# SUPPORTING INFORMATION

# Metastable Se<sub>6</sub> as a Ligand for Ag<sup>+</sup>: from Isolated Molecular to Polymeric 1D and 2D Structures

Damian Aris,<sup>a</sup> Johannes Beck,<sup>b</sup> Andreas Decken, <sup>a</sup> Isabelle Dionne,<sup>a</sup> Jörn Schmedt auf der Günne, \*<sup>c</sup> Wilfried Hoffbauer,<sup>b</sup> Tobias Köchner,<sup>d</sup> Ingo Krossing, \*<sup>d</sup> Jack Passmore, \*<sup>a</sup> Eric Rivard,<sup>a</sup> Folker Steden,<sup>b</sup> Xinping Wang<sup>a</sup>

<sup>a</sup> Department of Chemistry, University of New Brunswick, Fredericton N.B., E3B 6E2,

Canada.

<sup>b</sup> Institut für Anorganische Chemie, Friedrich Wilhelms Universität Bonn, 53121 Bonn, Germany.

<sup>c</sup> Department of Chemistry and Biochemistry, Ludwig Maximilians Universität, 81377 München, Germany.

<sup>d</sup> Institut für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität, 79104 Freiburg, Germany.

E-mail: passmore@unb.ca. Fax: (506) 453-4981.

\*To whom correspondence should be addressed: Jörn Schmedt auf der Günne ( $^{109}$ Ag/ $^{19}$ F NMR), Ingo Krossing (theoretical calculations and isolated [(OSO)<sub>x</sub>AgSe<sub>6</sub>Ag(OSO)<sub>x</sub>]<sup>2+</sup> (x = 1, 2) preparation), and Jack Passmore (problem conception and the remainder of preparations and structures).

# Table of Contents

| S1 Reactions leading to <b>3</b> and <b>4</b>                            | 2  |
|--------------------------------------------------------------------------|----|
| S2 Detailed description of the X-ray single crystal structures           | 12 |
| S 2.1 Crystal Structure of 1                                             | 12 |
| S 2.2 Crystal Structure of <b>2a</b>                                     | 19 |
| S 2.3 Crystal Structure of <b>3</b>                                      | 24 |
| S 2.4 Crystal Structure of <b>4</b>                                      | 34 |
| S3 FT Raman Spectra of 4                                                 | 43 |
| S4 Quantum chemical calculations                                         | 44 |
| S 4.1 Energetics of the calculated compounds                             | 44 |
| S 4.2 Born-Fajans-Haber cycles for estimation of lattice enthalpies      | 46 |
| S 4.3 Details of the Quantum Chemical Investigations                     | 48 |
| S 4.3.1 Calculated Geometries and Spectra PBE0/TZVPP                     | 48 |
| S 4.3.2 Bond Analysis                                                    | 65 |
| S 4.4 Selenium, Silver and Oxygen distances and angles:                  |    |
| Calculated structures on different levels.                               | 85 |
| S 4.5 $\text{Se}_6^{2+}$ conformers                                      | 86 |
| S5.1 NMR experimental details 1                                          | 86 |
| S5.2 Additional Solid State NMR spectra of $(AgI_2)_n$ nSbF <sub>6</sub> | 86 |
| S6 Syntheses of $Ag[Sb(OTeF_5)_6]$                                       | 88 |
| S7 Attempted syntheses of $[Se_x][Sb(OTeF_5)_6](x = 6, 8)$               | 90 |
| S8 Powder Spectra of the greyish remains in the synthesis of <b>2a</b>   | 91 |
| S9 <sup>77</sup> Se-spectra of $2a$                                      | 92 |
| S10 Powder XRD of <b>2b</b>                                              | 93 |

### S1 Reactions leading to 3 and 4

#### Table S1.1 Reaction data (g, mmol) of some reactions

| Code | Reaction                | Mole               | Time and              | Emperical formula                    | Emperical                                                 | Single crystal X-ray |
|------|-------------------------|--------------------|-----------------------|--------------------------------------|-----------------------------------------------------------|----------------------|
|      |                         | ratio <sup>a</sup> | temperature           | based on weight                      | formula based on                                          | (SCX) and            |
|      |                         |                    |                       | changes <sup>b</sup>                 | chemical analysis                                         | X-ray powder         |
|      |                         |                    |                       |                                      |                                                           | diffraction (XRD)    |
| a    | $AgAsF_6 + Se powder$   | 10:1               | several minutes, r.t. |                                      |                                                           | <b>3</b> (SCX)       |
| b    | $AgAsF_6 + Se pellets$  | 2:1                | 2d, r.t.              | Se <sub>2.7</sub> AgAsF <sub>6</sub> | Se <sub>2.90</sub> AgAs <sub>1.02</sub> F <sub>5.95</sub> | <b>3</b> (XRD)       |
| с    | $AgAsF_6$ + Se pellets  | 1:8 <sup>c</sup>   | 24d, 5°C              | Se <sub>3.0</sub> AgAsF <sub>6</sub> | Se <sub>3.05</sub> AgAs <sub>1.02</sub> F <sub>6.12</sub> |                      |
| d    | $Se_4(AsF_6)_2+2Ag+2Se$ | 1:2:2              | 15d, r.t.             | Se <sub>3</sub> AgAsF <sub>6</sub>   | Se <sub>2.74</sub> AgAs <sub>0.96</sub> F <sub>5.65</sub> | <b>3</b> (XRD)       |
| e    | $AgSbF_6 + Se powder$   | 20:1               | several minutes, r.t. |                                      |                                                           | 2 (SCX)              |
| f    | $AgSbF_6 + Se powder$   | 3:2                | 14d, r.t.             | Se <sub>2.2</sub> AgSbF <sub>6</sub> |                                                           | ? (XRD)              |
| g    | $AgSbF_6 + Se powder$   | 1:3                | 2d, r.t.              | Se <sub>3.4</sub> AgSbF <sub>6</sub> |                                                           |                      |
| h    | $AgSbF_6$ + Se pellets  | 1:8.5 <sup>c</sup> | 24d, 5 °C             | Se <sub>4.6</sub> AgSbF <sub>6</sub> | $Se_{5.4}AgSb_{1.07}F_{6.17}$                             | ? (XRD)              |
| h    | $AgSbF_6$ + Se pellets  | 1:8.5°             | 24d, 5 °C             | Se <sub>4.6</sub> AgSbF <sub>6</sub> | Se <sub>5.4</sub> AgSb <sub>1.07</sub> F <sub>6.17</sub>  | ? (XRD)              |

a) Weight given in Table S1.2;

b) Based on the amount of the Se and  $AgMF_6$  consumed;

c) All AgMF<sub>6</sub> consumed in this reaction;

d) The insoluble product and unreacted  $AgSbF_6$  were not separated.

Table S1.2

| code | Reactions              | AgMF <sub>6</sub><br>(M=As, Sb) | Se<br>(powder or pellets) | AgMF <sub>6</sub> consumed | Se consumed   | Se : $AgMF_6^{a}$ |
|------|------------------------|---------------------------------|---------------------------|----------------------------|---------------|-------------------|
| b    | $AgAsF_6 + Se powder$  | 1.315, 4.431                    | 0.164, 2.077              | 0.05, 0.168                | 0.036, 0.456  | 2.7:1             |
| с    | $AgAsF_6 + Se pellets$ | 0.934, 3.147                    | 1.965, 24.886             | 0.934, 3.147               | 0.755, 9.562  | 3.0:1             |
| f    | $AgSbF_6 + Se powder$  | 3.000, 8.730                    | 0.443, 5.610              | 0.870, 2.532               | 0.443, 5.610  | 2.2:1             |
| g    | $AgSbF_6 + Se powder$  | 1.111, 3.233                    | 0.685, 8.675              | 0.871, 2.535               | 0.685, 8.675  | 3.4 : 1           |
| ĥ    | $AgSbF_6 + Se pellets$ | 2.055, 5.980                    | 4.011, 50.798             | 2.055, 5.980               | 2.166, 27.431 | 4.6:1             |

a) The mole ratio (Se : AgMF<sub>6</sub>) is based on the amount of the consumed Se and consumed AgMF<sub>6</sub>.

