2.2 (3)
C8—C9—C10—C11	0.0 (4)	C5—C6—N3—C2	3.4 (3)
C9—C10—C11—C12	-1.9 (4)	P1—C6—N3—C2	177.21 (17)
C10—C11—C12—C13	2.0 (4)	C21—C20—N4—N5	-0.2 (3)
C11—C12—C13—C8	-0.4 (4)	C26—C20—N4—N5	178.8 (2)
C9—C8—C13—C12	-1.4 (4)	C20—N4—N5—N6	-0.2 (2)
P1—C8—C13—C12	176.5 (2)	N4—N5—N6—C21	0.6 (2)
C19—C14—C15—C16	-1.5 (4)	N4—N5—N6—C25	-178.23 (18)
P1-C14-C15-C16	177.03 (19)	C20—C21—N6—N5	-0.7 (2)
C14—C15—C16—C17	0.5 (4)	C22—C21—N6—N5	178.53 (18)
C15—C16—C17—C18	0.5 (4)	C20—C21—N6—C25	178.11 (19)
C16—C17—C18—C19	-0.7 (4)	C22—C21—N6—C25	-2.7 (3)

C15—C14—C19—C18	1.3 (4)	C24—C25—N6—N5	-178.59 (19)
P1-C14-C19-C18	-177.26 (19)	P2-C25-N6-N5	8.3 (3)
C17—C18—C19—C14	-0.3 (4)	C24—C25—N6—C21	2.7 (3)
N4—C20—C21—N6	0.5 (2)	P2-C25-N6-C21	-170.40 (16)
C26—C20—C21—N6	-178.4 (2)	C5—C6—P1—C8	-118.9 (2)
N4—C20—C21—C22	-178.4 (2)	N3—C6—P1—C8	68.07 (19)
C26—C20—C21—C22	2.6 (5)	C5—C6—P1—C14	-14.2 (2)
N6-C21-C22-C23	0.6 (3)	N3—C6—P1—C14	172.70 (17)
C20—C21—C22—C23	179.5 (3)	C9—C8—P1—C6	6.7 (2)
C21—C22—C23—C24	1.1 (3)	C13—C8—P1—C6	-171.11 (19)
C22—C23—C24—C25	-1.0 (4)	C9—C8—P1—C14	-95.1 (2)
C23—C24—C25—N6	-0.9 (3)	C13—C8—P1—C14	87.2 (2)
C23—C24—C25—P2	171.12 (18)	C15—C14—P1—C6	-71.7 (2)
C32—C27—C28—C29	0.0 (4)	C19—C14—P1—C6	106.78 (19)
P2—C27—C28—C29	-174.3 (2)	C15—C14—P1—C8	32.9 (2)
C27—C28—C29—C30	1.2 (4)	C19—C14—P1—C8	-148.64 (18)
C28—C29—C30—C31	-1.5 (4)	C32—C27—P2—C25	100.3 (2)
C29—C30—C31—C32	0.6 (4)	C28—C27—P2—C25	-85.8 (2)
C30—C31—C32—C27	0.7 (4)	C32—C27—P2—C33	-4.3 (2)

C28—C27—C32—C31	-0.9 (4)	C28—C27—P2—C33	169.56 (19)
P2-C27-C32-C31	172.85 (19)	C24—C25—P2—C27	6.8 (2)
C38—C33—C34—C35	0.0 (3)	N6—C25—P2—C27	178.79 (16)
P2-C33-C34-C35	-178.66 (18)	C24—C25—P2—C33	112.2 (2)
C33—C34—C35—C36	0.9 (4)	N6—C25—P2—C33	-75.76 (17)
C34—C35—C36—C37	-0.7 (4)	C38—C33—P2—C27	90.6 (2)
C35—C36—C37—C38	-0.2 (4)	C34—C33—P2—C27	-90.79 (19)
C36—C37—C38—C33	1.1 (4)	C38—C33—P2—C25	-12.7 (2)
C34—C33—C38—C37	-1.0 (3)	C34—C33—P2—C25	165.86 (17)

All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Compound 4b

Crystal data

$\underline{C_{18}H_{14}N_3P}$	
$M_r = 303.29$	$D_{\rm x} = 1.348 {\rm Mg m}^{-3}$
Monoclinic, <u>P2₁/c</u>	
Hall symbol: <u>-P 2ybc</u>	<u>Mo $K\alpha$</u> radiation, $\lambda = 0.71073$ Å
<i>a</i> = <u>9.4104 (5)</u> Å	Cell parameters from <u>8238</u> reflections
<i>b</i> = <u>16.0595 (10)</u> Å	$\theta = \underline{1.0} - \underline{27.5}^{\circ}$
c = 10.0214 (5) Å	$\mu = 0.18 \text{ mm}^{-1}$
$\beta = 99.277 (3)^{\circ}$	T = 173 K
$V = 1494.69 (14) \text{ Å}^3$	Block, colorless
$Z = \underline{4}$	$\underline{0.35} \times \underline{0.30} \times \underline{0.25} \text{ mm}$
F(000) = 632	

Data collection

KappaCCD diffractometer	<u>2517</u> reflections with $I > 2\sigma(I)$
Radiation source: <u>fine-focus sealed tube</u>	$R_{\rm int} = \underline{0.065}$
graphite	$\theta_{max} = \underline{27.5}^{\circ}, \ \theta_{min} = \underline{2.2}^{\circ}$

Detector resolution: ? pixels mm ⁻¹	<i>h</i> = <u>−12</u> → <u>11</u>
phi and ω scans	<i>k</i> = <u>−18</u> → <u>20</u>
10729 measured reflections	$l = -10 \rightarrow \underline{13}$
<u>3414</u> independent reflections	

Refinement

Refinement on $\underline{F^2}$	Secondary atom site location: <u>difference Fourier</u> <u>map</u>
Least-squares matrix: <u>full</u>	Hydrogen site location: <u>inferred from</u> <u>neighbouring sites</u>
$R[F^2 > 2\sigma(F^2)] = \underline{0.057}$	H-atom parameters constrained
$wR(F^2) = 0.172$	$\frac{w = 1/[\sigma^2(F_0^2) + (0.1011P)^2]}{\text{where } P = (F_0^2 + 2F_c^2)/3}$
S = 1.15	
<u>3414</u> reflections	$\Delta \rho_{max} = \underline{0.79} \text{ e } \text{\AA}^{-3}$
200 parameters	$\Delta \rho_{min} = -0.47 \text{ e } \text{\AA}^{-3}$
<u>0</u> restraints	Extinction correction: <u>SHELXL</u> , <u>Fc</u> [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
? constraints	Extinction coefficient: 0.079 (7)
Primary atom site location: <u>structure-invariant</u> <u>direct methods</u>	

Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F,

and R- factors based on ALL data will be even larger.

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.1774 (2)	-0.02780 (15)	0.9538 (2)	0.0363 (6)
H1	0.1360	-0.0660	1.0090	0.044*
C2	0.3027 (2)	-0.04111 (14)	0.90204 (19)	0.0294 (5)
C3	0.4100 (2)	-0.10257 (14)	0.9036 (2)	0.0327 (5)
H3	0.4035	-0.1539	0.9494	0.039*
C4	0.5228 (2)	-0.08696 (14)	0.8382 (2)	0.0330 (5)
H4	0.5963	-0.1276	0.8393	0.040*
C5	0.5328 (2)	-0.01094 (13)	0.7683 (2)	0.0287 (5)
Н5	0.6136	-0.0017	0.7243	0.034*
C6	0.4300 (2)	0.04907 (13)	0.7624 (2)	0.0261 (5)
C7	0.6009 (2)	0.15623 (12)	0.6324 (2)	0.0256 (5)
C8	0.7198 (2)	0.16825 (14)	0.7332 (2)	0.0342 (5)
H8	0.7061	0.1715	0.8249	0.041*
C9	0.8573 (3)	0.17556 (16)	0.7023 (3)	0.0414 (6)
H9	0.9374	0.1822	0.7724	0.050*
C10	0.8775 (3)	0.17320 (15)	0.5689 (3)	0.0395 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

H10	0.9716	0.1788	0.5471	0.047*
C11	0.7620 (3)	0.16281 (14)	0.4679 (3)	0.0363 (6)
H11	0.7766	0.1618	0.3762	0.044*
C12	0.6230 (2)	0.15367 (13)	0.4983 (2)	0.0302 (5)
H12	0.5438	0.1457	0.4277	0.036*
C13	0.2975 (2)	0.13885 (13)	0.5317 (2)	0.0262 (5)
C14	0.2260 (2)	0.06419 (14)	0.4937 (2)	0.0319 (5)
H14	0.2431	0.0168	0.5507	0.038*
C15	0.1303 (3)	0.05872 (15)	0.3730 (2)	0.0381 (6)
H15	0.0809	0.0080	0.3487	0.046*
C16	0.1068 (2)	0.12726 (16)	0.2881 (2)	0.0383 (6)
H16	0.0427	0.1232	0.2048	0.046*
C17	0.1764 (2)	0.20137 (16)	0.3246 (2)	0.0382 (6)
H17	0.1610	0.2482	0.2660	0.046*
C18	0.2688 (2)	0.20751 (14)	0.4464 (2)	0.0326 (5)
H18	0.3134	0.2594	0.4724	0.039*
N1	0.1226 (2)	0.04725 (13)	0.9146 (2)	0.0398 (5)
N2	0.20675 (19)	0.08462 (13)	0.83903 (19)	0.0357 (5)
N3	0.31655 (18)	0.03144 (11)	0.83112 (17)	0.0268 (4)

P1	0.42520 (6)	0.15362 (4)	0.68810 (5)	0.0270 (2)

Atomic displacement parameters (Å²)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0326 (12)	0.0424 (15)	0.0353 (12)	-0.0060 (11)	0.0102 (10)	0.0050 (11)
C2	0.0324 (11)	0.0314 (12)	0.0247 (10)	-0.0070 (9)	0.0051 (9)	0.0001 (9)
C3	0.0408 (13)	0.0295 (12)	0.0275 (11)	-0.0031 (10)	0.0049 (10)	0.0009 (9)
C4	0.0370 (12)	0.0337 (13)	0.0284 (11)	0.0088 (10)	0.0058 (9)	0.0002 (9)
C5	0.0289 (11)	0.0305 (12)	0.0277 (10)	0.0007 (9)	0.0078 (9)	-0.0016 (9)
C6	0.0264 (10)	0.0297 (12)	0.0233 (10)	-0.0034 (9)	0.0073 (9)	-0.0020 (8)
C7	0.0287 (11)	0.0199 (10)	0.0294 (11)	-0.0020 (8)	0.0080 (9)	0.0000 (8)
C8	0.0336 (12)	0.0368 (13)	0.0329 (12)	-0.0065 (10)	0.0075 (10)	0.0008 (10)
C9	0.0287 (12)	0.0466 (16)	0.0477 (14)	-0.0087 (11)	0.0022 (11)	0.0002 (12)
C10	0.0284 (12)	0.0382 (14)	0.0550 (15)	-0.0046 (10)	0.0160 (11)	0.0019 (12)
C11	0.0379 (13)	0.0349 (13)	0.0408 (13)	0.0030 (10)	0.0205 (11)	0.0009 (10)
C12	0.0305 (11)	0.0296 (12)	0.0314 (11)	-0.0011 (9)	0.0076 (9)	-0.0010 (9)
C13	0.0216 (10)	0.0259 (11)	0.0329 (11)	0.0029 (8)	0.0099 (9)	0.0013 (8)
C14	0.0330 (12)	0.0250 (12)	0.0385 (12)	0.0020 (9)	0.0084 (10)	0.0004 (9)
C15	0.0357 (12)	0.0332 (14)	0.0448 (14)	-0.0033 (10)	0.0048 (11)	-0.0046 (10)

