Kinetico-mechanistic studies of the acidolysis of Rh-C bonds in monocyclometallated dirhodium(II) acetato complexes; influence of electronic and steric effects.

Julio Esteban^a and Manuel Martínez^b.

^a Departament de Química Inorgànica, Universitat de València, Doctor Moliner 50, E-46100 Burjassot, València, SPAIN.

^b Departament de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, E-082028 Barcelona, SPAIN.

Supplementary material

Figure S1.- Observed ¹H NMR spectral changes (aromatic zone, CD₃COOD, 65 °C) with time on dissolution of compound $Rh_2P(4-MeC_6H_4)_3$. Top initial spectrum, bottom after *ca*. 7 h.

FIGURE S1

Figure S2. Changes in the relative integral of selected proton signals for the relevant *ortho* hydrogens on complex $Rh_2P(4-MeC_6H_4)_3$ with time (CD₃COOD, 400 MHz, 65 °C).

Table S1.-Observed rate constants for the acid cleavage of the Rh-C bonds of the differentcompounds studied as a function of the temperature.

Compound	T/K	$k_{ m obs}$ /s ⁻¹
Rh ₂ PPh ₃	335	4.6×10 ⁻⁶
	344	1.1×10^{-5}
	353	2.7×10^{-5}
	362	8.2×10 ⁻⁵
$Rh_2P(5-MeC_6H_4)_3$	343	7.7×10^{-6}
	353	1.7×10^{-5}
	363	3.2×10 ⁻⁵
	373	8.8×10 ⁻⁵
$Rh_2P(4-MeC_6H_4)_3$	335	4.1×10 ⁻⁵
	344	1.2×10^{-4}
	353	2.9×10^{-4}
	362	4.4×10^{-4}
$Rh_2P(5-CF_3C_6H_4)_3$	353	1.2×10^{-6}
	363	2.6×10 ⁻⁶
	373	4.2×10^{-6}
	383	6.2×10^{-6}
$Rh_2P(4-CF_3C_6H_4)_3$	363	2.4×10 ⁻⁶
	373	3.2×10 ⁻⁶
	378	3.7×10 ⁻⁶
	383	4.5×10 ⁻⁶

Table S2.- Characterization data before H/D scrambling exchange for all the complexes studied in this work and indicated in Chart 1.

Compound	¹ H (300 MHz) in CD ₃ COOD	³¹ P (121 MHz) in CDCl ₃	¹⁹ F (282 MHz) in CDCl ₃
Rh ₂ PPh ₃	2.26 (s, 3), 2.32 (s, 6), 6.80 (m, 1), 7.07 (m, 1), 7.36 (m, 4), 7.35 (m,	$18.2(I - 150)^2 I - 6)$	
	2), 7.42 (m, 2), 8.35 (m, 1)	$18.2 (J_{\rm Rh-P} - 150, J_{\rm Rh-P} - 0)$	-
$Rh_2P(5-MeC_6H_4)_3$	2.04 (s, 3), 2.06 (s, 6), 2.39 (s, 6), 2.42 (s, 3), 6.79 (m, 1), 7.16 (m, 1),	$16.9(I - 159^{2}I - 6)$	-
	7.39 (m, 4), 7.42(m, 4), 7.46 (m, 4), 8.29 (m, 1)	$10.8 (J_{\text{Rh-P}} = 138, J_{\text{Rh-P}} = 0)$	
$Rh_2P(4-MeC_6H_4)_3$	2.06 (s, 3), 2.16 (s, 6), 2.26 (s, 3), 2.32 (s, 6), 6.80 (m, 1), 7.10 (m, 1),	$17.7(I - 150)^{2}I - 6$	-
	7.25 (m, 4), 7.36 (m, 2), 7.43 (m, 2), 8.35 (m, 1)	$17.7 (J_{\text{Rh-P}} = 150, J_{\text{Rh-P}} = 0)$	
$Rh_2P(5-CF_3C_6H_4)_3$	0.94 (broad, 3), 1.35 (broad, 6), 2.15 (s, 6), 2.05 (s, 3), 6.83 (m, 1),	10.9 (1 154)	-66.89 ppm (s, 1), -66.39 ppm
	7.10 (m, 1), 7.68 (m, 4), 7.79 (m, 4), 8.86 (broad signal, 1)	19.8 $(J_{\rm Rh-P} = 154)$	(s, 2)
$Rh_2P(4-CF_3C_6H_4)_3$	2.03 (s, 3), 2.16 (s, 6), 7.27 (m, 1), 7.55 (m, 1), 7.72 (m, 4),	20.7(L - 156)	-66.82 ppm (s, 1), -66.39 ppm
	7.88 (d, 2), 8.06 (d, 2), 8.89 (m, 1)	$20.7 (J_{\rm Rh-P} = 150)$	(s, 2)