### Table S1.3

Comparison of Raman and IR frequencies of the insoluble products from reaction b, c, d (see Tables S1.1 and S1.2), Se<sub>6</sub> (s),<sup>a</sup> Se<sub>6</sub> in SiO<sub>2</sub> matrix,<sup>b</sup> Se powder,<sup>a</sup> Se pellets,<sup>a</sup> and AsF<sub>6</sub><sup>-</sup> (in O<sub>2</sub>AsF<sub>6</sub>)<sup>c</sup> with relative peak intensities in parentheses.<sup>d</sup>

| Se <sub>6</sub> (s)   | Se<br>powder        | $Se_6$ in $SiO_2$ matrix | Se<br>pellets                 | b (Ra)                                 | b(IR)                           | c (Ra)                                | c(IR)                  | d(Ra)                       | d(IR)                           | AsF <sub>6</sub><br>(Ra) | AsF <sub>6</sub><br>(IR) | Assign. <sup>e</sup>                                                                     |
|-----------------------|---------------------|--------------------------|-------------------------------|----------------------------------------|---------------------------------|---------------------------------------|------------------------|-----------------------------|---------------------------------|--------------------------|--------------------------|------------------------------------------------------------------------------------------|
|                       |                     |                          |                               | 712(1)<br>691(1)<br>673(5)<br>574(0.5] | 698(10<br>)<br>666(8)<br>561(3) | 712(0.5)<br>673(3)<br>639(0.2)        | 704(10<br>)<br>6666(8) | 709(0.5)<br>672(2)          | 703(10<br>)<br>667(8)<br>563(3) | 689(10)<br>573(5)        | 700(10)                  | $v_3(AsF_6), F_u$<br>$v_1(AsF_6), A_g$<br>?<br>$v_2(AsF_6), E_g$                         |
|                       |                     |                          |                               | )<br>558(0.5<br>)<br>401(0.5           | 398(1)<br>385(2)                | 401(0.3)<br>373(1)                    |                        | 491(0.5)<br>372(1)          | 397(1)<br>388(2)                | 375(1)                   | 385(1)                   | ?<br>$v_4(AsF_6), F_u$<br>$v_5(AsF_6), F_g$                                              |
| 247(10<br>)<br>221(1) | 236(10)<br>144(0.5) | 276(9)<br>263(2)         | 251(9.5)<br>235(10)<br>146(1) | )<br>373(3)<br>272(10                  |                                 | 270(10)<br>256(7)<br>170(5)<br>156(3) |                        | 270(10)<br>254(7)<br>169(5) |                                 |                          |                          | v(SeSe), $A_{1g}$<br>v(SeSe), $E_g$<br>v <sub>s</sub> (SeAgSe)<br>?<br>$\delta$ (SeSeSe) |
| 129(3)<br>102(2)      |                     | 133(2)<br>102(10)        | 133(1)<br>111(1)<br>99(0.5)   | 256(5)<br>171(9)<br>126(6)<br>113(5)   |                                 | 116(7)                                |                        | 123(5)<br>115(4)            |                                 |                          |                          | $\delta(\text{SeSeSe}), \\ A_{1g} \\ \delta(\text{SeSeSe}), \\ E_g$                      |

a) Based on Raman spectra of this work, Se powder consists of trigonal Se<sub> $\infty$ </sub> and Se pellets are a mixture of Se<sub> $\infty$ </sub> and Se<sub>6</sub>. K. Nagata, K. Ishibashi, Y. Miyamoto, *Jpn. J. Appl. Phys.* **1981**, *20*, 463; b) A micro porous pure SiO<sub>2</sub> modification consisting of pseudohexagonal sheets of pentagondodecahedral cages, stacked in an ABCABC sequence and interconnected by O-Si-O bridges. G. Wirnsberger, H. P. Fritzer, R. Zink, A. Popitsch, B. Pillep, P. Behrens, *J. Phys. Chem. B*, **1999**, *103*, 5797; c) C. Naulin, R. Bougon, *J. Chem. Phys.*, **1976**, *64*, 4156; d) Peak intensities were determined by estimating the area (for Raman) and height (for IR) of peaks; and e) The AsF<sub>6</sub><sup>-</sup> assignments are based on ideal *O<sub>h</sub>* symmetry and for Se<sub>6</sub> on ideal *D<sub>3d</sub>* symmetry.

### Table S1.4

Comparison of Raman frequencies of the insoluble products from reaction f, g, and h (see Table S1.1 and S1.2), together with  $Se_{6}$ ,<sup>a</sup> Se powder<sup>a</sup> and Se pellets<sup>a</sup>

| Se <sub>6</sub> | Se powder | Se pellets            | g        | f        | h                   | Assign. <sup>b</sup>        |
|-----------------|-----------|-----------------------|----------|----------|---------------------|-----------------------------|
|                 |           |                       | 650(0.5) | 644(1)   |                     | $v_1(\text{SbF}_6), A_g$    |
|                 |           |                       | 518(0.1) | 513(0.2) |                     | $v_2(SbF_6), E_g$           |
|                 |           |                       |          | 298(0.8) |                     | $v_5(\text{SbF}_6), F_g$    |
|                 |           |                       |          |          |                     |                             |
| 247(10)         |           | 251(9.5)              | 272(2)   | 271(1)   | 271(5) }            | $v(SeSe), A_{Ig}$           |
|                 |           |                       |          |          | 261(10)             |                             |
| 221(1)          | 236(10)   | 235(10)               | 253(10)  | 253(10)  | 253(8)              | $v(SeSe), E_g$              |
|                 |           |                       | 161(4)   | 161(2)   |                     | v <sub>s</sub> (SeAgSe)     |
| 129(3)          | 144(0.5)  | 146(1)                |          |          | ر <sup>147(3)</sup> | $\delta$ (SeSeSe), $A_{Ig}$ |
|                 |           | ر <sub>133(1)</sub> ا | 124(1)   |          | 134(6) <b>5</b>     |                             |
| 102(2)          |           | ר <sup>111(1)</sup> ר | 97(5)    | 97(2)    | 105(5)              | $\delta$ (SeSeSe), $E_g$    |
|                 |           | 99(0.5) <b>5</b>      |          |          |                     |                             |

a) Based on Raman spectra of this work, Se powder consists of trigonal Se<sub> $\infty$ </sub> and Se pellets are a mixture of Se<sub> $\infty$ </sub> and Se<sub>6</sub>. K. Nagata, T. Ishibashi, Y. Miyamoto, *Jpn. J. Appl. Phys.* **1981**, *20*, 463; b) Peak intensities were determined by estimating the area (for Raman) and height (for IR) of peaks. The AsF<sub>6</sub><sup>-</sup> assignments are based on ideal *O<sub>h</sub>* symmetry and for Se<sub>6</sub> on ideal *D<sub>3d</sub>* symmetry.