C16	0.0295 (11)	0.0477 (15)	0.0366 (13)	0.0004 (11)	0.0016 (10)	0.0009 (11)
C17	0.0293 (12)	0.0433 (15)	0.0422 (13)	0.0009 (10)	0.0063 (10)	0.0101 (11)
C18	0.0255 (10)	0.0275 (12)	0.0445 (13)	-0.0024 (9)	0.0044 (10)	0.0043 (10)
N1	0.0310 (10)	0.0495 (13)	0.0415 (11)	-0.0016 (9)	0.0141 (9)	0.0049 (10)
N2	0.0295 (10)	0.0375 (12)	0.0431 (11)	0.0033 (8)	0.0154 (9)	0.0038 (9)
N3	0.0241 (9)	0.0294 (10)	0.0279 (9)	-0.0005 (7)	0.0070 (7)	0.0001 (7)
P1	0.0265 (3)	0.0257 (4)	0.0302 (3)	-0.0008 (2)	0.0088 (2)	-0.0014 (2)

Geometric parameters (Å, °)

C1—N1	1.344 (3)	C10—C11	1.372 (4)
C1—C2	1.379 (3)	C10—H10	0.9500
C1—H1	0.9500	C11—C12	1.398 (3)
C2—N3	1.382 (3)	C11—H11	0.9500
C2—C3	1.411 (3)	C12—H12	0.9500
C3—C4	1.358 (3)	C13—C18	1.395 (3)
С3—Н3	0.9500	C13—C14	1.398 (3)
C4—C5	1.418 (3)	C13—P1	1.830 (2)
C4—H4	0.9500	C14—C15	1.389 (3)
C5—C6	1.360 (3)	C14—H14	0.9500

С5—Н5	0.9500	C15—C16	1.387 (3)
C6—N3	1.390 (2)	C15—H15	0.9500
C6—P1	1.834 (2)	C16—C17	1.379 (3)
C7—C12	1.394 (3)	С16—Н16	0.9500
C7—C8	1.395 (3)	C17—C18	1.383 (3)
C7—P1	1.828 (2)	С17—Н17	0.9500
C8—C9	1.384 (3)	C18—H18	0.9500
С8—Н8	0.9500	N1—N2	1.325 (3)
C9—C10	1.380 (4)	N2—N3	1.353 (2)
С9—Н9	0.9500		
N1—C1—C2	109.88 (19)	C10-C11-H11	119.7
N1—C1—H1	125.1	C12—C11—H11	119.7
C2—C1—H1	125.1	C7—C12—C11	119.8 (2)
C1—C2—N3	102.72 (19)	C7—C12—H12	120.1
C1—C2—C3	139.3 (2)	C11—C12—H12	120.1
N3—C2—C3	117.94 (18)	C18—C13—C14	118.3 (2)
C4—C3—C2	118.7 (2)	C18—C13—P1	117.27 (17)
С4—С3—Н3	120.7	C14—C13—P1	124.46 (17)
С2—С3—Н3	120.7	C15—C14—C13	120.5 (2)

C3—C4—C5	121.1 (2)	C15—C14—H14	119.7
С3—С4—Н4	119.5	C13—C14—H14	119.7
С5—С4—Н4	119.5	C16—C15—C14	120.0 (2)
C6—C5—C4	121.89 (19)	C16—C15—H15	120.0
С6—С5—Н5	119.1	C14—C15—H15	120.0
С4—С5—Н5	119.1	C17—C16—C15	120.0 (2)
C5—C6—N3	115.60 (19)	C17—C16—H16	120.0
C5—C6—P1	129.58 (16)	C15—C16—H16	120.0
N3—C6—P1	114.64 (15)	C16—C17—C18	120.0 (2)
C12—C7—C8	118.4 (2)	C16—C17—H17	120.0
C12—C7—P1	125.20 (17)	C18—C17—H17	120.0
C8—C7—P1	116.22 (15)	C17—C18—C13	121.1 (2)
C9—C8—C7	121.3 (2)	C17—C18—H18	119.4
С9—С8—Н8	119.3	C13—C18—H18	119.4
С7—С8—Н8	119.3	N2—N1—C1	109.67 (18)
C10—C9—C8	119.6 (2)	N1—N2—N3	106.28 (18)
С10—С9—Н9	120.2	N2—N3—C2	111.45 (16)
С8—С9—Н9	120.2	N2—N3—C6	123.76 (18)
C11—C10—C9	120.1 (2)	C2—N3—C6	124.78 (17)

C11—C10—H10	119.9	C7—P1—C13	104.06 (9)
С9—С10—Н10	119.9	C7—P1—C6	100.39 (9)
C10—C11—C12	120.7 (2)	C13—P1—C6	101.48 (10)
N1—C1—C2—N3	0.3 (2)	C2—C1—N1—N2	-0.2 (3)
N1—C1—C2—C3	179.5 (3)	C1—N1—N2—N3	0.0 (3)
C1—C2—C3—C4	-177.7 (2)	N1—N2—N3—C2	0.2 (2)
N3—C2—C3—C4	1.4 (3)	N1—N2—N3—C6	-178.48 (18)
C2—C3—C4—C5	-0.7 (3)	C1—C2—N3—N2	-0.3 (2)
C3—C4—C5—C6	-0.6 (3)	C3—C2—N3—N2	-179.70 (18)
C4—C5—C6—N3	1.0 (3)	C1—C2—N3—C6	178.37 (18)
C4—C5—C6—P1	175.79 (16)	C3—C2—N3—C6	-1.0 (3)
С12—С7—С8—С9	-1.5 (3)	C5—C6—N3—N2	178.32 (19)
P1—C7—C8—C9	-176.67 (19)	P1—C6—N3—N2	2.8 (3)
C7—C8—C9—C10	1.8 (4)	C5—C6—N3—C2	-0.2 (3)
C8—C9—C10—C11	-0.7 (4)	P1—C6—N3—C2	-175.77 (16)
C9—C10—C11—C12	-0.6 (4)	C12—C7—P1—C13	4.4 (2)
C8—C7—C12—C11	0.2 (3)	C8—C7—P1—C13	179.12 (16)
P1-C7-C12-C11	174.87 (17)	C12—C7—P1—C6	109.10 (18)
C10—C11—C12—C7	0.9 (3)	C8—C7—P1—C6	-76.14 (17)

C18—C13—C14—C15	0.7 (3)	C18—C13—P1—C7	-75.14 (18)
P1-C13-C14-C15	179.76 (15)	C14—C13—P1—C7	105.81 (18)
C13—C14—C15—C16	1.1 (3)	C18—C13—P1—C6	-179.06 (16)
C14—C15—C16—C17	-1.2 (3)	C14—C13—P1—C6	1.89 (19)
C15—C16—C17—C18	-0.5 (3)	C5—C6—P1—C7	-2.8 (2)
C16—C17—C18—C13	2.5 (3)	N3—C6—P1—C7	171.98 (15)
C14—C13—C18—C17	-2.5 (3)	C5—C6—P1—C13	104.0 (2)
P1-C13-C18-C17	178.37 (16)	N3—C6—P1—C13	-81.21 (16)

All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Compound 4c

Crystal data

<u>C₂₄H₁₈N₃P</u>	
$M_r = 379.38$	$D_{\rm x} = 1.328 {\rm Mg m}^{-3}$
Monoclinic, <u>P2₁/c</u>	
Hall symbol: <u>-P 2ybc</u>	<u>Mo $K\alpha$</u> radiation, $\lambda = 0.71073$ Å
<i>a</i> = <u>6.0164 (2)</u> Å	Cell parameters from <u>14158</u> reflections
<i>b</i> = <u>28.2297 (13)</u> Å	$\theta = \underline{1.0} - \underline{27.5}^{\circ}$
<i>c</i> = <u>11.5981 (5)</u> Å	$\mu = 0.16 \text{ mm}^{-1}$
$\beta = 105.641 (2)^{\circ}$	T = 173 K
$V = 1896.89 (14) \text{ Å}^3$	Block, pale yellow
<i>Z</i> = <u>4</u>	$\underline{0.30} \times \underline{0.12} \times \underline{0.10} \text{ mm}$
F(000) = 792	

Data collection

KappaCCD diffractometer	<u>2730</u> reflections with $I > 2\sigma(I)$
Radiation source: <u>fine-focus sealed tube</u>	$R_{\rm int} = \underline{0.063}$
graphite	$\theta_{max} = \underline{27.5}^{\circ}, \ \theta_{min} = \underline{1.4}^{\circ}$

Detector resolution: ? pixels mm ⁻¹	<i>h</i> = <u>−7</u> → <u>7</u>
phi and ω scans	<i>k</i> = <u>−33</u> → <u>36</u>
11043 measured reflections	<i>l</i> = <u>−9</u> → <u>15</u>
4333 independent reflections	

Refinement

Refinement on $\underline{F^2}$	Secondary atom site location: <u>difference Fourier</u> <u>map</u>
Least-squares matrix: <u>full</u>	Hydrogen site location: <u>inferred from</u> <u>neighbouring sites</u>
$R[F^2 > 2\sigma(F^2)] = 0.065$	H-atom parameters constrained
$wR(F^2) = \underline{0.201}$	$\frac{w = 1/[\sigma^2(F_0^2) + (0.0875P)^2 + 0.8647P]}{\text{where } P = (F_0^2 + 2F_c^2)/3}$
S = 1.14	
4333 reflections	$\Delta \rho_{max} = \underline{0.69} \text{ e } \text{\AA}^{-3}$
253 parameters	$\Delta \rho_{min} = \underline{-0.43} \text{ e } \text{\AA}^{-3}$
<u>0</u> restraints	Extinction correction: <u>none</u>
? constraints	Extinction coefficient: ?
Primary atom site location: <u>structure-invariant</u> <u>direct methods</u>	

Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F,

and R- factors based on ALL data will be even larger.

