Trans-methylpyridine cyclen *versus* cross-bridged *trans*methylpyridine cyclen. Synthesis, acid-base and metal complexation studies (metal = Co^{2+} , Cu^{2+} , and Zn^{2+})

Nicolas Bernier,^{a,f} Judite Costa,^b Rita Delgado,^{*a,c} Vítor Félix,^d Guy Royal^e and Raphaël Tripier^{*f}

^a Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; e-mail: delgado@itqb.unl.pt

^b CBT-iMed.UL, Fac. de Farmácia de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; email: jcosta@ff.ul.pt

^c Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

^d Departamento de Química, CICECO, and Secção Autónoma de Ciências da Saúde, Universidade de Aveiro, 3810-193 Aveiro, Portugal. email: vitor.felix@ua.pt

^e Université Joseph Fourier Grenoble I, Département de Chimie Moléculaire, UMR CNRS-5250, Institut de Chimie Moléculaire de Grenoble, FR CNRS-2607, BP 53, 38041, Grenoble Cedex 9, France; e-mail: guy.royal@ujf-grenoble.fr

^f UMR CNRS 6521, "Chimie, Electrochimie Moléculaires et Chimie Analytique", Université de Brest, 6 avenue Victor Le Gorgeu, 29200 Brest, France. Tel: 33 2 98017927; Fax: 33 2 98017001; e-mail: raphael.tripier@univ-brest.fr.

Contents	Page
Table S1. Overall protonation constants (β_1^{H}) of Cpy ₂ and CRpy ₂	S3
Fig. S1. NMR titration curve, pD in function of the chemical shift (δ), for CRpy ₂ following proton resonance H ₆	S3
Fig. S2 and S3. Perspective view of $[CuCRpy_2]^{2+}$ and $[ZnCRpy_2]^{2+}$	S4
Table S2. EPR parameters of $[CuCpy_2]^{2+}$ and $[CuCRpy_2]^{2+}$ complexes in frozen solution of DMF at 150 K	S5
Fig. S4. EPR spectra of $[CuCpy_2]^{2+}$ at two different concentrations (150 K in frozen DMF)	5(
Table S3. UV/vis data of the metal complexes in DMF solution and at the solid state	50
Table S4. ¹ H and ¹³ C NMR data for Cpy ₂ , CRpy ₂ and their zinc(II) complexes in CD ₃ CN	S7
Figure S5. ¹ H NMR spectrum of Cpy ² (CD ₃ CN, 10^{-2} mol dm ⁻³ , 400 MHz at 298 K)	S 8
Figure S6. ¹ H NMR spectrum of $[Zn(Cpy_2)]^{2+}$ (CD ₃ CN, 10 ⁻² mol dm ⁻³ , 400	

MHz at 298 K)

solution.

Figure S7. ¹H NMR spectrum of CRpy₂ (CD₃CN, 10⁻² mol dm⁻³, 400 MHz at S9 298 K) Figure S8. ¹H NMR spectrum of $[Zn(CRpy_2)]^{2+}$ (CD₃CN, 10⁻² mol dm⁻³, 400 MHz at 298 K) Figure S9. ¹³C NMR spectrum of Cpy_2 (CD₃CN, 10⁻² mol dm⁻³, 100 MHz at S10 298 K) Figure S10. ¹³C NMR spectrum of $[Zn(Cpy_2)]^{2+}$ (CD₃CN, 10⁻² mol dm⁻³, 100 MHz at 298 K) Figure S11. ¹³C NMR spectrum of CRpy₂ (CD₃CN, 10⁻² mol dm⁻³, 100 MHz S11 at 298 K) Figure S12. ¹³C NMR spectrum of $[Zn(CRpy_2)]^{2+}(CD_3CN, 10^{-2} \text{ mol dm}^{-3},$ 100 MHz at 298 K) **Table S5.** Overall stability constants $(\beta_{M_mH_hL_l})$ for the metal complexes of S12 Cpy₂ and CRpy₂ with Co²⁺, Cu²⁺ and Zn²⁺ metal ions in aqueous

Equilibrium quotient	Cpy ₂ ^a	CRpy ₂ ^a
$\begin{array}{c} [HL]/[L][H] \\ [H_{2}L]/[L][H]^{2} \\ [H_{3}L]/[L][H]^{3} \\ [H_{4}L]/[L][H]^{4} \end{array}$	9.90(1) 18.30(2) 22.06(3) 24.55(3)	13.8(1) ^b 19.11(2) 23.07(3) 25.53(8)

Table S1. Overall protonation constants (β_1^{H}) of Cpy₂ and CRpy₂. T = 298 K and $I = 0.1 \text{ mol dm}^{-3}$ in NMe₄NO₃

^a Values in brackets are standard deviations in the last significant figure. ^b Values determined by ¹H NMR titration.

