Borane-Substituted Imidazol-2-ylidenes: Syntheses in-vacuo

Alasdair W. Taylor, Kevin R.J. Lovelock, Robert G. Jones and Peter Licence School of Chemistry, The University of Nottingham, University Park, Nottingham, UK. Fax: +44 115 951 3058; Tel: +44 115 846 6176; E-mail: <u>peter.licence@nottingham.ac.uk</u>

Supporting Information

‡ Analytical Data for Distillates of [C_nC₁Im][BF₄]

1-Butyl-3-methylimidazolium-2-trifluoroborate (**1**): ¹H NMR, δ_H (300.1 MHz, DMSO-d₆), 7.51 (1H, d, *J* = 1.8 Hz), 7.45 (1H, d, *J* = 1.8 Hz), 4.17 (2H, t, *J* = 7.3 Hz), 3.80 (3H, s), 1.70 (2H, m), 1.24 (2H, m), 0.87 (3H, t, *J* = 7.2 Hz). ¹³C NMR δ_c (125.8 MHz, DMSO-d₆), 157.01 (qq, ¹*J*_{CB} = 86 Hz, ²*J*_{CF} = 62 Hz), 122.72, 121.16, 49.62, 36.74, 33.58, 20.09, 13.82. ¹⁹F NMR δ_F (376.5 MHz, DMSO-d₆) -136.53 (q, *J*_{FB} = 37.7 Hz). ¹¹B NMR δ_B (128.4 MHz, DMSO-d₆) -0.25 (q, *J*_{BF} = 37.2 Hz). Anal. Found.: C, 46.0; H, 6.9; N, 13.6. Calc. for C₈H₁₄N₂BF₃: C, 46.6; H, 6.8; N, 13.6. ESI-MS *m/z* 187 [C₈H₁₄N₂BF₂]⁺ (*I* = 100 %), 229 [(C₈H₁₄N₂¹¹BF₃)Na]⁺ (*I* = 29.5. %). *T*_g = -65.3 °C.

1-Octyl-3-methylimidazolium-2-trifluoroborate (**2**): ¹H NMR, δ_H (300.1 MHz, DMSO-d₆), 7.52 (1H, d, *J* = 1.8 Hz), 7.46 (1H, d, *J* = 1.8 Hz), 4.14 (2H, t, *J* = 7.3 Hz), 3.78 (3H, s), 1.70 (2H, m), 1.22 (10H, m), 0.85 (3H, t, *J* = 6.8 Hz). ¹³C NMR δ_c (125.8 MHz, DMSO-d₆), 157.12 (qq, ¹*J*_{CB} = 86 Hz, ²*J*_{CF} = 62 Hz), 122.64, 121.13, 49.94, 36.81, 32.26, 31.16, 29.62, 29.56, 26.90, 23.14, 14.37. ¹⁹F NMR δ_F (376.5 MHz, DMSO-d₆) -136.41 (q, *J*_{FB} = 37.5 Hz). ¹¹B NMR δ_B (128.4 MHz, DMSO-d₆) -0.29 (q, *J*_{BF} = 37.2 Hz). Anal. Found.: C, 54.8; H, 8.5; N, 10.6. Calc. for C₁₂H₂₂N₂BF₃: C, 55.0; H, 8.5; N, 10.7. ESI-MS *m/z* 243 [C₁₂H₂₂N₂BF₂]⁺ (*I* = 100 %), 285 [(C₁₂H₂₂N₂¹¹BF₃)Na]⁺ (*I* = 70.4 %). *T*_g = -62.5 °C; *T*_m = 41.8 °C.

(2)

Fig. S1 Photographs of the distillates (a) 1-Butyl-3-methylimidazolium-2-trifluoroborate (1) and (b) 1-Octyl-3-methylimidazolium-2-trifluoroborate (2) in the receiving arm taken after removal from the distillation apparatus. 1-Octyl-3-methylimidazolium-2-trifluoroborate (2) was initially a pink coloured liquid but crystallised 1 hour after removal from the distillation apparatus.

Fig. S2 ESI mass spectrum recorded of the distillate of [C₈C₁Im][BF₄], *1-Octyl-3-methylimidazolium-2trifluoroborate* (2). The spectrum was recorded in low molecular weight positive mode. A list of peaks with their relative abundances is given in Table S1.

$[C_8C_1Im][BF_4]$		
m/z	I / %	Formula
195	18.3	$[C_{12}H_{23}N_2]^+$
217	14.0	unknown
242	22.2	$[C_{12}H_{22}N_2^{10}BF_2]^+$
243	100	$[C_{12}H_{22}N_2^{11}BF_2]^+$
244	10.9	$[^{13}C^{12}C_{11}H_{22}N_2^{11}BF_2]^+$
280	15.8	$[(C_{12}H_{14}N_2^{11}BF_3)NH_4]^+$
284	16.4	$[(C_{12}H_{14}N_2^{10}BF_3)Na]^+$
285	70.4	$[(C_{12}H_{14}N_2^{11}BF_3)Na]^+$
286	8.0	$[(^{13}C^{12}C_{11}H_{14}N_2^{11}BF_3)Na]^+$

Table S1 Relative abundances and m/z values of the major peaks in the ESI mass spectrum recorded of the distillate of [C₈C₁Im][BF₄], *1-Octyl-3-methylimidazolium-2-trifluoroborate* (**2**).

Scheme S1 Proposed fragmentation pattern giving rise to the fragments observed in the ESI-MS of the distillate of $[C_4C_1Im][BF_4]$, *1-butyl-3-methylimidazolium-2-trifluoroborate* (1), as shown in Fig. 4 (main paper).

Figure S3 (a) ¹H (300.1 MHz), (b) ¹³C (75.5 MHz), (c) ¹¹B (128.4 MHz) and (d) ¹⁹F (376.5 MHz) NMR spectra in DMSO-d₆ of the distillate of [C₈C₁Im][BF₄], *1-octyl-3-methylimidazolium-2-trifluoroborate*. (a)

Figure S4 (a) ¹H (300.1 MHz), (b) ¹³C (75.5 MHz), (c) ¹¹B (128.4 MHz) and (d) ¹⁹F (376.5 MHz) NMR spectra in DMSO-*d*₆ of the distillate of [C₄C₁Im][BF₄], *1-butyl-3-methylimidazolium-2-trifluoroborate*.

(a)

Fig. S5, Expansion of ¹³C NMR (Bruker DPX-500 MHz, CD_2Cl_2) for the distillate of (a) $[C_4C_1Im][BF_4]$ and (b) $[C_8C_1Im][BF_4]$. The NMR spectra were recorded with an extended d1 relaxation time of 10 secs in order to observe the C² signal of the imidazolium group. This signal is commonly unobserved in carbonborane NMR spectra, due to coupling to the rapid relaxing quadropolar B nucleus. The coupling constants, J_{C-B} (86 Hz) and ${}^2J_{C-F}$ (62 Hz), furthered confirmed the attachment of the BF₃ group to the C² carbon of the imidazolium ring. The signals are interpreted with the generic splitting diagram (c).

(a)

(b)

Figure S6 (a) ¹H (300.1 MHz) and (b) ¹³C (75.5 MHz), NMR reference spectra of [C₄C₁Im][BF₄] in DMSO-d₆

(a)

(b)

Figure S7 (a) ¹H (300.1 MHz) and (b) ¹³C (75.5 MHz), NMR reference spectra of [C₈C₁Im][BF₄] in DMSO-d₆

(a)