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$
P1	0.64321 (14)	-0.05760 (3)	0.69096 (8)	0.0313 (3)
N1	0.5721 (4)	-0.17367 (9)	0.4432 (2)	0.0293 (6)
N2	0.6147 (4)	-0.13901 (9)	0.5239 (2)	0.0303 (6)
N3	0.4129 (4)	-0.11505 (9)	0.5080 (2)	0.0257 (6)
C1	0.3486 (5)	-0.17256 (11)	0.3786 (3)	0.0256 (7)
C2	0.2409 (5)	-0.13474 (11)	0.4174 (3)	0.0257 (7)
C3	0.0203 (5)	-0.11307 (11)	0.3868 (3)	0.0296 (7)
Н3	-0.1024	-0.1256	0.3246	0.036*
C4	-0.0111 (5)	-0.07393 (12)	0.4489 (3)	0.0318 (7)
H4	-0.1568	-0.0585	0.4284	0.038*
C5	0.1709 (5)	-0.05562 (11)	0.5441 (3)	0.0313 (7)
H5	0.1424	-0.0286	0.5868	0.038*
C6	0.3841 (5)	-0.07574 (11)	0.5753 (3)	0.0281 (7)
C7	0.2514 (5)	-0.20873 (10)	0.2877 (3)	0.0265 (7)
C8	0.0434 (5)	-0.23153 (12)	0.2864 (3)	0.0307 (7)
H8	-0.0407	-0.2222	0.3412	0.037*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

C9	-0.0398 (5)	-0.26773 (12)	0.2051 (3)	0.0328 (7)
H9	-0.1799	-0.2833	0.2050	0.039*
C10	0.0808 (6)	-0.28132 (12)	0.1241 (3)	0.0344 (8)
H10	0.0239	-0.3061	0.0686	0.041*
C11	0.2844 (6)	-0.25843 (12)	0.1247 (3)	0.0362 (8)
H11	0.3662	-0.2675	0.0686	0.043*
C12	0.3709 (5)	-0.22252 (11)	0.2060 (3)	0.0307 (7)
H12	0.5117	-0.2073	0.2059	0.037*
C13	0.6642 (5)	-0.10648 (11)	0.7987 (3)	0.0308 (7)
C14	0.4807 (6)	-0.13529 (12)	0.8045 (3)	0.0354 (8)
H14	0.3320	-0.1295	0.7523	0.043*
C15	0.5116 (7)	-0.17237 (12)	0.8853 (3)	0.0414 (9)
H15	0.3842	-0.1918	0.8882	0.050*
C16	0.7249 (7)	-0.18113 (14)	0.9613 (3)	0.0477 (10)
H16	0.7459	-0.2068	1.0161	0.057*
C17	0.9092 (7)	-0.15262 (15)	0.9581 (4)	0.0525 (11)
H17	1.0565	-0.1584	1.0118	0.063*
C18	0.8805 (6)	-0.11542 (14)	0.8766 (3)	0.0411 (9)
H18	1.0085	-0.0961	0.8742	0.049*

C19	0.5286 (5)	-0.00896 (11)	0.7624 (3)	0.0308 (7)
C20	0.3595 (6)	-0.01362 (13)	0.8239 (3)	0.0413 (9)
H20	0.2895	-0.0436	0.8270	0.050*
C21	0.2930 (7)	0.02466 (14)	0.8801 (3)	0.0469 (9)
H21	0.1754	0.0209	0.9201	0.056*
C22	0.3946 (7)	0.06829 (14)	0.8792 (3)	0.0469 (10)
H22	0.3496	0.0943	0.9196	0.056*
C23	0.5619 (7)	0.07396 (13)	0.8194 (3)	0.0473 (10)
H23	0.6313	0.1041	0.8175	0.057*
C24	0.6294 (6)	0.03537 (12)	0.7616 (3)	0.0384 (8)
H24	0.7458	0.0394	0.7210	0.046*

Atomic displacement parameters (Å²)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.0311 (4)	0.0290 (5)	0.0337 (5)	-0.0042 (4)	0.0086 (3)	-0.0037 (4)
N1	0.0284 (13)	0.0287 (14)	0.0304 (14)	-0.0002 (11)	0.0069 (11)	-0.0018 (12)
N2	0.0259 (13)	0.0318 (15)	0.0341 (15)	0.0020 (12)	0.0094 (11)	-0.0031 (12)
N3	0.0265 (13)	0.0242 (13)	0.0265 (14)	0.0004 (11)	0.0076 (10)	-0.0014 (11)
C1	0.0258 (15)	0.0274 (16)	0.0246 (16)	0.0024 (13)	0.0087 (12)	0.0039 (13)

C2	0.0265 (15)	0.0252 (16)	0.0256 (15)	-0.0010 (13)	0.0075 (12)	0.0012 (13)
C3	0.0273 (16)	0.0300 (17)	0.0299 (17)	-0.0026 (14)	0.0050 (13)	0.0014 (14)
C4	0.0286 (16)	0.0287 (17)	0.0386 (19)	0.0052 (14)	0.0101 (14)	0.0036 (14)
C5	0.0330 (17)	0.0248 (16)	0.0371 (19)	0.0008 (14)	0.0112 (14)	-0.0015 (14)
C6	0.0357 (17)	0.0229 (16)	0.0278 (17)	-0.0024 (14)	0.0120 (13)	-0.0018 (13)
C7	0.0276 (16)	0.0241 (16)	0.0264 (16)	0.0045 (13)	0.0051 (12)	0.0025 (12)
C8	0.0282 (16)	0.0337 (18)	0.0294 (17)	0.0026 (14)	0.0066 (13)	0.0010 (14)
C9	0.0268 (16)	0.0346 (18)	0.0335 (18)	-0.0006 (14)	0.0022 (13)	-0.0020 (15)
C10	0.0354 (18)	0.0340 (19)	0.0273 (18)	0.0033 (15)	-0.0029 (13)	-0.0053 (14)
C11	0.0385 (19)	0.040 (2)	0.0302 (18)	0.0077 (16)	0.0098 (14)	-0.0054 (15)
C12	0.0278 (16)	0.0325 (18)	0.0311 (18)	0.0030 (14)	0.0065 (13)	-0.0004 (14)
C13	0.0326 (17)	0.0281 (17)	0.0308 (18)	-0.0002 (14)	0.0068 (13)	-0.0051 (14)
C14	0.0366 (18)	0.0340 (19)	0.0331 (19)	-0.0023 (15)	0.0048 (14)	-0.0027 (15)
C15	0.058 (2)	0.0296 (19)	0.037 (2)	-0.0036 (17)	0.0125 (17)	-0.0025 (15)
C16	0.070 (3)	0.038 (2)	0.036 (2)	0.016 (2)	0.0155 (19)	0.0056 (16)
C17	0.047 (2)	0.062 (3)	0.045 (2)	0.022 (2)	0.0056 (17)	0.004 (2)
C18	0.0318 (18)	0.048 (2)	0.042 (2)	0.0025 (17)	0.0073 (15)	-0.0012 (17)
C19	0.0331 (17)	0.0283 (17)	0.0298 (17)	-0.0006 (14)	0.0066 (13)	-0.0013 (14)
C20	0.044 (2)	0.0350 (19)	0.048 (2)	-0.0066 (17)	0.0185 (17)	-0.0083 (17)

C21	0.049 (2)	0.051 (2)	0.042 (2)	0.0053 (19)	0.0144 (17)	-0.0058 (18)
C22	0.063 (2)	0.037 (2)	0.036 (2)	0.0104 (19)	0.0041 (18)	-0.0066 (16)
C23	0.065 (3)	0.0285 (19)	0.046 (2)	-0.0033 (18)	0.0094 (19)	-0.0027 (17)
C24	0.046 (2)	0.0298 (19)	0.039 (2)	-0.0066 (16)	0.0096 (16)	-0.0003 (15)

Geometric parameters (Å, °)

P1—C19	1.832 (3)	C11—C12	1.387 (5)
Р1—С6	1.834 (3)	C11—H11	0.9500
Р1—С13	1.843 (3)	C12—H12	0.9500
N1—N2	1.330 (4)	C13—C14	1.387 (5)
N1—C1	1.352 (4)	C13—C18	1.393 (5)
N2—N3	1.358 (3)	C14—C15	1.384 (5)
N3—C2	1.378 (4)	C14—H14	0.9500
N3—C6	1.394 (4)	C15—C16	1.369 (5)
C1—C2	1.385 (4)	C15—H15	0.9500
C1—C7	1.471 (4)	C16—C17	1.378 (6)
C2—C3	1.417 (4)	C16—H16	0.9500
C3—C4	1.359 (4)	C17—C18	1.392 (5)
С3—Н3	0.9500	C17—H17	0.9500

C4—C5	1.426 (5)	C18—H18	0.9500
C4—H4	0.9500	C19—C24	1.392 (4)
C5—C6	1.360 (4)	C19—C20	1.398 (5)
С5—Н5	0.9500	C20—C21	1.376 (5)
C7—C12	1.391 (4)	C20—H20	0.9500
С7—С8	1.404 (4)	C21—C22	1.377 (5)
C8—C9	1.389 (5)	C21—H21	0.9500
С8—Н8	0.9500	C22—C23	1.377 (6)
C9—C10	1.387 (5)	C22—H22	0.9500
С9—Н9	0.9500	C23—C24	1.396 (5)
C10—C11	1.384 (5)	C23—H23	0.9500
C10—H10	0.9500	C24—H24	0.9500
C19—P1—C6	101.00 (14)	C12—C11—H11	119.5
C19—P1—C13	102.68 (15)	C11—C12—C7	120.0 (3)
C6—P1—C13	100.13 (14)	C11—C12—H12	120.0
N2—N1—C1	110.3 (2)	C7—C12—H12	120.0
N1—N2—N3	106.0 (2)	C14—C13—C18	118.6 (3)
N2—N3—C2	111.3 (2)	C14—C13—P1	124.2 (2)
N2—N3—C6	124.2 (2)	C18—C13—P1	117.2 (3)

C2—N3—C6	124.6 (3)	C15—C14—C13	120.9 (3)
N1—C1—C2	108.7 (3)	C15—C14—H14	119.6
N1—C1—C7	121.7 (3)	C13—C14—H14	119.6
C2—C1—C7	129.5 (3)	C16—C15—C14	120.2 (4)
N3—C2—C1	103.7 (2)	C16—C15—H15	119.9
N3—C2—C3	118.5 (3)	C14—C15—H15	119.9
C1—C2—C3	137.8 (3)	C15—C16—C17	119.9 (4)
C4—C3—C2	118.2 (3)	C15—C16—H16	120.0
С4—С3—Н3	120.9	C17—C16—H16	120.0
С2—С3—Н3	120.9	C16—C17—C18	120.4 (3)
C3—C4—C5	121.2 (3)	C16—C17—H17	119.8
C3—C4—H4	119.4	C18—C17—H17	119.8
C5—C4—H4	119.4	C17—C18—C13	120.0 (3)
C6—C5—C4	121.8 (3)	C17—C18—H18	120.0
С6—С5—Н5	119.1	C13—C18—H18	120.0
C4—C5—H5	119.1	C24—C19—C20	117.8 (3)
C5—C6—N3	115.7 (3)	C24—C19—P1	116.9 (3)
C5—C6—P1	129.3 (2)	C20—C19—P1	125.1 (3)
N3—C6—P1	115.0 (2)	C21—C20—C19	120.8 (3)