Figure S1. NMR titration curve, pD in function of the chemical shift (δ), for CRpy₂ following proton resonance H₆

Fig. S2 Perspective view of $[CuCRpy_2]^{2^+}$ showing the overall structures of the A and B molecules with a two-fold crystallographic symmetry axis, * denotes the symmetry operation: -*x*, *y*, 3/2-*z*

Crystal data:

Molecular Formula: $[C_{20}H_{30}CuN_{6}](ClO_{4})_{2}$; $M_{w} = 642.98$; $C_{22}H_{32}Cl_{2}CuNO_{8}$, Crystal dimensions 0.01 x 0.10 x 0.20, a = 33.3151(15), b = 18.5663(11), c = 17.2121(8) Å, V = 10646.3(9) Å³, Orthorhombic, space group Pbcn, R = 0.0967 $[I > 2\sigma(I)]$ and 0.2099 (all data CCDC 792050 **Fig. S3** Two perspective views of $[ZnCRpy_2]^{2+}$ showing the overall structure with atomic notation scheme used (top) and the zinc(II) distorted octahedral coordination sphere (bottom).

Crystal data:

Molecular Formula: $[C_{22}H_{32}N_6Zn](ZnI_4)$; $M_w = 659.82$; Crystal dimensions 0.08 x 0.04 x 0.03, $C_{22}H_{32}I_4N_6Zn_2$, a = 14.3317(10), b = 14.7028(11), c = 14.4633(13) Å V = 2996.1(4) Å³, $\beta = 100.555(7)^\circ$, Monoclinic, space group $P2_1/n$, R = 0.0575 $[I > 2\sigma(I)]$ and 0.0786 (all data) CCDC 778332

In spite of the X-ray data of $[ZnCRpy_2]^{2+}$ and $[CuCRpy_2]^{2+}$ complexes have not enough quality to be published their structures are unequivocally solved allowing a broad discussion of their metal coordination spheres:

These structures revealed that the complexes of copper(II) and zinc(II) with cross-bridged cyclen derivatives CRPy₂ adopt a N₆ coordination with a *cis*-octahedral structures in solid state with severe distortions which are imposed by the small cleft available in the macrobicycle.

The asymmetric unit of the Cu^{2+} complex with $CRpy_2$ (Figure S1) is composed of three $[CuCRpy_2]^{2+}$ cations, one with entire occupancy (A) and two with half occupancies (B and C), and four ClO_4^- counter anions with entire occupancies, which is consistent with the molecular formula

 $[CuCRpy_2](ClO_4)_2$. The structure indicates that the coordination sphere of each molecule is a distorted octahedron with equatorial coordination plane defined by two pyridine nitrogen donors and two nitrogen atoms of the macrobicyclic backbone.

A molecular diagram of $[ZnCRpy_2]^{2+}$ complex from $[ZnCRpy_2](ZnI_4)$ with the labelling scheme adopted is shown in Fig. Y (S1). The four amine nitrogen atoms of the macrobicyclic framework span two continuous faces of the distorted octahedron around Zn^{2+} metal ion and the pyridine nitrogen atoms occupy the remaining *cis* positions of the coordination polyhedron, see Fig. S2 (bottom). This geometric arrangement is equivalent to that observed for $[CuCRpy_2]^{2+}$.

Table S2. EPR parameters of $[CuCpy_2]^{2+}$ and $[CuCRpy_2]^{2+}$ complexes

	g∥	g_{\perp}	A_{\parallel} (10 ⁴ cm ⁻¹)		
$ \begin{bmatrix} CuCpy_2 \end{bmatrix}^{2+a} \\ \begin{bmatrix} CuCRpy_2 \end{bmatrix}^{2+a} \\ \end{bmatrix} $	2.19 2.22	2.07 2.05	193 140		
^a This work, in frozen solution of DMF at 150 K, $C = 10^{-2}$ mole dm ⁻³ .					