Figure S1.5 FT-Raman spectrum of the yellow insoluble product from Reaction b, c, and d. Experimental parameters: b. 1200 scans,  $4 \text{ cm}^{-1}$ , r.t.; c and d. 1000 scans,  $4 \text{ cm}^{-1}$ , r.t..



Figure S1.6 FT-Raman spectrum of the yellow insoluble product from reaction f, g and h (g. 2000 scans, 4 cm<sup>-1</sup>, r.t.; f. 5 mm NMR tube, 2000 scans, 4 cm<sup>-1</sup>, r.t.; h. 1000 scans, 4 cm<sup>-1</sup>, r.t.).

### Table S 1.7: $^{109}\mathrm{Ag}$ and $^{19}\mathrm{F}$ solid NMR

| code | Reactions (mole ratio)           | Compound                             | δiso <sup>109</sup> Ag (ppm) | δiso <sup>19</sup> F (ppm) | T <sub>1</sub> ( <sup>19</sup> F, s) |
|------|----------------------------------|--------------------------------------|------------------------------|----------------------------|--------------------------------------|
|      |                                  | AgF                                  | -47                          | -318.2                     | ~200                                 |
|      |                                  | $AgF_2$                              | -189                         | -199.5                     |                                      |
|      |                                  | $AgSbF_6$                            | -221                         | -127.7                     | ~0.3                                 |
|      |                                  | AgAsF <sub>6</sub>                   | -243                         | -63 ~ -71~ -79             |                                      |
|      |                                  | $AgI_2SbF_6$                         | 119                          | -97 ~ -124, sextet         | ~3                                   |
|      |                                  | AgI <sub>2</sub> AsF <sub>6</sub>    | 112                          | $-50 \sim -57$ , quartet   | ~10                                  |
| b    | $AgAsF_6 + Se pellets (2:1)$     | 3                                    | -42, -220                    | -52 ~ -59, quartet         | ~2                                   |
| f    | $AgSbF_6 + Se powder (3:2)$      | <b>2</b> ? or $Se_6Ag_2(SbF_6)_2$ ?  | 359s, 86s, -335              | -95 ~ -140                 | ~1                                   |
| h    | $AgSbF_6$ + Se pellets (1 : 8.5) | Se <sub>6</sub> AgSbF <sub>6</sub> ? | 483, 429, 113, -292s         | -104, -114, doublet        | ~1                                   |



Figure S1.8: X-ray powder diffraction patterns. Observed a: XRD of the yellow insoluble product from the reaction Se pellets + AgAsF<sub>6</sub>; observed b: XRD of the yellow insoluble product from the reaction  $2Se + 2Ag + Se_4(AsF_6)_2$ ; Calculated: XRD calculated from crystal structure of **4** 

# S 2 Detailed description of the X-ray single crystal structures:

### S 2.1 Crystal structure of 1

1: A single crystal X-ray structure determination showed that 1 contains discrete  $[(OSO)AgSe_6Ag(OSO)]^{2+}$  dications (Fig. 1a in paper) and  $[Sb(OTeF_5)_6]^-$  anions packed in a TiO<sub>2</sub> type structure with a cubic close packed  $[Sb(OTeF_5)_6]^-$  anion and every second octahedral hole filled by  $[(OSO)AgSe_6Ag(OSO)]^{2+}$  in agreement with the radius ratio rule. The very large spherical  $[Sb(OTeF_5)_6]^-$  anions [outer diameter:  $10.677 + 2 r_{cov}$ .(F) = 12.117 Å] form a cubic close packed lattice where the cations occupy every second octahedral hole. The anions are surrounded trigonally by three cations and the cations octahedrally by six anions (see graphic representations in Figure S2.1.1). Neglecting the coordinated SO<sub>2</sub> molecules (which will distort the almost spherical  $Ag_2Se_6^{2+}$  cation to an ellipsoid) a cation diameter of 7.328 Å is found [outer diameter  $5.048 + 2 r_{ion}(Ag) = 7.328$  Å] giving a ratio  $r_{cat}/r_{anion}$  of 0.605. This is in agreement with a Rutile Ti structure which requires a ratio  $r_{cat}/r_{anion}$  between 0.414 and 0.737. This supports the thesis that the large anions and cations of this kind are highly ionic .



Figure S2.1.1: Representation of the unit cell in **1**. The cations form a cubic face centred packing. All fluorine atoms and the SO<sub>2</sub> molecules are omitted for clarity.

The  $[(OSO)AgSe_6Ag(OSO)]^{2+}$  dication contains a  $D_{3d}$  symmetric,  $[Ag_2Se_6]^{2+}$  heterocubane and two disordered SO<sub>2</sub> molecules which each coordinate to one silver atom. The structure is derived from a six-

membered Se<sub>6</sub> ring in the chair conformation with a very similar geometry to that of Se<sub>6</sub> (Table 1, Figure 1 in main text). The selenium atoms in Se<sub>6</sub> coordinate alternatively to one of the two silver atoms above or below the ring plane (Ag-Se 2.885(2) Å). The geometry of  $[(OSO)AgSe_6Ag(OSO)]^{2+}$  is similar to that of  $[Nb_2Sn_6(C_6H_5Me_2)_2]^{2-}(S2.1.2)$ .<sup>1</sup>



Figure S2.1.2: Comparison of  $[(OSO)AgSe_6Ag(OSO)]^{2+}$  and  $[Nb_2Sn_6(C_6H_5Me_2)_2]_2^-$  geometries. Thermal ellipsoids are drawn at the 50 % probability level.

There are also similarities between the solid state structures of the  $Se_6I_2^{2^+}$  dication and the  $[Ag_2Se_6]^{2^+}$  framework in the  $[(OSO)AgSe_6Ag(OSO)]^{2^+}$  dication (Fig. S2.1.3). One localised, strong Se-I bond and two weaker Se--I contacts in  $Se_6I_2^{2^+}$  are exchanged for three equal Se-Ag bonds in  $[Ag_2Se_6]^{2^+}$ .



Figure S2.1.3: Comparison of the  $Se_6I_2^{2+}$  and "Se<sub>6</sub>Ag<sub>2</sub><sup>2+</sup>" geometries in the solid state.

Each selenium atom has three contacts to fluorine atoms at 3.170(7), 3.384(7), and 3.435(7) Å, which are below or near the sum of their Van der Waals radii (3.40 Å) (Fig. S2.1.4). All other contacts are

greater than 3.680 Å. These Se--F contacts are longer than those found in the salts  $Se_4(Sb_4F_{17})(SbF_6)$ (2.69 to 3.37 Å)<sup>2</sup> and  $Se_3X_3(AsF_6)^{3,4}$  (X = Cl 2.688 to 3.414 Å, Br 2.79 to 3.22 Å).



Figure S2.1.4: Coordination sphere of "Se $_6Ag_2$ " in 1 including one of the three disordered SO<sub>2</sub> molecules

Each silver atom in the  $[(OSO)AgSe_6Ag(OSO)]^{2+}$  dication is coordinated to one SO<sub>2</sub> molecule, with a threefold axes incorporating all sulphur and silver atoms passing through the cation, and the SO<sub>2</sub> molecules rotationally disordered around the threefold axes such that the required site symmetry ( $D_{3d}$ ) is maintained. All three equivalent positions were found for each oxygen atom (S2.1.5).