С12—С7—С8	119.2 (3)	C21—C20—H20	119.6
C12—C7—C1	120.3 (3)	C19—C20—H20	119.6
C8—C7—C1	120.5 (3)	C20—C21—C22	120.8 (4)
C9—C8—C7	120.1 (3)	C20—C21—H21	119.6
С9—С8—Н8	120.0	C22—C21—H21	119.6
С7—С8—Н8	120.0	C21—C22—C23	119.7 (4)
С10—С9—С8	120.3 (3)	C21—C22—H22	120.2
С10—С9—Н9	119.8	C23—C22—H22	120.2
С8—С9—Н9	119.8	C22—C23—C24	119.9 (3)
C11—C10—C9	119.4 (3)	C22—C23—H23	120.1
C11—C10—H10	120.3	C24—C23—H23	120.1
C9—C10—H10	120.3	C19—C24—C23	121.0 (3)
C10-C11-C12	120.9 (3)	C19—C24—H24	119.5
C10-C11-H11	119.5	C23—C24—H24	119.5
C1—N1—N2—N3	-1.0 (3)	C1—C7—C8—C9	-175.9 (3)
N1—N2—N3—C2	0.4 (3)	C7—C8—C9—C10	-0.6 (5)
N1—N2—N3—C6	-179.9 (3)	C8—C9—C10—C11	-0.1 (5)
N2—N1—C1—C2	1.2 (3)	C9—C10—C11—C12	0.7 (5)
N2—N1—C1—C7	-176.4 (3)	C10—C11—C12—C7	-0.6 (5)

N2—N3—C2—C1	0.3 (3)	C8—C7—C12—C11	-0.1 (5)
C6—N3—C2—C1	-179.4 (3)	C1—C7—C12—C11	176.5 (3)
N2—N3—C2—C3	-178.2 (3)	C19—P1—C13—C14	82.4 (3)
C6—N3—C2—C3	2.1 (4)	C6—P1—C13—C14	-21.4 (3)
N1-C1-C2-N3	-0.9 (3)	C19—P1—C13—C18	-99.4 (3)
C7—C1—C2—N3	176.4 (3)	C6—P1—C13—C18	156.8 (3)
N1—C1—C2—C3	177.1 (4)	C18—C13—C14—C15	-0.4 (5)
C7—C1—C2—C3	-5.5 (6)	P1-C13-C14-C15	177.8 (3)
N3—C2—C3—C4	-0.2 (4)	C13—C14—C15—C16	0.1 (5)
C1—C2—C3—C4	-178.1 (3)	C14—C15—C16—C17	0.7 (6)
C2—C3—C4—C5	-1.4 (5)	C15—C16—C17—C18	-1.1 (6)
C3—C4—C5—C6	1.4 (5)	C16—C17—C18—C13	0.8 (6)
C4—C5—C6—N3	0.4 (5)	C14—C13—C18—C17	0.0 (5)
C4—C5—C6—P1	178.4 (2)	P1	-178.4 (3)
N2—N3—C6—C5	178.2 (3)	C6—P1—C19—C24	-120.6 (3)
C2—N3—C6—C5	-2.1 (4)	C13—P1—C19—C24	136.3 (3)
N2—N3—C6—P1	-0.1 (4)	C6—P1—C19—C20	63.7 (3)
C2—N3—C6—P1	179.6 (2)	C13—P1—C19—C20	-39.4 (3)
C19—P1—C6—C5	5.5 (3)	C24—C19—C20—C21	0.9 (5)
C13—P1—C6—C5	110.7 (3)	P1-C19-C20-C21	176.6 (3)
--------------	------------	-----------------	------------
C19—P1—C6—N3	-176.5 (2)	C19—C20—C21—C22	-1.3 (6)
C13—P1—C6—N3	-71.3 (2)	C20—C21—C22—C23	1.2 (6)
N1—C1—C7—C12	-45.7 (4)	C21—C22—C23—C24	-0.8 (6)
C2—C1—C7—C12	137.2 (3)	C20—C19—C24—C23	-0.6 (5)
N1—C1—C7—C8	130.9 (3)	P1-C19-C24-C23	-176.6 (3)
C2—C1—C7—C8	-46.2 (5)	C22—C23—C24—C19	0.5 (6)
C12—C7—C8—C9	0.7 (5)		

All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Compound 5a

Crystal data

$\underline{C_{19}H_{28}N_3P}$	$F(000) = \underline{712}$
$M_r = 329.41$	
<u>Triclinic</u> , $\underline{P}\overline{1}$	$D_{\rm x} = 1.189 {\rm Mg m}^{-3}$
Hall symbol: <u>-P 1</u>	
a = 11.1873 (7) Å	<u>Mo $K\alpha$</u> radiation, $\lambda = 0.71073$ Å
b = 11.4055 (7) Å	Cell parameters from <u>16205</u> reflections
c = 16.9232 (8) Å	$\theta = \underline{1.0} - \underline{27.5}^{\circ}$
$\alpha = 100.619 (3)^{\circ}$	$\mu = 0.15 \text{ mm}^{-1}$
$\beta = 90.506 (3)^{\circ}$	T = 173 K
$\gamma = 119.238 (2)^{\circ}$	Block, colorless
$V = 1839.63 (18) \text{ Å}^3$	$\underline{0.22} \times \underline{0.20} \times \underline{0.12} \text{ mm}$
<i>Z</i> = <u>4</u>	

Data collection

KappaCCD diffractometer	<u>4333</u> reflections with $\underline{I > 2\sigma(I)}$
Radiation source: fine-focus sealed tube	$R_{\rm int} = \underline{0.084}$

graphite	$\theta_{\text{max}} = \underline{27.4}^{\circ}, \ \theta_{\text{min}} = \underline{1.2}^{\circ}$
Detector resolution: ? pixels mm ⁻¹	$h = \underline{-14} \longrightarrow \underline{10}$
<u>phi and ω scans</u>	$k = \underline{-14} \longrightarrow \underline{14}$
<u>19790</u> measured reflections	<i>l</i> = <u>−21</u> −∎ <u>21</u>
8370 independent reflections	

Refinement

Refinement on $\underline{F^2}$	Secondary atom site location: <u>difference Fourier</u> <u>map</u>
Least-squares matrix: <u>full</u>	Hydrogen site location: <u>inferred from</u> <u>neighbouring sites</u>
$R[F^2 > 2\sigma(F^2)] = \underline{0.071}$	H-atom parameters constrained
$wR(F^2) = \underline{0.221}$	$\frac{w = 1/[\sigma^2(F_0^2) + (0.1076P)^2]}{\text{where } P = (F_0^2 + 2F_c^2)/3}$
S = 1.05	
<u>8370</u> reflections	$\Delta \rho_{max} = \underline{0.38} \ e \ \text{\AA}^{-3}$
<u>417</u> parameters	$\Delta \rho_{min} = \underline{-0.53} \ e \ \text{\AA}^{-3}$
<u>0</u> restraints	Extinction correction: none
? constraints	Extinction coefficient: ?
Primary atom site location: <u>structure-invariant</u> <u>direct methods</u>	

Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression

of $F^2 > 2$ sigma(F^2) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.5325 (3)	0.2621 (3)	0.19165 (18)	0.0353 (8)
C2	0.6244 (3)	0.2740 (3)	0.13523 (19)	0.0355 (8)
C3	0.6516 (4)	0.1852 (4)	0.0795 (2)	0.0519 (10)
Н3	0.6026	0.0889	0.0770	0.062*
C4	0.7485 (4)	0.2383 (4)	0.0297 (3)	0.0666 (12)
H4	0.7664	0.1796	-0.0097	0.080*
C5	0.8240 (4)	0.3843 (4)	0.0368 (2)	0.0578 (11)
H5	0.8920	0.4198	0.0013	0.069*
C6	0.8045 (3)	0.4746 (3)	0.0910 (2)	0.0408 (8)
C7	0.4229 (4)	0.1332 (3)	0.2129 (2)	0.0480 (9)
H7A	0.3687	0.1559	0.2516	0.072*
H7B	0.4658	0.0891	0.2371	0.072*
H7C	0.3622	0.0703	0.1638	0.072*
C8	0.8036 (3)	0.7298 (3)	0.09065 (18)	0.0375 (8)
H8	0.7499	0.7239	0.1381	0.045*
C9	0.7045 (4)	0.6470 (3)	0.0132 (2)	0.0520 (10)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

H9A	0.7584	0.6416	-0.0320	0.062*
H9B	0.6423	0.5521	0.0199	0.062*
C10	0.6185 (4)	0.7079 (4)	-0.0085 (2)	0.0600 (11)
H10A	0.5534	0.6994	0.0322	0.072*
H10B	0.5637	0.6549	-0.0617	0.072*
C11	0.7061 (4)	0.8584 (3)	-0.0123 (2)	0.0479 (9)
H11A	0.7620	0.8663	-0.0582	0.057*
H11B	0.6454	0.8961	-0.0216	0.057*
C12	0.8005 (4)	0.9407 (3)	0.0656 (2)	0.0559 (11)
H12A	0.7446	0.9401	0.1107	0.067*
H12B	0.8600	1.0373	0.0610	0.067*
C13	0.8896 (4)	0.8808 (4)	0.0836 (2)	0.0583 (11)
H13A	0.9500	0.9360	0.1349	0.070*
H13B	0.9494	0.8869	0.0399	0.070*
C14	0.9780 (3)	0.7107 (3)	0.2150 (2)	0.0422 (9)
H14	0.8949	0.6710	0.2446	0.051*
C15	1.0667 (6)	0.6483 (5)	0.2302 (3)	0.0936 (18)
H15A	1.1406	0.6757	0.1942	0.112*
H15B	1.0091	0.5468	0.2158	0.112*

C16	1.1323 (6)	0.6917 (4)	0.3174 (3)	0.0915 (18)
H16A	1.0591	0.6532	0.3529	0.110*
H16B	1.1940	0.6533	0.3219	0.110*
C17	1.2137 (4)	0.8455 (4)	0.3454 (2)	0.0539 (10)
H17A	1.2488	0.8698	0.4034	0.065*
H17B	1.2938	0.8835	0.3143	0.065*
C18	1.1249 (4)	0.9068 (4)	0.3337 (2)	0.0588 (11)
H18A	1.1817	1.0084	0.3491	0.071*
H18B	1.0516	0.8772	0.3701	0.071*
C19	1.0585 (4)	0.8647 (4)	0.2465 (2)	0.0593 (11)
H19A	0.9959	0.9023	0.2432	0.071*
H19B	1.1316	0.9060	0.2113	0.071*
C20	0.5176 (4)	-0.2354 (3)	0.2335 (2)	0.0471 (9)
C21	0.6151 (3)	-0.2013 (3)	0.2971 (2)	0.0415 (8)
C22	0.6613 (4)	-0.2707 (4)	0.3385 (2)	0.0498 (10)
H22	0.6215	-0.3678	0.3233	0.060*
C23	0.7632 (4)	-0.1966 (4)	0.4001 (2)	0.0522 (10)
H23	0.7974	-0.2415	0.4276	0.063*
C24	0.8197 (4)	-0.0526 (4)	0.4243 (2)	0.0451 (9)