Fig. S4 EPR spectra of $[CuCpy_2]^{2+}$ at two different concentrations *C* and *C*/2 (*C* = 10⁻² mole dm⁻³, 150 K in frozen DMF)

	Solution in DMF	Solid state
$\left[\operatorname{CuCpy}_{2}\right]^{2+}$	652 (157)	648
$\left[\text{CuCRpy}_2\right]^{2+}$	712 (89)	710
$[ZnCpy_2]^{2+}$	343 (142)	341
$[ZnCRpy_2]^{2+}$	359 (146)	358
$[CoCpy_2]^{2+}$	507 (82)	505
$\left[\text{CoCRpy}_2\right]^{3+}$	475 (436)	473

Table S3. UV/vis data of the metal complexes in DMF solution and at the solid state. λ (nm), ϵ (dm³ mol⁻¹ cm⁻¹) in brackets

Table S4. ¹H and ¹³C NMR data for Cpy₂, CRpy₂ and their Zn(II) complexes in CD₃CN (10^{-2} mol dm⁻³, 400 and 100 MHz at 298 K)

	Cpy ₂			CRpy ₂		
$^{1}\mathrm{H}$	H ₂	d (2H)	7.45	H ₂	d (2H)	7.40
	H_3	t (2H)	7.71	H_3	t (2H)	7.75
	H_4	t (2H)	7.21	H_4	t (2H)	7.25
	H_5	d (2H)	8.50	H_5	d (2H)	8.54
	H_6	s (4H)	3.84	H_6	s (4H)	4.04
	H_7	t (8H)	2.64	H_7	t (8H)	2.91
	H_8	t (8H)	2.73	H_8	t (8H)	3.12
				H ₉	s (4H)	3.08
				NH^+	s (1H)	12.25
^{13}C	C_1	2C	118.2	C_1	2C	118.2
	C_2	2C	124.3	C_2	2C	124.1
	C ₃	2C	137.4	C_3	2C	137.5
	C_4	2C	123.0	C_4	2C	123.3
	C_5	2C	149.9	C_5	2C	150.3
	C_6	2C	62.5	C_6	2C	60.0
	C_7	4C	52.5	C_7	4C	56.6
	С	4C	46.9	C_8	4C	51.9
				C ₉	2C	48.0
	$\left[\operatorname{Zn}(\operatorname{Cpy}_2)\right]^{2+}$		$\left[Zn(CRpy_2)\right]^{2+}$			
$^{1}\mathrm{H}$	H_2	d (2H)	7.57	H_2	d (2H)	8.05
	H_3	t (2H)	8.05	H_3	t (2H)	8.61
	H_4	t (2H)	7.42	H_4	t (2H)	8.00
	H_5	d (2H)	8.08	H_5	d (2H)	8.76
	H_6	s (4H)	4.10	H_6	s (4H)	4.55
	H_7	m (4H); m (4H)	2.82; 2.98	H_7	m (8H)	3.22
	H_8	m (4H); m (4H)	2.89; 2.94	H_8	m (4H); m (4H)	2.98; 3.23
				H9	s (4H)	3.15
^{13}C	C_1	2C	118.3	C_1	2C	118.3
	C_2	2C	126.1	C_2	2C	128.6
	C ₃	2C	141.7	C_3	2C	143.0
	C_4	2C	125.4	C_4	2C	127.6
	C_5	2C	149.9	C_5	2C	148.8
	C_6	2C	56.7	C_6	coalescence	53.8
	C_7	4C	51.1	C_7	coalescence	52.5
	C_8	4C	44.2	C_8	4C	56.1
				C ₉	2C	45.5

S8

S10

Table S5. Overall stability constants ($\beta_{M_mH_hL_l}$) in log units for the metal complexes of Cpy₂ and CRpy₂ with Co²⁺, Cu²⁺ and Zn²⁺ metal ions in aqueous solution. T = 298 K and I = 0.1 mol dm⁻³ in NMe₄NO₃

Metal ion	Equilibrium quotient	Cpy ₂ ^a	CRpy ₂ ^b
Co ²⁺	[ML]/[M][L]	17.57(3)	18.18(5)
	[MHL]/[ML][H]	20.96(5)	21.46(5)
	[ML]/[MLOH][H]	8.48(8)	-
Cu ²⁺	[ML]/[M][L]	20.3(1)	19.03(5)
	[MHL]/[ML][H]	23.11(5)	22.86(3)
	[ML]/[MLOH][H]	13.0(1)	-
Zn ²⁺	[ML]/[M][L]	17.51(6)	17.10(4)
	[MHL]/[ML][H]	20.73(8)	-
	[ML]/[MLOH][H]	10.67(8)	-

^a. Values in brackets are standard deviations in the last significant figure. ^b Values determined by competition with dota.