Figure S2.1.5: Threefold rotational disorder of the  $SO_2$  molecule in 1 lying on the threefold axes running through the S-Ag-Ag-S vector as represented by one  $Ag(SO_2)$  unit. The thermal ellipsoid are drawn at the 25% probability level.

Correspondingly the standard deviations of the S-O [1.36(3) and 1.37(3) Å] and Ag-O [2.28(3) and 3.47(3) Å] distances are very high. The "AgSO<sub>2</sub>" geometry (bond lengths and angles) in **1** is comparable to that in Ag(SO<sub>2</sub>)[Al(OC(CF<sub>3</sub>)<sub>3</sub>)<sub>4</sub>]<sup>5</sup> (S2.1.6/S2.1.7).





b) "AgSO<sub>2</sub>" in Ag(SO<sub>2</sub>)[Al(OC(CF<sub>3</sub>)<sub>3</sub>)<sub>4</sub>]

Figure S2.1.6: Comparison of "AgSO<sub>2</sub>" in **1** (containing one of the three disordered SO<sub>2</sub> molecules) and in Ag(SO<sub>2</sub>)[Al(OC(CF<sub>3</sub>)<sub>3</sub>)<sub>4</sub>]



Figure S2.1.7: Crystal structure of [Ag(OSO)][Al(OC(CF<sub>3</sub>)<sub>3</sub>)<sub>4</sub>].

Each silver atom has three equivalent fluorine contacts (d(Ag-F) = 2.988(4) Å) which are shorter than the sum of their Van der Waals radii (3.20 Å)(S2.1.4). All other contacts are greater than 4.154 Å. This may be compared to similar Ag-F contacts in  $[Ag(CH_2Cl_2)_2]_2[Ti(OTeF_5)_6]$  which lie between 3.028(7) and 3.034(7) Å.  $[Ag(CH_2Br_2)_3][Sb(OTeF_5)_6]$  has only one Ag-F contact at d(Ag-F) = 3.196(7) Å.<sup>6</sup> Since Ti(OTe<sub>5</sub>)<sub>6</sub><sup>2-</sup> is a (more basic) dianion and the Ag-F contacts in both species are longer than those observed in **1** this suggests the presence of a more electrophilic (electron deficient) Ag atom in  $[(OSO)AgSe_6Ag(OSO)][Sb(OTeF_5)_6]_2$ . However, if one compares the above given Ag-F contacts of about 2.99 to 3.20 Å to the shorter Ag-F interactions in  $[Ag(PPh_3)_2][BF_4]$  (2.67 Å) and  $[Ag(PPh_3)_2(CH_3CN)][BF_4]$  (2.65 Å),<sup>7</sup> the  $[M(OTeF_5)_6]^{n-}$  (M= Sb, Ti, n = 1, 2) anions are seen to be very weakly coordinating. Ag-F contacts are provided by one fluorine atom from each of the three anions of one of the triangular faces of the octahedron surrounding the dication. The silver atoms are seven-coordinated (S2.1.8), common to more ionic Ag+ complexes.<sup>8</sup> A similar environment to the silver atom despite Ag-F contacts in **1** is found in  $[Ag_4I_4(PPh_3)_4]$  containing a (AgI)<sub>4</sub> heterocubane core and terminal PPh<sub>3</sub> ligands, i.e. the Se atoms in (S2.1.8) are replaced by iodine and the oxygen atom (X) by phosphorus.<sup>9</sup>



Figure S2.1.8: Coordinative environment of the Ag1 atom in **1**. X denotes the centre of the three disordered oxygen positions of the coordinated OSO. Bond length: Å, <u>bond valence</u>: v.u. The thermal ellipsoid are drawn at the 25% probability level.

The almost spherical  $[Sb(OTeF_5)_6]^-$  anion consists of a central SbO<sub>6</sub> octahedron and six surrounding OTeF<sub>5</sub> octahedra (Fig. S2.1.9). Axial and equatorial Te-F bond lengths are indistinguishable within the

standard deviations and range from 1.77(2) to 1.839(8) Å. One of the two OTeF<sub>5</sub> groups in the asymmetric unit of **1** is rotationally disordered. Two orientations of the four equatorial fluorine atoms are occupied in a 60 : 40 ratio. Average Te-F [1.810(7-20) Å], Te-O [1.829(6)] and Sb-O [1.946(7) Å] distances and average Sb-O-Te bond angles of 142.1(4) ° are in the range of other known [Sb(OTeF<sub>5</sub>)<sub>6</sub>]<sup>-</sup> anions.<sup>10</sup>



Figure S2.1.9: Ortep representations of the octahedral cation and trigonal anion environment in  $[(OSO)AgSe_6Ag(OSO)][Sb(OTeF_5)_6]_2$  **1**. All fluorine, tellurium atoms and the SO<sub>2</sub> molecules are omitted for clarity. Thermal ellipsoids are drawn at the 25 % probability level.



Figure S2.1.10: The Sb(OTeF<sub>5</sub>)<sub>6</sub><sup>-</sup> anions in **1**. Thermal ellipsoids are drawn at the 25 % probability

level.

| Parameters                                                                 | $[NR_4][Sb(OTeF_5)_6]$<br>R = Me                    | R = Et                                            | 1                                                     |
|----------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------|-------------------------------------------------------|
| d(Te-F <sub>ax</sub> ) <sub>av.</sub><br>Range                             | 1.79(2)                                             | 1.76(2)                                           | 1.811(7)<br>1.808(7)–1.814(7)                         |
| $d(Te-F_{eq})_{av.}$<br>Range                                              | 1.74(2)                                             | 1.70(2)                                           | 1.809(7-20)<br>1.77(2)–1.839(8)                       |
| d(Te-O) <sub>av.</sub><br>d(Sb-O) <sub>av.</sub><br>Sb-O-Te (av.)<br>Range | 1.78(1)<br>1.91(1)<br>150.9(8)<br>148.4(8)-153.4(8) | 1.74(1)<br>1.87(1)<br>162.8(9)<br>160.7(9)–167(1) | 1.829(6)<br>1.946(7)<br>142.1(4)<br>141.0(4)-143.2(4) |
| R (R <sub>w</sub> )                                                        | 5.48 % (4.61 %)                                     | 7.10 % (5.99 %)                                   | 5.01 % (7.85 %)                                       |

Table S2.1.11: Structural parameters of the Sb(OTeF<sub>5</sub>)<sub>6</sub><sup>-</sup> anions

### S 2.2 Crystal structure of 2a

**2a:** In contrast to **1** a single crystal X-ray structure determination of **2a** showed also the  $[(OSO)AgSe6Ag(OSO)]^{2+}$  structural unit, but an additional SO<sub>2</sub> molecule is coordinated to each silver atom (Figure 1b in paper). The anion  $[Al(OC(CF_3)_3)_4]^-$  forms double layers. Each double layer includes a slightly associated cation strand (S2.2.1).



Figure S2.2.1: Space Filling representation of 2a showing the anion double layer and the cation strand.



Figure S.2.2.2: Coordination Sphere of Ag1 in **2a**. O6' is a secondary contact to  $SO_2$  coordinated to the next cation. Bond Valences v.u. are underlined. Distances in Å. The thermal ellipsoids are shown with 50% probability (F is isotropic).

The cation again contains a nearly  $D_{3d}$ -symmetric distorted [Ag<sub>2</sub>Se<sub>6</sub>]-cube and two types of SO<sub>2</sub>molecules coordinated to silver. One with a shorter Ag1-O3 distance of 2.362(15) Å; another one with a longer Ag1-O distance of 2.439(17) Å. The former has a secondary contact below the sum of van der Waals radii to the silver atom of the next cation (d = 3.139 Å) and vice versa, resulting in a kind of double bridge (Figure S2.2.3).