H24	0.8886	-0.0041	0.4695	0.054*
C25	0.7799 (3)	0.0204 (3)	0.38573 (19)	0.0381 (8)
C26	0.4180 (4)	-0.3744 (4)	0.1832 (2)	0.0614 (11)
H26A	0.3447	-0.4252	0.2152	0.092*
H26B	0.4665	-0.4251	0.1663	0.092*
H26C	0.3776	-0.3638	0.1353	0.092*
C27	0.7250 (3)	0.2497 (3)	0.40928 (19)	0.0370 (8)
H27	0.6939	0.2272	0.3501	0.044*
C28	0.6028 (3)	0.1649 (3)	0.4533 (2)	0.0434 (9)
H28A	0.5619	0.0662	0.4274	0.052*
H28B	0.6368	0.1774	0.5102	0.052*
C29	0.4914 (4)	0.2049 (4)	0.4524 (2)	0.0493 (9)
H29A	0.4487	0.1811	0.3961	0.059*
H29B	0.4187	0.1515	0.4848	0.059*
C30	0.5493 (4)	0.3578 (4)	0.4866 (2)	0.0568 (10)
H30A	0.4758	0.3813	0.4813	0.068*
H30B	0.5821	0.3800	0.5448	0.068*
C31	0.6677 (4)	0.4419 (4)	0.4416 (2)	0.0539 (10)
H31A	0.7072	0.5408	0.4664	0.065*

H31B	0.6323	0.4266	0.3847	0.065*
C32	0.7814 (4)	0.4041 (3)	0.4435 (2)	0.0459 (9)
H32A	0.8236	0.4286	0.5000	0.055*
H32B	0.8541	0.4581	0.4113	0.055*
C33	0.9860 (3)	0.2775 (3)	0.35008 (19)	0.0395 (8)
H33	1.0233	0.3792	0.3631	0.047*
C34	1.1082 (4)	0.2563 (4)	0.3662 (2)	0.0543 (10)
H34A	1.1453	0.2949	0.4240	0.065*
H34B	1.0754	0.1564	0.3553	0.065*
C35	1.2233 (4)	0.3239 (4)	0.3145 (2)	0.0578 (10)
H35A	1.2629	0.4249	0.3290	0.069*
H35B	1.2975	0.3034	0.3254	0.069*
C36	1.1694 (4)	0.2718 (4)	0.2253 (2)	0.0511 (10)
H36A	1.1377	0.1722	0.2095	0.061*
H36B	1.2445	0.3203	0.1928	0.061*
C37	1.0508 (4)	0.2959 (4)	0.2081 (2)	0.0530 (10)
H37A	1.0145	0.2581	0.1501	0.064*
H37B	1.0850	0.3962	0.2193	0.064*
C38	0.9342 (3)	0.2283 (4)	0.25961 (19)	0.0465 (9)

H38A	0.8933	0.1271	0.2442	0.056*
H38B	0.8612	0.2504	0.2487	0.056*
N1	0.5533 (3)	0.3883 (3)	0.22524 (15)	0.0392 (7)
N2	0.6560 (3)	0.4832 (3)	0.19351 (15)	0.0361 (6)
N3	0.7000 (3)	0.4150 (2)	0.13905 (15)	0.0330 (6)
N4	0.5244 (3)	-0.1185 (3)	0.22048 (17)	0.0489 (8)
N5	0.6203 (3)	-0.0100 (3)	0.27317 (17)	0.0447 (7)
N6	0.6763 (3)	-0.0591 (2)	0.32034 (16)	0.0368 (7)
P1	0.92062 (9)	0.66163 (9)	0.10451 (5)	0.0399 (3)
P2	0.86205 (9)	0.20712 (9)	0.42435 (5)	0.0389 (3)

Atomic displacement parameters (Å²)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0360 (19)	0.0323 (18)	0.0372 (18)	0.0174 (15)	-0.0013 (14)	0.0059 (14)
C2	0.0351 (18)	0.0242 (16)	0.0432 (18)	0.0132 (14)	-0.0008 (15)	0.0034 (14)
C3	0.046 (2)	0.0279 (18)	0.076 (3)	0.0168 (17)	0.0106 (19)	0.0015 (18)
C4	0.064 (3)	0.037 (2)	0.086 (3)	0.023 (2)	0.025 (2)	-0.009 (2)
C5	0.046 (2)	0.038 (2)	0.074 (3)	0.0131 (18)	0.0233 (19)	-0.0019 (19)
C6	0.0362 (19)	0.0321 (18)	0.047 (2)	0.0140 (15)	0.0098 (15)	0.0016 (15)

C7	0.047 (2)	0.040 (2)	0.056 (2)	0.0174 (17)	0.0070 (17)	0.0232 (17)
C8	0.0386 (19)	0.0320 (17)	0.0347 (17)	0.0122 (15)	0.0044 (14)	0.0070 (14)
C9	0.054 (2)	0.0261 (18)	0.054 (2)	0.0060 (17)	-0.0141 (18)	0.0019 (16)
C10	0.056 (2)	0.041 (2)	0.067 (3)	0.0125 (19)	-0.0176 (19)	0.0104 (19)
C11	0.058 (2)	0.0352 (19)	0.044 (2)	0.0199 (18)	-0.0051 (17)	0.0062 (16)
C12	0.072 (3)	0.0323 (19)	0.052 (2)	0.0216 (19)	-0.0142 (19)	-0.0015 (17)
C13	0.060 (3)	0.034 (2)	0.067 (3)	0.0180 (19)	-0.017 (2)	-0.0007 (18)
C14	0.0358 (19)	0.0270 (17)	0.054 (2)	0.0091 (15)	-0.0005 (15)	0.0064 (15)
C15	0.138 (5)	0.062 (3)	0.092 (3)	0.070 (3)	-0.041 (3)	-0.015 (3)
C16	0.134 (4)	0.054 (3)	0.090 (3)	0.054 (3)	-0.042 (3)	0.004 (2)
C17	0.049 (2)	0.056 (2)	0.054 (2)	0.0256 (19)	-0.0079 (17)	0.0099 (19)
C18	0.064 (3)	0.041 (2)	0.066 (3)	0.029 (2)	-0.019 (2)	-0.0056 (18)
C19	0.068 (3)	0.036 (2)	0.064 (2)	0.0219 (19)	-0.023 (2)	0.0001 (18)
C20	0.041 (2)	0.0295 (18)	0.061 (2)	0.0135 (16)	0.0150 (18)	-0.0011 (16)
C21	0.043 (2)	0.0243 (17)	0.055 (2)	0.0162 (15)	0.0179 (17)	0.0050 (15)
C22	0.066 (3)	0.0311 (19)	0.062 (2)	0.0275 (19)	0.032 (2)	0.0186 (18)
C23	0.071 (3)	0.046 (2)	0.060 (2)	0.040 (2)	0.022 (2)	0.0240 (19)
C24	0.051 (2)	0.045 (2)	0.049 (2)	0.0295 (18)	0.0106 (16)	0.0141 (17)
C25	0.041 (2)	0.0328 (18)	0.0453 (19)	0.0216 (16)	0.0081 (15)	0.0105 (15)

C26	0.055 (2)	0.032 (2)	0.074 (3)	0.0102 (18)	0.007 (2)	-0.0057 (18)
C27	0.047 (2)	0.0247 (16)	0.0387 (18)	0.0184 (15)	0.0013 (15)	0.0039 (14)
C28	0.048 (2)	0.0328 (18)	0.050 (2)	0.0205 (16)	0.0084 (16)	0.0095 (16)
C29	0.051 (2)	0.045 (2)	0.057 (2)	0.0297 (18)	0.0080 (17)	0.0066 (18)
C30	0.066 (3)	0.049 (2)	0.065 (2)	0.039 (2)	0.010 (2)	0.0045 (19)
C31	0.074 (3)	0.0328 (19)	0.060 (2)	0.0331 (19)	-0.001 (2)	0.0043 (17)
C32	0.056 (2)	0.0267 (17)	0.048 (2)	0.0173 (17)	0.0042 (17)	0.0038 (15)
C33	0.043 (2)	0.0273 (17)	0.0452 (19)	0.0166 (15)	0.0026 (15)	0.0029 (14)
C34	0.046 (2)	0.064 (3)	0.054 (2)	0.029 (2)	-0.0004 (17)	0.0100 (19)
C35	0.041 (2)	0.059 (3)	0.067 (3)	0.023 (2)	0.0051 (18)	0.006 (2)
C36	0.050 (2)	0.034 (2)	0.060 (2)	0.0157 (17)	0.0138 (18)	0.0041 (17)
C37	0.059 (2)	0.040 (2)	0.048 (2)	0.0145 (18)	0.0069 (18)	0.0107 (17)
C38	0.042 (2)	0.045 (2)	0.048 (2)	0.0187 (17)	0.0014 (16)	0.0103 (17)
N1	0.0394 (16)	0.0344 (15)	0.0422 (15)	0.0173 (13)	0.0068 (12)	0.0080 (13)
N2	0.0377 (16)	0.0320 (15)	0.0372 (15)	0.0181 (13)	0.0071 (12)	0.0018 (12)
N3	0.0328 (15)	0.0256 (13)	0.0379 (14)	0.0142 (12)	0.0018 (11)	0.0015 (11)
N4	0.0418 (18)	0.0345 (16)	0.0601 (19)	0.0167 (14)	-0.0038 (14)	-0.0060 (14)
N5	0.0438 (17)	0.0320 (15)	0.0536 (17)	0.0188 (14)	-0.0036 (14)	-0.0002 (13)
N6	0.0386 (16)	0.0244 (14)	0.0482 (16)	0.0167 (12)	0.0059 (13)	0.0073 (12)

P1	0.0356 (5)	0.0286 (5)	0.0453 (5)	0.0102 (4)	0.0070 (4)	0.0020 (4)
P2	0.0421 (5)	0.0303 (5)	0.0424 (5)	0.0180 (4)	0.0014 (4)	0.0038 (4)

Geometric parameters (Å, °)

C1—N1	1.348 (4)	C20—C26	1.496 (5)
C1—C2	1.384 (4)	C21—N6	1.388 (4)
C1—C7	1.495 (4)	C21—C22	1.408 (5)
C2—N3	1.392 (4)	C22—C23	1.346 (5)
C2—C3	1.401 (5)	C22—H22	0.9500
C3—C4	1.347 (5)	C23—C24	1.414 (5)
С3—Н3	0.9500	C23—H23	0.9500
C4—C5	1.432 (5)	C24—C25	1.368 (4)
C4—H4	0.9500	C24—H24	0.9500
C5—C6	1.351 (5)	C25—N6	1.404 (4)
С5—Н5	0.9500	C25—P2	1.837 (3)
C6—N3	1.391 (4)	C26—H26A	0.9800
C6—P1	1.843 (3)	C26—H26B	0.9800
С7—Н7А	0.9800	C26—H26C	0.9800
С7—Н7В	0.9800	C27—C28	1.534 (4)