Figure S2.2.3: Section of the cation layer of **2** with Ag - O contacts (dashed lines/distance in Å). Thermal ellipsoids are shown with 50% probability.

Moreover five F-(O-S-O) (2xO/2xS/1xO) contacts within a limit of 3.20 Å are found (contacts to disordered F atoms in minority positions are not taken into account). The latter SO<sub>2</sub> points at the voids of the anion layer and thus prevents formation of directing Ag---F contacts and thus leads to the formation of completely disordered C(CF<sub>3</sub>)<sub>3</sub> moieties in the proximity. On the one hand the  $[Ag(OSO)_2]$ -unit is comparable to **1** and  $[Ag(OSO)_{2/2}][SbF_6]^5$  with somewhat longer Ag1-O bond distances, on the other hand to  $[Ag(OSO)_{2/2}][SbF_6]^5$  which features a true  $\eta_2$ -O,O' bridging, also found in the lithium salt  $[Li_2(SO_2)_8][B_{12}Cl_{12}]^{11}$ .

All S-O distances (d(SO) = 1.344(16), 1.402(14), 1.36(3), 1.406(19)) appear slightly shorter than in gaseous SO<sub>2</sub>, likely due to libration and/or disorder. The (Ag-)OSO(-Ag) angle is greater (121.6°) and shorter (Ag-)OSO (116.3°) than in gaseous SO<sub>2</sub> (119.5°)<sup>12</sup>.

The  $[Ag_2Se_6]$ -heterocubane itself also contains the Se\_6-ring in chair conformation, the structural parameters of which are in very good agreement with Se\_6 and **1** (Table 1, Figure 1 in the main text). There are three different Ag-Se distances (d(Ag1-Se1)= 2.791(3) Å; d(Ag1-Se2)=2.893(3) Å; d(Ag1-Se3)=2.950(3) Å) representing the deviation from ideal D<sub>3d</sub>-symmetry. Compared to **1** (*D*<sub>3d</sub>), over

 $\operatorname{Se_6I_2}^{2^+}(C_{2h})$  this is a symmetry reduction to point group  $C_i$ . This may be due to the asymmetry of different coordination sites to silver as well as packing effects.

Moreover there is a Ag-F-contact (below the sum of vdW radii of 3.014 Å which is in good agreement distances discussed in the previous section (Figure S2.2.2). Thus in addition to the Ag-O secondary contact Silver shows a seven-fold coordination, favoured in those compounds. This is analogous to **1** in which the silver atom bears three fluorine contacts. The valence sum<sup>13</sup> is 1.063 and close to one. This is again an example for the electron deficiency of  $Ag^+$  saturated through OSO directly (1st sphere) and F/O indirectly (2nd sphere). Moreover several Se-F contacts (<3.2 Å) are found speaking of positive charge delocalization from silver to selenium. (S2.2.3)



Figure S2.2.3: Se –F contacts below 3.2 Å in 2.

Electronic Supplementary Information for Dalton Transactions This journal is  $\ensuremath{\mathbb{C}}$  The Royal Society of Chemistry 2011

The anion  $[Al(OC(CF_3)_3)_4]^-$  is nearly spherical, contains a  $[AlO_4]$ -tetrahedron and shows rotational disorder of one CF<sub>3</sub> and of two C(CF<sub>3</sub>)<sub>3</sub> groups (S2.2.4) which are typical for this kind of anion<sup>14</sup>. The disordered CF<sub>3</sub>-group (occupation ratio 32 : 68) could not be refined anisotropically and therefore the contact to SO<sub>2</sub> leads to high standard deviations in the structural parameters. Moreover two perfluoro-*tert*-butoxy-groups are disordered, one with an occupation ratio of 55:45, another one with 35: 65. Major occupation sites could refined anisotropic, the minor sites were refined isotropic. Due to this disorder the data : parameter ratio reaches 7.9 / 1.<sup>15</sup>

The Al-O distances reach from 1.685(14) Å to 1.717(12) Å, typically for a highly disordered anion<sup>16</sup> and bearing uncommonly short Al-O bonds due to librational effects.



Figure S2.2.4: Representation of the disorder in the anion  $[Al(OC(CF_3)_3)_4)]^-$  in **2a**.

### S 2.3 Crystal structure of 3

**3: 3** is constructed from a polymeric  $(AgSe_6^+)_n$  cation (see Figure 1b and 5a main text) and the honeycomb-like  $[Ag_2(SbF_6)_3]^-$  anion (S2.3.5). The  $(AgSe_6^+)_n$  cation can be viewed as containing a 1-dimensional polymeric chain of  $(AgSe_6^+)_n$  cations containing a one dimensional stack of close packed Se<sub>6</sub> molecules with Ag<sup>+</sup> residing in the octahedral holes. This increases the distance between Se<sub>6</sub> molecules from 4.43(1) Å in Se<sub>6</sub> (solid)<sup>17</sup> to 5.377 (2) Å in **3**, and to 5.290 (2) Å in **4** (S2.3.1).



a)





c)

Figure S2.3.1: Distances between Se<sub>6</sub> rings in a) neutral Se<sub>6</sub> (s), b) **3**, and c) **4**. The distances were calculated as the average of the distances between corresponding Se atoms of adjacent Se<sub>6</sub> rings as indicated above.

A heterocubane like Ag1Se<sub>6</sub>Ag1 portion of the stack is similar to the Ag<sub>2</sub>Se<sub>6</sub><sup>2+</sup> core in **1** and **2**. Similar columns containing a metal ion and a ring of selenium, tellurium and arsenic are present in related species, e.g.  $(RbSe_8^+)_n$  in  $Rb_2[Pd(Se_4)_2]$ ·Se<sub>8</sub>  $(S2.3.2)^{18}$ ,  $(CsTe_8^+)_n$  in  $Cs_4Te_{28}$ ,<sup>19</sup>  $(MoAs_8^{2-})_n$  in  $[K(2,2,2-crypt)]_2[MoAs_8]$ ·NH<sub>2</sub> $(CH_2)_2$ NH<sub>2</sub><sup>20</sup> and  $[Rb(NbAs_8)^-]_n$  in  $[Rb(2,2,2-crypt)]_2[Rb(NbAs_8)]$ .<sup>21</sup> It appears that the size and the coordination number of the group 15 and 16 rings are affected by the size of metal cation.



Figure S2.3.2: Structures of  $(AgSe_6^+)_n$  in **3** and the  $[Rb(Se_8)^+]$  chain cation in  $Rb_2[Pd(Se_4)_2]$  Se<sub>8</sub>. The thermal ellipsoid are drawn at the 50% probability level.

The silver atom (Ag1) in the "Se<sub>6</sub>Ag" chain has only one fluorine contact (d(Ag1-F6) = 3.095(9) Å, 0.03 v.u.;  $\Sigma$  van der Waals radii of Se and Ag<sup>+</sup> is 3.20 Å) (see Figure 5a and S2.3.3) in the second coordination sphere of Ag1.



### Figure S2.3.3: Coordination spheres of Ag1 and Ag2 in 3

Although the contact is weak, it directs the  $Ag^+$  ion away from a straight line down the stack axis and leads to unequal Ag-Se bond lengths and SeAgSe angles (Figure 1b and S2.3.3). Each selenium atom has two contacts to the fluorine atoms (2.912(7) – 3.218(8) Å), which are below the sum of their van der Waals radii (3.40 Å) (S2.3.4). These Ag1-F and Se-F contacts are comparable to those in **1** and **2**.



Figure S2.3.4: The anion-Se<sub>6</sub> contacts in 3

The anion is constructed from two silver cations and three  $SbF_6^-$  anions per  $[AgSe_6]^+$  link of the polymeric cation chain. The hexagonal channels, in which the cationic chains reside, are formed by the interaction of silver cations with fluorine atoms from each  $SbF_6^-$  anions (Figure S2.3.5). Six silver atoms reside at each corner of the hexagonal cavity and contact six bridging  $SbF_6^-$  units (Figure S2.3.5 b) The surface of the channels along the a-axis can be viewed as an eight-membered ring (2 Sb, 4F and 2Ag) crossed net (Figure 2.3.5 c).





c)



Figure 2.1.5: a) view of **3** down the c-axis; b) an expansion of a portion of 3 down the c-axis; c) a sideview down the a-axis of the highlighted part in the bracket of Figure b.

Three types of SbF<sub>6</sub><sup>-</sup> units are observed within the complex anion, differing in the orientation towards their neighbouring silver atoms and towards the  $[AgSe_6]^+$  chain. Each individual SbF<sub>6</sub><sup>-</sup> unit is structurally unremarkable (Sb-F in range 1.859(6)-1.884(6) Å, F-Sb-F angles 90 ± 0.7 or 180 ± 0.2 °) (S2.3.6).





d(Sb3 - F8) = 1.883(7), s = 0.80 d(Sb3 - F9) = 1.866(7), s = 0.84 d(Sb3 - F10) = 1.871(7), s = 0.82

 $\Sigma s(Sb - F) = 4.92 v.u.$ 

Figure S2.3.6: Coordination spheres of  $Sb1F_6^-$ ,  $Sb2F_6^-$  and  $Sb3F_6^-$  in **3**. Thermal ellipsoids are drawn at the 50 % probability level.

The Sb-F distances are essentially independent of whether the fluorine atoms are weakly linked to  $Ag^+$  or the Se<sub>6</sub> ring of  $(AgSe_6^+)_n$  implying the selenium atom in Se<sub>6</sub> are also positively charged. Sb1 and Sb3 are superimposed along the c-axis while the Sb2 atoms are alternatively displaced either side due to

the Sb2-F(6)---Ag1 interaction that leads to the distortion of the  $(AgSe_6^+)_n$  stack (Figure 2.3.2 and S2.3.9).

Neutral chalcogenide rings stabilized in a host structure is relatively rare. There are even fewer metal chalcogenide complex directed 2D and 3D host structures. Several examples are reported as encapsulated in 2D host structures, such as  $(Cs(S_8)^+)_n$  in  $Cs_2Sn_3S_70.5S_8$ ,<sup>22</sup>  $[Cs(Te_8)^+]_n$  in  $Cs_3Te_{22}$ , and  $[Rb(Se_8)^+]_n$  in  $Rb_2[Pd(Se_4)_2]Se_8$  (Figure S2.3.7 a). Columns of  $[Cs(Te_8)^+]_n$  in  $Cs_4Te_{28}$  are inserted into an anionic 3D telluride  $[Te_{20}^{4-}]$  framework. Few examples<sup>23-26</sup> of host framework based on simple inorganic salts are known, all of which are constructed from AgNO<sub>3</sub> or from its components e.g. Ag(NO<sub>3</sub>)<sub>3</sub><sup>2-</sup>. A striking example is  $C_{60}{Ag(NO_3)}_5$  in which the zeolithe-like  $[(AgNO_3)_5]$  network hosts the fullerene guest. The polymeric  $(Se_6Ag^+)_n$  promoted honeycomb-like net,<sup>27-29</sup> formed by  $[Ag_2(SbF_6)_3^-]_n$  in **3** is comparable to that of  $\{[Ag(NO_3)_3]^{2-}\}_n$  in  $[Ag_5L_3(NO_3)_3][Ag(NO_3)_3]$  (L = bipyridine-Schiff-base ligand) (Figure S2.3.7 b).



Figure S2.3.7: a) A view of  $Rb_2[Pd(Se_4)_2]Se_8$ ; b) A view of the  $[Ag(NO_3)^2]_n$  framework in  $[Ag_5L_3(NO_3)_3][Ag(NO_3)_3]SHCl_3$  (L = bipyridine-Schiff-base ligand).



Figure S2.3.8: Bond angles in 3



Figure S2.3.9: A detailed and simplified view of F6 (from Sb3)-Ag1 interactions in 3

### S 2.4 Crystal structure of 4

**4:** The  $[(AgSe_6Ag)^{2+}]_n$  cation in **4** consists of an infinite two-dimensional cation containing polymeric chains of  $[Ag1Se_6^+]_n$  cross-linked by silver (Ag2) cations (Figure 1d in main text and S2.4.1).









Figure S2.4.1: a) Structure of the  $[(AgSe_6Ag)^{2+}]_n$  cation in 4; The thermal ellipsoids are drawn at the 50% probability level; b) Structure of  $[Rh_2(O_2CCF_3)_4]_3(S_8)_2$ ; c) Comparison of the " $(Ag2Se_6^+)_n$ " fragment in  $[(AgSe_6Ag)^{2+}]_n$  and the PdCl<sub>2</sub>Se<sub>6</sub> geometries in the solid state.

The  $[Ag1Se_6^+]_n$  stacks can be described similarly as for the related stacks in **3**. Adjacent  $[Ag1Se_6^+]_n$ stacks are linked by shorter, linear Se<sub>6</sub>-Ag2-Se<sub>6</sub> bonds (Ag2-Se1 2.688(2) Å; Se1-Ag2-Se1 180.00(4)°). Alternatively, the  $[(AgSe_6Ag)^{2+}]_n$  cation in 4 can be considered as built from polymeric  $[Ag_2Se_6^+]_n$  chains cross-linked by silver (Ag1) cations. The  $[Ag_2Se_6^+]_n$  chains are similar to those of PdCl<sub>2</sub>Se<sub>6</sub> in which Se<sub>6</sub> is side-on coordinated to Pd (Figure S2.4.1 c).<sup>30</sup> Related cyclic S<sub>8</sub>, Se<sub>6</sub>, and Se<sub>7</sub> molecules usually coordinate side-on (as S<sub>8</sub> to Ag in AgS<sub>8</sub><sup>+</sup>, Se<sub>6</sub> in **1** and **2**) or end-on (as Se<sub>6</sub> to Pd in PdCl<sub>2</sub>Se<sub>6</sub>, Se<sub>7</sub> to Re in Re<sub>2</sub>I<sub>2</sub>(CO)<sub>6</sub>Se<sub>7</sub><sup>31, 32</sup>). The infinite 2D architecture in  $[(AgSe_6Ag)^{2+}]_n$  contains both side-on and end-on coordination modes. As far as we are aware, such a 2D structure constructed from simple components has not been previously observed. However a related pseudo 2D ribbon-type structure in  $[Rh_2(O_2CCF_3)_4)_3(S_8)_2]_n$  has been reported by F. A. Cotton and his coworkers,<sup>33</sup> in which two infinite chains of  $[Rh_2(O_2CCF_3)_4(S_8)]_n$  are further connected by additional dirhodium tetra(trifluoroacetate) molecules lying between each pair of facing S<sub>8</sub> rings (Figure S2.4.1 b).