С7—Н7С	0.9800	C27—C32	1.539 (4)
C8—C9	1.527 (4)	C27—P2	1.849 (3)
C8—C13	1.538 (4)	С27—Н27	1.0000
C8—P1	1.852 (4)	C28—C29	1.523 (5)
С8—Н8	1.0000	C28—H28A	0.9900
C9—C10	1.512 (5)	C28—H28B	0.9900
С9—Н9А	0.9900	C29—C30	1.521 (5)
С9—Н9В	0.9900	С29—Н29А	0.9900
C10—C11	1.520 (4)	С29—Н29В	0.9900
C10—H10A	0.9900	C30—C31	1.516 (5)
C10—H10B	0.9900	С30—Н30А	0.9900
C11—C12	1.511 (5)	C30—H30B	0.9900
C11—H11A	0.9900	C31—C32	1.531 (5)
C11—H11B	0.9900	C31—H31A	0.9900
C12—C13	1.514 (5)	C31—H31B	0.9900
C12—H12A	0.9900	C32—H32A	0.9900
C12—H12B	0.9900	C32—H32B	0.9900
C13—H13A	0.9900	C33—C34	1.530 (5)
C13—H13B	0.9900	C33—C38	1.531 (4)

C14—C19	1.510 (4)	C33—P2	1.861 (3)
C14—C15	1.520 (6)	С33—Н33	1.0000
C14—P1	1.861 (3)	C34—C35	1.523 (5)
C14—H14	1.0000	C34—H34A	0.9900
C15—C16	1.522 (6)	C34—H34B	0.9900
C15—H15A	0.9900	C35—C36	1.516 (5)
C15—H15B	0.9900	C35—H35A	0.9900
C16—C17	1.502 (5)	C35—H35B	0.9900
C16—H16A	0.9900	C36—C37	1.517 (5)
C16—H16B	0.9900	C36—H36A	0.9900
C17—C18	1.497 (5)	C36—H36B	0.9900
С17—Н17А	0.9900	C37—C38	1.530 (5)
С17—Н17В	0.9900	С37—Н37А	0.9900
C18—C19	1.527 (5)	С37—Н37В	0.9900
C18—H18A	0.9900	C38—H38A	0.9900
C18—H18B	0.9900	C38—H38B	0.9900
C19—H19A	0.9900	N1—N2	1.338 (3)
C19—H19B	0.9900	N2—N3	1.347 (4)
C20—N4	1.357 (4)	N4—N5	1.325 (4)

C20—C21	1.383 (5)	N5—N6	1.357 (4)
N1—C1—C2	109.1 (3)	C21—C22—H22	120.7
N1—C1—C7	123.2 (3)	C22—C23—C24	120.6 (3)
C2—C1—C7	127.7 (3)	C22—C23—H23	119.7
C1—C2—N3	103.6 (3)	C24—C23—H23	119.7
C1—C2—C3	137.1 (3)	C25—C24—C23	123.2 (3)
N3—C2—C3	119.3 (3)	C25—C24—H24	118.4
C4—C3—C2	119.0 (3)	C23—C24—H24	118.4
С4—С3—Н3	120.5	C24—C25—N6	114.8 (3)
С2—С3—Н3	120.5	C24—C25—P2	118.3 (3)
C3—C4—C5	119.2 (4)	N6—C25—P2	126.9 (2)
C3—C4—H4	120.4	C20—C26—H26A	109.5
C5—C4—H4	120.4	C20—C26—H26B	109.5
C6—C5—C4	124.1 (3)	H26A—C26—H26B	109.5
С6—С5—Н5	118.0	C20—C26—H26C	109.5
C4—C5—H5	118.0	H26A—C26—H26C	109.5
C5—C6—N3	114.8 (3)	H26B—C26—H26C	109.5
C5—C6—P1	121.0 (3)	C28—C27—C32	109.7 (3)
N3—C6—P1	123.9 (2)	C28—C27—P2	109.2 (2)

С1—С7—Н7А	109.5	C32—C27—P2	109.5 (2)
С1—С7—Н7В	109.5	C28—C27—H27	109.5
H7A—C7—H7B	109.5	С32—С27—Н27	109.5
С1—С7—Н7С	109.5	Р2—С27—Н27	109.5
Н7А—С7—Н7С	109.5	C29—C28—C27	112.9 (3)
Н7В—С7—Н7С	109.5	C29—C28—H28A	109.0
C9—C8—C13	108.7 (3)	C27—C28—H28A	109.0
C9—C8—P1	110.1 (2)	C29—C28—H28B	109.0
C13—C8—P1	109.2 (2)	C27—C28—H28B	109.0
С9—С8—Н8	109.6	H28A—C28—H28B	107.8
С13—С8—Н8	109.6	C30—C29—C28	111.8 (3)
Р1—С8—Н8	109.6	С30—С29—Н29А	109.3
С10—С9—С8	113.3 (3)	С28—С29—Н29А	109.3
С10—С9—Н9А	108.9	С30—С29—Н29В	109.3
С8—С9—Н9А	108.9	C28—C29—H29B	109.3
С10—С9—Н9В	108.9	H29A—C29—H29B	107.9
С8—С9—Н9В	108.9	C31—C30—C29	110.3 (3)
Н9А—С9—Н9В	107.7	C31—C30—H30A	109.6
C9—C10—C11	112.4 (3)	С29—С30—Н30А	109.6

C9—C10—H10A	109.1	C31—C30—H30B	109.6
C11—C10—H10A	109.1	С29—С30—Н30В	109.6
C9—C10—H10B	109.1	H30A—C30—H30B	108.1
C11—C10—H10B	109.1	C30—C31—C32	112.1 (3)
H10A—C10—H10B	107.9	C30—C31—H31A	109.2
C12—C11—C10	110.6 (3)	C32—C31—H31A	109.2
C12—C11—H11A	109.5	C30—C31—H31B	109.2
C10-C11-H11A	109.5	C32—C31—H31B	109.2
C12—C11—H11B	109.5	H31A—C31—H31B	107.9
C10-C11-H11B	109.5	C31—C32—C27	111.7 (3)
H11A—C11—H11B	108.1	C31—C32—H32A	109.3
C11—C12—C13	110.7 (3)	C27—C32—H32A	109.3
C11—C12—H12A	109.5	C31—C32—H32B	109.3
C13—C12—H12A	109.5	C27—C32—H32B	109.3
C11—C12—H12B	109.5	H32A—C32—H32B	107.9
C13—C12—H12B	109.5	C34—C33—C38	109.7 (3)
H12A—C12—H12B	108.1	C34—C33—P2	108.5 (2)
C12—C13—C8	112.3 (3)	C38—C33—P2	119.1 (2)
С12—С13—Н13А	109.1	C34—C33—H33	106.3

C8—C13—H13A	109.1	C38—C33—H33	106.3
C12—C13—H13B	109.1	Р2—С33—Н33	106.3
C8—C13—H13B	109.1	C35—C34—C33	112.8 (3)
H13A—C13—H13B	107.9	C35—C34—H34A	109.0
C19—C14—C15	109.8 (3)	C33—C34—H34A	109.0
C19—C14—P1	112.7 (2)	C35—C34—H34B	109.0
C15—C14—P1	108.0 (3)	C33—C34—H34B	109.0
C19—C14—H14	108.8	H34A—C34—H34B	107.8
C15—C14—H14	108.8	C36—C35—C34	110.8 (3)
P1—C14—H14	108.8	С36—С35—Н35А	109.5
C14—C15—C16	113.6 (4)	C34—C35—H35A	109.5
C14—C15—H15A	108.8	C36—C35—H35B	109.5
C16—C15—H15A	108.8	C34—C35—H35B	109.5
C14—C15—H15B	108.8	H35A—C35—H35B	108.1
C16—C15—H15B	108.8	C35—C36—C37	110.3 (3)
H15A—C15—H15B	107.7	C35—C36—H36A	109.6
C17—C16—C15	111.9 (3)	C37—C36—H36A	109.6
C17—C16—H16A	109.2	C35—C36—H36B	109.6
C15—C16—H16A	109.2	C37—C36—H36B	109.6

C17—C16—H16B	109.2	H36A—C36—H36B	108.1
C15—C16—H16B	109.2	C36—C37—C38	111.8 (3)
H16A—C16—H16B	107.9	С36—С37—Н37А	109.3
C18—C17—C16	110.2 (3)	С38—С37—Н37А	109.3
С18—С17—Н17А	109.6	С36—С37—Н37В	109.3
С16—С17—Н17А	109.6	С38—С37—Н37В	109.3
C18—C17—H17B	109.6	H37A—C37—H37B	107.9
C16—C17—H17B	109.6	C37—C38—C33	111.6 (3)
H17A—C17—H17B	108.1	C37—C38—H38A	109.3
C17—C18—C19	112.4 (3)	C33—C38—H38A	109.3
C17—C18—H18A	109.1	C37—C38—H38B	109.3
C19—C18—H18A	109.1	C33—C38—H38B	109.3
C17—C18—H18B	109.1	H38A—C38—H38B	108.0
C19—C18—H18B	109.1	N2—N1—C1	109.9 (3)
H18A—C18—H18B	107.8	N1—N2—N3	106.6 (2)
C14—C19—C18	113.3 (3)	N2—N3—C6	125.6 (3)
С14—С19—Н19А	108.9	N2—N3—C2	110.9 (2)
С18—С19—Н19А	108.9	C6—N3—C2	123.5 (3)
C14—C19—H19B	108.9	N5—N4—C20	110.3 (3)

C18—C19—H19B	108.9	N4—N5—N6	106.3 (3)
H19A—C19—H19B	107.7	N5—N6—C21	111.1 (3)
N4—C20—C21	108.9 (3)	N5—N6—C25	125.6 (3)
N4—C20—C26	122.3 (3)	C21—N6—C25	123.3 (3)
C21—C20—C26	128.9 (3)	C6—P1—C8	104.22 (15)
C20—C21—N6	103.5 (3)	C6—P1—C14	100.94 (14)
C20—C21—C22	137.2 (3)	C8—P1—C14	106.00 (16)
N6—C21—C22	119.3 (3)	C25—P2—C27	105.17 (14)
C23—C22—C21	118.6 (3)	C25—P2—C33	102.82 (15)
C23—C22—H22	120.7	C27—P2—C33	107.04 (14)
N1-C1-C2-N3	0.5 (3)	P2-C33-C38-C37	-179.3 (3)
C7—C1—C2—N3	178.7 (3)	C2-C1-N1-N2	-0.4 (3)
N1—C1—C2—C3	-177.0 (4)	C7—C1—N1—N2	-178.7 (3)
C7—C1—C2—C3	1.2 (6)	C1—N1—N2—N3	0.1 (3)
C1—C2—C3—C4	175.7 (4)	N1—N2—N3—C6	178.8 (3)
N3-C2-C3-C4	-1.5 (5)	N1—N2—N3—C2	0.2 (3)
C2—C3—C4—C5	2.1 (6)	C5—C6—N3—N2	-175.6 (3)
C3—C4—C5—C6	-0.2 (7)	P1—C6—N3—N2	10.1 (4)
C4—C5—C6—N3	-2.1 (6)	C5—C6—N3—C2	2.8 (5)