Figure S2.4.2: A portion of 4 projected down the c-axis.

The overall structure of **4** consists of sheets of  $(AgSe_6Ag^{2^+})_n$  in the ac plane and separated by  $AsF_6^$ anions, linked by fluorine-cation contacts (Figure S2.4.2). Each  $AgSe_6$  fragment is surrounded by six  $AsF_6^-$  anions. There are no Ag-F contacts to the  $(Ag1Se_6^+)_n$  chains in **4**. In contrast, the bridged Ag2 in **4** is involved in multiple fluorine contacts, two from each of the four adjacent anions (Ag2-F1 2.689(6) (x 4), Ag2-F2 3.053(6) (x 4) Å). Each selenium atom in **4** has four (Se1) or five (Se2) contacts to fluorine (S2.4.5) with Se-F distances similar to those in **3**. The bond distances in the AsF<sub>6</sub><sup>-</sup> (*C*<sub>2</sub>) anion in **4** can be found in figure S2.4.7.



Σ(Ag1-Se) =0.966



Figure S2.4.3: Coordination spheres of Ag1 and Ag2 in 4



Figure S2.4.4: Bond angles in 4



Figure S2.4.5: Cation-anion interactions in 4







Figure S2.4.6: a) Se<sub>6</sub>-anion interactions in 4; b) Se1-F and Se2-F bond distances


Figure S2.4.7: Coordination sphere of As in 4. As-F1 = 1.721 (5), As-F2 = 1.712(5), As-F3 = 1.688 (6) Å. The thermal ellipsoids were drawn at the 50% probability level.

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2011 **Table S2.5:** Comparison of the structural parameters of Se<sub>6</sub> rings in several structures including 1-4 and A-E.

| $\frac{\text{Se6}(\text{s})}{\text{Se-Se}(\text{\AA})} = 2.356 \text{ (s)}$ | $\begin{array}{c ccc} (s)^{a} & 1 \\ \hline 6 (3) & 2.346 (2) \\ \end{array}$ | 2               | 3               | 4               | C D C b           |                                                |                                                   |                                                                                 |                                                                                                |                               |  |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------|-----------------|-----------------|-------------------|------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------|--|
| $Se_{-}Se(Å) = 2.356($                                                      | 6 (3) 2.346 (2)                                                               |                 |                 | 7               | $Cu_2Br_2Se_6$    | PdCl <sub>2</sub> Se <sub>6</sub> <sup>c</sup> | $(\mathrm{Se}_6\mathrm{I})_n n(\mathrm{SbF}_6)^d$ | $\mathrm{Se}_{6}\mathrm{I}_{2}[\mathrm{AsF}_{6}]_{2}$ · 2 $\mathrm{SO}_{2}^{d}$ | $\operatorname{Se}_6(\operatorname{Ph})_2(\operatorname{AsF}_6)_2 \cdot \operatorname{SO}_2^e$ | $Rb_3AsSe_4 \cdot 2 Se_6^{f}$ |  |
| 2.350 (A)                                                                   |                                                                               | 2.339(3) (x2)   | 2.346 (2) (x 4) | 2.339 (3) (x 2) | 2.354(4) (x 4)    | 2.327 (6) (x 2)                                | 2.295 (4) (x 2)                                   | 2.227 (2) (x 2)                                                                 | 2.263 (4) (x 2)                                                                                | 2.367 (2)                     |  |
| (in the Se6 ring)                                                           |                                                                               | 2.368(3) (x2)   | 2.345 (2) (x 2) | 2.362 (2) (x 4) | 2.389 (3) (x 2)   | 2.377 (5) (x 2)                                | 2.362 (3) (x 2)                                   | 2.468 (2) (x 2)                                                                 | 2.383 (3) (x 2)                                                                                |                               |  |
|                                                                             |                                                                               | 2.353(3) (x2)   |                 |                 |                   | 2.381 (5) (x 2)                                | 2.365 (4) (x 2)                                   | 2.482 (2) (x 2)                                                                 | 2.449 (4) (x 2)                                                                                |                               |  |
| Se-Se(ave., Å) 2.356 (                                                      | 6 (3) 2.346 (2)                                                               | 2.353(3)        | 2.346 (2)       | 2.354 (3)       | 2.366 (4)         | 2.362 (5)                                      | 2.341 (4)                                         | 2.392 (2)                                                                       | 2.365 (4)                                                                                      | 2.367 (2)                     |  |
| Se-Se-Se(o) 101.1 (                                                         | 1 (1) 100.91 (7)                                                              | 100.16(10) (x2) | 99.61 (7) (x 2) | 98.48 (7) (x 4) | 99.06 (15) (x 2)  | 97.7 (1) (x 2)                                 | 103.3(1) (x 2)                                    | 95.72(7) (x 2)                                                                  | 99.61 (1) (x 2)                                                                                | 102.93 (6)                    |  |
|                                                                             |                                                                               | 100.55(10) (x2) | 99.68 (6) (x 2) | 99.76 (9) (x 2) | 100.85 (13) (x 4) | 98.8 (2) (x 2)                                 | 103.7 (1) (x 2)                                   | 103.48(7) (x 4)                                                                 | 100.1 (1) (x 2)                                                                                |                               |  |
|                                                                             |                                                                               | 99.75(10) (x2)  | 100.05 (6) (x2) |                 |                   | 107.7 (1) (x 2)                                | 104.3 (1) (x 2)                                   |                                                                                 | 102.4 (1) (x 2)                                                                                |                               |  |
| Se-Se-Se(ave., o) 101.1 (                                                   | 1 (1) 100.91 (7)                                                              | 100.15(10)      | 99.78(2)        | 98.91 (5)       | 100.25 (13)       | 101.4 (1)                                      | 103.8 (1)                                         | 100.89 (7)                                                                      | 100.7 (1)                                                                                      | 102.93 (6)                    |  |
| Se-Se-Se(ave., o) 76.2 (3                                                   | (3) 76.49 (1)                                                                 | 77.64(10)       | 78.11 (1)       | 79.78 (3)       | 78.5 (2)          | 77.1 (2)                                       | 75.7 (2)                                          | 74.6 (1)                                                                        | 65.1 (1)                                                                                       | 73.3 (1)                      |  |

a) reference <sup>17</sup>; b) reference <sup>34</sup>; c) reference <sup>30</sup>; d) references <sup>35, 36</sup>; e) reference <sup>37</sup>; f) reference <sup>18</sup>;



Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2011 **Table S1.6:** Comparison of the structural parameters and the strengths  $[v.u.]^{43}$  of the Ag-X (X = Se, O, and F) and Se-F contacts in  $[(OSO)AgSe_6Ag(OSO)]^{2^+}$  (in 1),  $[(OSO)_2AgSe_6Ag(OSO)_2]^{2^+}$  (in 2a)  $[Se_6Ag^+]n$  (in 3) and  $[AgSe_6Ag^{2^+}]_n$  (in 4) and the calculated structures A-E on pbe0/tzvpp level.