C4—C5—C6—P1	172.3 (3)	P1—C6—N3—C2	-171.6 (2)
C13—C8—C9—C10	-52.6 (4)	C1—C2—N3—N2	-0.5 (3)
P1—C8—C9—C10	-172.2 (2)	C3—C2—N3—N2	177.6 (3)
C8—C9—C10—C11	53.3 (4)	C1—C2—N3—C6	-179.1 (3)
C9—C10—C11—C12	-54.0 (5)	C3—C2—N3—C6	-1.0 (5)
C10-C11-C12-C13	56.3 (4)	C21—C20—N4—N5	-0.8 (4)
C11—C12—C13—C8	-58.6 (4)	C26—C20—N4—N5	179.7 (3)
C9—C8—C13—C12	55.4 (4)	C20—N4—N5—N6	0.4 (4)
P1-C8-C13-C12	175.5 (3)	N4—N5—N6—C21	0.1 (4)
C19—C14—C15—C16	51.3 (5)	N4—N5—N6—C25	-178.3 (3)
P1-C14-C15-C16	174.5 (4)	C20—C21—N6—N5	-0.5 (4)
C14—C15—C16—C17	-54.6 (6)	C22—C21—N6—N5	179.1 (3)
C15—C16—C17—C18	55.0 (6)	C20—C21—N6—C25	177.9 (3)
C16—C17—C18—C19	-55.1 (5)	C22-C21-N6-C25	-2.5 (5)
C15—C14—C19—C18	-50.9 (5)	C24—C25—N6—N5	179.9 (3)
P1-C14-C19-C18	-171.2 (3)	P2-C25-N6-N5	1.2 (5)
C17—C18—C19—C14	54.5 (5)	C24—C25—N6—C21	1.7 (4)
N4—C20—C21—N6	0.8 (4)	P2-C25-N6-C21	-177.0 (2)
C26-C20-C21-N6	-179.8 (3)	C5—C6—P1—C8	126.0 (3)

N4—C20—C21—C22	-178.7 (4)	N3—C6—P1—C8	-60.1 (3)
C26—C20—C21—C22	0.7 (7)	C5—C6—P1—C14	-124.2 (3)
C20-C21-C22-C23	-180.0 (4)	N3—C6—P1—C14	49.7 (3)
N6-C21-C22-C23	0.6 (5)	C9—C8—P1—C6	-49.5 (2)
C21—C22—C23—C24	1.9 (5)	C13—C8—P1—C6	-168.8 (2)
C22—C23—C24—C25	-2.7 (6)	C9—C8—P1—C14	-155.5 (2)
C23—C24—C25—N6	0.9 (5)	C13—C8—P1—C14	85.2 (3)
C23—C24—C25—P2	179.7 (3)	C19—C14—P1—C6	-170.9 (3)
C32—C27—C28—C29	53.4 (4)	C15—C14—P1—C6	67.7 (3)
P2-C27-C28-C29	173.4 (2)	C19—C14—P1—C8	-62.5 (3)
C27—C28—C29—C30	-55.1 (4)	C15—C14—P1—C8	176.2 (3)
C28—C29—C30—C31	55.0 (4)	C24—C25—P2—C27	-144.7 (3)
C29—C30—C31—C32	-56.0 (4)	N6—C25—P2—C27	34.0 (3)
C30—C31—C32—C27	56.2 (4)	C24—C25—P2—C33	103.4 (3)
C28—C27—C32—C31	-53.5 (4)	N6-C25-P2-C33	-77.9 (3)
P2-C27-C32-C31	-173.3 (2)	C28—C27—P2—C25	57.3 (2)
C38—C33—C34—C35	54.5 (4)	C32—C27—P2—C25	177.4 (2)
P2-C33-C34-C35	-173.9 (3)	C28—C27—P2—C33	166.1 (2)
C33—C34—C35—C36	-56.5 (4)	C32—C27—P2—C33	-73.7 (2)

C34—C35—C36—C37	56.4 (4)	C34—C33—P2—C25	-74.8 (2)
C35—C36—C37—C38	-56.8 (4)	C38—C33—P2—C25	51.5 (3)
C36—C37—C38—C33	56.0 (4)	C34—C33—P2—C27	174.7 (2)
C34—C33—C38—C37	-53.6 (4)	C38—C33—P2—C27	-59.1 (3)

All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Compound 5b

Crystal data

<u>C₁₈H₂₆N₃P</u>	
$M_r = 315.39$	$D_{\rm x} = 1.186 {\rm Mg m}^{-3}$
Monoclinic, <u>P2₁/c</u>	
Hall symbol: <u>-P 2ybc</u>	<u>Mo $K\alpha$</u> radiation, $\lambda = 0.71073$ Å
<i>a</i> = <u>15.9046 (10)</u> Å	Cell parameters from <u>14773</u> reflections
b = 11.0103 (5) Å	$\theta = \underline{1.0} - \underline{27.5}^{\circ}$
c = 10.0953 (7) Å	$\mu = 0.16 \text{ mm}^{-1}$
$\beta = 91.701 (3)^{\circ}$	T = 173 K
$V = 1767.05 (18) \text{ Å}^3$	Prism, colorless
<i>Z</i> = <u>4</u>	$\underline{0.30} \times \underline{0.28} \times \underline{0.25} \text{ mm}$
F(000) = 680	

Data collection

KappaCCD diffractometer	<u>3024</u> reflections with $I > 2\sigma(I)$
Radiation source: <u>fine-focus sealed tube</u>	$R_{\rm int} = \underline{0.053}$
graphite	$\theta_{max} = \underline{27.5}^{\circ}, \ \theta_{min} = \underline{1.3}^{\circ}$

Detector resolution: ? pixels mm ⁻¹	<i>h</i> = <u>−20</u> → <u>15</u>
phi and ω scans	$k = \underline{-14} \underbrace{+\underline{13}}$
<u>10149</u> measured reflections	<i>l</i> = <u>−10</u> −⊧ <u>13</u>
4040 independent reflections	

Refinement

Refinement on $\underline{F^2}$	Secondary atom site location: <u>difference Fourier</u> <u>map</u>
Least-squares matrix: <u>full</u>	Hydrogen site location: <u>inferred from</u> <u>neighbouring sites</u>
$R[F^2 > 2\sigma(F^2)] = 0.082$	H-atom parameters constrained
$wR(F^2) = \underline{0.253}$	$\frac{w = 1/[\sigma^2(F_0^2) + (0.1036P)^2 + 3.1152P]}{\text{where } P = (F_0^2 + 2F_c^2)/3}$
S = 1.17	
4040 reflections	$\Delta \rho_{max} = \underline{0.59} \text{ e } \text{\AA}^{-3}$
200 parameters	$\Delta \rho_{min} = -0.50 \text{ e } \text{\AA}^{-3}$
<u>0</u> restraints	Extinction correction: <u>SHELXL</u> , <u>Fc</u> [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
? constraints	Extinction coefficient: 0.037 (5)
Primary atom site location: <u>structure-invariant</u> <u>direct methods</u>	

Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F,

and R- factors based on ALL data will be even larger.

	x	у	z	$U_{ m iso}$ */ $U_{ m eq}$
P1	0.28814 (6)	-0.58726 (8)	0.37145 (9)	0.0294 (3)
N1	0.1852 (2)	-0.2416 (3)	0.5489 (3)	0.0340 (7)
N2	0.2178 (2)	-0.3330 (3)	0.4805 (3)	0.0344 (7)
N3	0.23996 (19)	-0.4196 (3)	0.5717 (3)	0.0284 (7)
C1	0.1866 (2)	-0.2677 (4)	0.6775 (4)	0.0322 (8)
H1	0.1666	-0.2162	0.7451	0.039*
C2	0.2220 (2)	-0.3822 (4)	0.6980 (4)	0.0313 (8)
C3	0.2422 (3)	-0.4586 (4)	0.8055 (4)	0.0369 (9)
H3	0.2304	-0.4351	0.8936	0.044*
C4	0.2793 (3)	-0.5677 (4)	0.7803 (4)	0.0380 (9)
H4	0.2944	-0.6203	0.8517	0.046*
C5	0.2955 (2)	-0.6032 (4)	0.6482 (4)	0.0345 (9)
H5	0.3211	-0.6798	0.6337	0.041*
C6	0.2757 (2)	-0.5317 (3)	0.5412 (3)	0.0291 (8)
C7	0.1765 (2)	-0.5701 (3)	0.3100 (4)	0.0304 (8)
H7	0.1578	-0.4858	0.3312	0.037*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

C8	0.1206 (3)	-0.6586 (5)	0.3829 (4)	0.0510 (12)
H8A	0.1400	-0.7426	0.3674	0.061*
H8B	0.1253	-0.6424	0.4793	0.061*
С9	0.0290 (3)	-0.6467 (7)	0.3364 (5)	0.0684 (17)
H9A	-0.0051	-0.7081	0.3823	0.082*
H9B	0.0079	-0.5653	0.3607	0.082*
C10	0.0182 (3)	-0.6639 (6)	0.1882 (5)	0.0589 (14)
H10A	-0.0412	-0.6495	0.1608	0.071*
H10B	0.0326	-0.7486	0.1647	0.071*
C11	0.0746 (3)	-0.5767 (5)	0.1148 (4)	0.0461 (11)
H11A	0.0553	-0.4924	0.1293	0.055*
H11B	0.0699	-0.5937	0.0186	0.055*
C12	0.1663 (2)	-0.5879 (4)	0.1612 (4)	0.0384 (9)
H12A	0.1877	-0.6692	0.1372	0.046*
H12B	0.2002	-0.5264	0.1153	0.046*
C13	0.3440 (2)	-0.4614 (3)	0.2895 (3)	0.0299 (8)
H13	0.3029	-0.3941	0.2716	0.036*
C14	0.4173 (3)	-0.4110 (4)	0.3755 (4)	0.0382 (9)
H14A	0.3957	-0.3814	0.4607	0.046*

H14B	0.4583	-0.4767	0.3951	0.046*
C15	0.4612 (3)	-0.3066 (5)	0.3043 (5)	0.0508 (12)
H15A	0.4216	-0.2377	0.2933	0.061*
H15B	0.5098	-0.2785	0.3596	0.061*
C16	0.4915 (3)	-0.3448 (5)	0.1693 (5)	0.0506 (12)
H16A	0.5370	-0.4056	0.1809	0.061*
H16B	0.5149	-0.2734	0.1236	0.061*
C17	0.4202 (3)	-0.3988 (4)	0.0845 (4)	0.0429 (10)
H17A	0.4425	-0.4284	-0.0002	0.051*
H17B	0.3778	-0.3352	0.0638	0.051*
C18	0.3786 (3)	-0.5038 (4)	0.1564 (4)	0.0354 (9)
H18A	0.4202	-0.5694	0.1725	0.042*
H18B	0.3320	-0.5370	0.1001	0.042*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.0340 (5)	0.0279 (5)	0.0261 (5)	0.0015 (4)	-0.0008 (4)	-0.0012 (4)
N1	0.0410 (18)	0.0297 (16)	0.0316 (16)	0.0020 (13)	0.0027 (13)	-0.0036 (13)
N2	0.0451 (19)	0.0302 (16)	0.0277 (16)	0.0042 (14)	-0.0006 (13)	0.0029 (13)

N3	0.0326 (15)	0.0283 (15)	0.0241 (14)	-0.0015 (12)	0.0000 (12)	0.0016 (12)
C1	0.0350 (19)	0.036 (2)	0.0255 (17)	-0.0056 (15)	0.0052 (14)	-0.0061 (15)
C2	0.0319 (18)	0.0361 (19)	0.0259 (18)	-0.0085 (15)	-0.0002 (14)	-0.0029 (15)
C3	0.043 (2)	0.045 (2)	0.0225 (17)	-0.0063 (18)	0.0015 (15)	0.0019 (17)
C4	0.044 (2)	0.039 (2)	0.0303 (19)	-0.0057 (17)	-0.0043 (16)	0.0081 (16)
C5	0.039 (2)	0.034 (2)	0.0302 (19)	-0.0014 (16)	-0.0038 (15)	0.0019 (16)
C6	0.0320 (18)	0.0278 (18)	0.0273 (17)	-0.0025 (14)	-0.0013 (14)	0.0015 (14)
C7	0.0318 (18)	0.0318 (19)	0.0278 (18)	0.0009 (14)	0.0008 (14)	-0.0029 (15)
C8	0.040 (2)	0.076 (3)	0.037 (2)	-0.014 (2)	-0.0036 (18)	0.013 (2)
C9	0.036 (2)	0.120 (5)	0.050 (3)	-0.020 (3)	0.002 (2)	0.014 (3)
C10	0.040 (2)	0.087 (4)	0.050 (3)	-0.016 (2)	-0.008 (2)	0.000 (3)
C11	0.035 (2)	0.069 (3)	0.034 (2)	0.003 (2)	-0.0050 (16)	-0.002 (2)
C12	0.035 (2)	0.053 (2)	0.0278 (19)	0.0036 (18)	-0.0007 (15)	-0.0005 (18)
C13	0.0323 (18)	0.0295 (18)	0.0278 (17)	0.0017 (15)	0.0017 (14)	0.0004 (15)
C14	0.039 (2)	0.044 (2)	0.032 (2)	-0.0077 (17)	0.0001 (16)	-0.0058 (17)
C15	0.045 (2)	0.057 (3)	0.050 (3)	-0.020 (2)	0.009 (2)	-0.011 (2)
C16	0.045 (2)	0.060 (3)	0.047 (3)	-0.014 (2)	0.012 (2)	-0.005 (2)
C17	0.039 (2)	0.053 (3)	0.037 (2)	0.0026 (19)	0.0093 (17)	0.0039 (19)
C18	0.0352 (19)	0.040 (2)	0.0314 (19)	0.0019 (16)	0.0023 (15)	-0.0038 (17)

Geometric parameters (Å, °)

Р1—С6	1.836 (4)	C10—C11	1.521 (7)
P1—C13	1.854 (4)	C10—H10A	0.9900
Р1—С7	1.872 (4)	C10—H10B	0.9900
N1—C1	1.330 (5)	C11—C12	1.523 (5)
N1—N2	1.334 (4)	C11—H11A	0.9900
N2—N3	1.365 (4)	C11—H11B	0.9900
N3—C2	1.378 (5)	C12—H12A	0.9900
N3—C6	1.397 (5)	C12—H12B	0.9900
C1—C2	1.393 (6)	C13—C14	1.536 (5)
C1—H1	0.9500	C13—C18	1.539 (5)
C2—C3	1.404 (5)	C13—H13	1.0000
C3—C4	1.365 (6)	C14—C15	1.536 (6)
С3—Н3	0.9500	C14—H14A	0.9900
C4—C5	1.420 (5)	C14—H14B	0.9900
C4—H4	0.9500	C15—C16	1.519 (6)
C5—C6	1.366 (5)	C15—H15A	0.9900
С5—Н5	0.9500	C15—H15B	0.9900
C7—C12	1.519 (5)	C16—C17	1.522 (6)

С7—С8	1.523 (6)	C16—H16A	0.9900
С7—Н7	1.0000	C16—H16B	0.9900
C8—C9	1.523 (6)	C17—C18	1.526 (6)
С8—Н8А	0.9900	С17—Н17А	0.9900
C8—H8B	0.9900	C17—H17B	0.9900
C9—C10	1.513 (7)	C18—H18A	0.9900
С9—Н9А	0.9900	C18—H18B	0.9900
С9—Н9В	0.9900		
C6—P1—C13	103.54 (16)	H10A—C10—H10B	108.1
C6—P1—C7	98.54 (16)	C10—C11—C12	111.8 (4)
C13—P1—C7	103.81 (17)	C10—C11—H11A	109.3
C1—N1—N2	110.2 (3)	C12—C11—H11A	109.3
N1—N2—N3	106.0 (3)	C10—C11—H11B	109.3
N2—N3—C2	111.0 (3)	C12—C11—H11B	109.3
N2—N3—C6	124.6 (3)	H11A—C11—H11B	107.9
C2—N3—C6	124.4 (3)	C7—C12—C11	111.5 (3)
N1—C1—C2	109.7 (3)	C7—C12—H12A	109.3
N1—C1—H1	125.2	C11—C12—H12A	109.3
C2—C1—H1	125.2	C7—C12—H12B	109.3

N3—C2—C1	103.1 (3)	C11—C12—H12B	109.3
N3—C2—C3	119.1 (4)	H12A—C12—H12B	108.0
C1—C2—C3	137.7 (4)	C14—C13—C18	108.5 (3)
C4—C3—C2	118.3 (4)	C14—C13—P1	112.5 (3)
С4—С3—Н3	120.9	C18—C13—P1	110.5 (3)
С2—С3—Н3	120.9	C14—C13—H13	108.4
C3—C4—C5	120.6 (4)	C18—C13—H13	108.4
C3—C4—H4	119.7	P1—C13—H13	108.4
C5—C4—H4	119.7	C15—C14—C13	110.7 (3)
C6—C5—C4	122.7 (4)	C15—C14—H14A	109.5
С6—С5—Н5	118.7	C13—C14—H14A	109.5
C4—C5—H5	118.7	C15—C14—H14B	109.5
C5—C6—N3	114.9 (3)	C13—C14—H14B	109.5
C5—C6—P1	121.2 (3)	H14A—C14—H14B	108.1
N3—C6—P1	123.8 (3)	C16—C15—C14	111.9 (4)
C12—C7—C8	110.4 (3)	C16—C15—H15A	109.2
C12—C7—P1	112.8 (3)	C14—C15—H15A	109.2
C8—C7—P1	109.7 (3)	C16—C15—H15B	109.2
С12—С7—Н7	107.9	C14—C15—H15B	109.2

С8—С7—Н7	107.9	H15A—C15—H15B	107.9
Р1—С7—Н7	107.9	C15—C16—C17	111.2 (4)
C9—C8—C7	111.3 (4)	C15—C16—H16A	109.4
С9—С8—Н8А	109.4	C17—C16—H16A	109.4
С7—С8—Н8А	109.4	C15—C16—H16B	109.4
С9—С8—Н8В	109.4	C17—C16—H16B	109.4
С7—С8—Н8В	109.4	H16A—C16—H16B	108.0
H8A—C8—H8B	108.0	C16—C17—C18	110.8 (4)
С10—С9—С8	111.9 (4)	С16—С17—Н17А	109.5
С10—С9—Н9А	109.2	С18—С17—Н17А	109.5
С8—С9—Н9А	109.2	C16—C17—H17B	109.5
С10—С9—Н9В	109.2	C18—C17—H17B	109.5
С8—С9—Н9В	109.2	H17A—C17—H17B	108.1
Н9А—С9—Н9В	107.9	C17—C18—C13	110.9 (3)
C9—C10—C11	110.6 (4)	C17—C18—H18A	109.5
C9—C10—H10A	109.5	C13—C18—H18A	109.5
C11—C10—H10A	109.5	C17—C18—H18B	109.5
C9—C10—H10B	109.5	C13—C18—H18B	109.5
C11—C10—H10B	109.5	H18A—C18—H18B	108.0

C1—N1—N2—N3	0.3 (4)	C6—P1—C7—C12	169.8 (3)
N1—N2—N3—C2	-0.6 (4)	C13—P1—C7—C12	63.5 (3)
N1—N2—N3—C6	179.0 (3)	C6—P1—C7—C8	-66.6 (3)
N2—N1—C1—C2	0.1 (4)	C13—P1—C7—C8	-172.9 (3)
N2—N3—C2—C1	0.7 (4)	C12—C7—C8—C9	-55.5 (5)
C6—N3—C2—C1	-179.0 (3)	P1—C7—C8—C9	179.5 (4)
N2—N3—C2—C3	-178.6 (3)	C7—C8—C9—C10	56.0 (7)
C6—N3—C2—C3	1.8 (5)	C8—C9—C10—C11	-54.9 (7)
N1—C1—C2—N3	-0.4 (4)	C9—C10—C11—C12	54.6 (6)
N1—C1—C2—C3	178.6 (4)	C8—C7—C12—C11	55.4 (5)
N3—C2—C3—C4	0.1 (5)	P1	178.5 (3)
C1—C2—C3—C4	-178.8 (4)	C10—C11—C12—C7	-55.5 (5)
C2—C3—C4—C5	-1.1 (6)	C6—P1—C13—C14	44.9 (3)
C3—C4—C5—C6	0.3 (6)	C7—P1—C13—C14	147.4 (3)
C4—C5—C6—N3	1.4 (5)	C6—P1—C13—C18	166.4 (3)
C4—C5—C6—P1	-174.0 (3)	C7—P1—C13—C18	-91.1 (3)
N2—N3—C6—C5	178.0 (3)	C18—C13—C14—C15	57.7 (4)
C2—N3—C6—C5	-2.4 (5)	P1-C13-C14-C15	-179.6 (3)
N2—N3—C6—P1	-6.9 (5)	C13—C14—C15—C16	-56.1 (5)

C2—N3—C6—P1	172.8 (3)	C14—C15—C16—C17	54.1 (6)
C13—P1—C6—C5	-132.4 (3)	C15—C16—C17—C18	-55.0 (5)
C7—P1—C6—C5	121.1 (3)	C16—C17—C18—C13	58.5 (4)
C13—P1—C6—N3	52.8 (3)	C14—C13—C18—C17	-59.5 (4)
C7—P1—C6—N3	-53.8 (3)	P1-C13-C18-C17	176.7 (3)

All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.