| Parameter                           | 1              | 2          | 3             | 4           | Α     | В          | С          | D          | Е          |
|-------------------------------------|----------------|------------|---------------|-------------|-------|------------|------------|------------|------------|
| d(Ag1-Se) [Å], s[v.u.]              | 2.885(2),      | 2.791(3),  | 3.0239(17),   | 2.9273(18), | 2.903 | 2.756      | 2.744 (2x) | 2.782 (2x) | 2.737 (2x) |
|                                     | 0.185(3 x)     | 0.235(1x)  | 0.127(2 x)    | 0.165(4 x)  |       |            |            |            |            |
|                                     |                | 2.893(3),  | 3.0636(16),   | 2.941(3),   |       | 2.929 (2x) | 2.946 (4x) | 3.009 (2x) | 3.046 (2x) |
|                                     |                | 0.179(1x)  | 0.114 (2 x)   | 0.158(2 x)  |       |            |            |            |            |
|                                     |                | 2.950(3),  | 2.8408(13),   |             |       |            |            | 3.045 (2x) | 3.295 (2x) |
|                                     |                | 0.153(1x)  | 0.208 (2 x)   |             |       |            |            |            |            |
| d(Ag1-Se) (Ave. [Å])                | 2.885          | 2.878      | 2.976         | 2.932       |       |            |            |            |            |
| $\Sigma s(Ag1-Se), s[v.u.]$         | 0.555          | 0.567      | 0.898         | 0.976       |       | 2.575      | 2.581      |            |            |
| d(Ag2-Se) [Å],                      |                |            |               | 2.688(3),   |       |            |            |            |            |
| s[v.u.](in 4)                       |                |            |               | 0.314 (2 x) |       |            |            |            |            |
| $\Sigma s(Ag2-Se), s[v.u.]$         |                |            |               | 0.628       |       |            |            |            |            |
| d(Ag1-O) [Å], s [v.u.]              | 2.28(3),       | 2.362(15), |               |             |       |            |            | 2.258 (2x) | 2.358 (2x) |
|                                     | 0.310 (1x)     | 0.247 (1x) |               |             |       |            |            |            |            |
|                                     |                | 2.439(17), |               |             |       |            |            |            | 2.489 (2x) |
|                                     |                | 0.199 (1x) |               |             |       |            |            |            |            |
| $\Sigma s(Ag1-O), s[v.u.]$          |                | 0.446      |               |             |       |            |            |            |            |
| d(Ag1-O') [Å],                      |                | 3.139(1),  |               |             |       |            |            |            |            |
| s[v.u.](in 2)                       |                | 0.030 (1x) |               |             |       |            |            |            |            |
| d(Ag1-F) [Å], s[v.u.]               | 2.988(4),      | 3.017(2),  | 3.095(1),     |             |       |            |            |            |            |
|                                     | 0.040(3 x)     | 0.021(1x)  | 0.03 (1 x)    |             |       |            |            |            |            |
| d(Ag2-F) [Å],                       |                |            |               | 2.689(6),   |       |            |            |            |            |
| s[v.u.](in 4) a                     |                |            |               | 0.090(4 x)  |       |            |            |            |            |
|                                     |                |            |               | 3.053(6),   |       |            |            |            |            |
|                                     |                |            |               | 0.034(4 x)  |       |            |            |            |            |
| d(Se-F)range [Å]                    | 3.170-         | 3.017      | 2.912 - 3.218 | 3.080-3.350 |       |            |            |            |            |
| $\Sigma_{a}(A_{a}, 1, E)$ afree $1$ | 3.384          |            | 0.02          |             |       |            |            |            |            |
| 2s(Ag1-F), s[v.u.]                  | 0.120 (2<br>x) |            | 0.03          |             |       |            |            |            |            |
| $\Sigma$ s(Ag2-F), s[v.u.] (in      | İ Ó            |            |               | 0.496       |       |            |            |            |            |
| 4)                                  |                |            |               |             |       |            |            |            |            |
| $\Sigma s(Ag1-X), s[v.u.]$          | 0.985          | 1.064      | 0.928         | 0.976       |       |            |            |            |            |
| $\Sigma$ s(Ag2-X), s[v.u.] (in      |                |            |               | 1.124       |       |            |            |            |            |
| 4)                                  |                |            |               |             |       |            |            |            |            |

### S3 FT Raman Spectra of 4





- II)
- Calculated on the PBE0/tzvpp levels A, B and C denote fragments according to Table 1 in III) the main text.

S4.1 Energetics of the calculated compounds

| total energy ZPE total energy + ZPE total energy + ZPE (lastras)                                                                          |                            |
|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| compound method basisset (Hartree) (Hartree) (Hartree) (KJ/moi) 6                                                                         | enthalpy 298.15 K (kJ/mol) |
| Ag bp svp -146.7596727 U -146.7596727 -385317.509                                                                                         | -385311.3115               |
| Ag pbe0 tzvpp -146.6844/28 0 -146.6844/28 -385120.0/16                                                                                    | -385113.8741               |
| $Ag_2Se_6^{-1}$ bp svp -14/03.00/51 0.0054151 -14/03.0021 -38602/30.83                                                                    | -38602688.61               |
| Ag <sub>2</sub> Se <sub>6</sub> <sup>-1</sup> pbe0 tzvpp -14701.16432 0.0061552 -14701.15817 -38597889.59                                 | -38597848.81               |
| $Se_6^{2^{+}}$ _boat bp svp -14408.68031 0.0048117 -14408.6755 -37829976.36                                                               | -37829947.23               |
| $Se_{6_{2}}^{2^{\star}}$ boat pbe0 tzvpp -14406.99728 0.0054946 -14406.99179 -37825555.78                                                 | -37825528.04               |
| $Se_{6_{2}}^{2^{*}}$ _chair bp svp -14408.68116 0.0043771 -14408.67679 -37829979.75                                                       | -37829949.82               |
| $Se_{6_{2}}^{2+}$ _chair pbe0 tzvpp -14406.98819 0.0050619 -14406.98312 -37825533.04                                                      | -37825504.37               |
| Se <sub>8</sub> <sup>24</sup> bp svp -19211.87721 0.0064039 -19211.8708 -50440765.25                                                      | -50440724.93               |
| Se <sub>8</sub> <sup>24</sup> pbe0 tzvpp -19209.62835 0.0073466 -19209.62101 -50434858.42                                                 | -50434819.94               |
| Se <sub>6</sub> bp svp -14409.42699 0.0044854 -14409.4225 -37831937.63                                                                    | -37831907.96               |
| Se <sub>6</sub> pbe0 tzvpp -14407.74854 0.0052028 -14407.74333 -37827528.97                                                               | -37827500.67               |
| Ag bp svp -147.0591299 0 -147.0591299 -386103.7339                                                                                        | -386097.5365               |
| Ag pbe0 tzvpp -146.930293 0 -146.930293 -385765.4725                                                                                      | -385759.2751               |
| $Ag_2Se_6(SO_2)_2^{2+}$ bp svp 0 0                                                                                                        | 2.478968175                |
| Ag <sub>2</sub> Se <sub>6</sub> (SO <sub>2</sub> ) <sub>2</sub> <sup>2+</sup> pbe0 tzvpp -15798.05812 0.0223095 -15798.03581 -41477741.76 | -41477675.52               |
| SO <sub>2</sub> bp svp -548.4196476 0.0064362 -548.4132114 -1439858.843                                                                   | -1439848.332               |
| SO <sub>2</sub> pbe0 tzvpp -548.4112333 0.0072201 -548.4040132 -1439834.693                                                               | -1439824.71                |
| AgSO <sub>2</sub> <sup>+</sup> bp svp -695.2306906 0.0073497 -695.2233409 -1825308.826                                                    | -1825293.234               |
| AgSO <sub>2</sub> <sup>+</sup> pbe0 tzvpp -695.1352469 0.0081043 -695.1271426 -1825056.257                                                | -1825041.106               |
| $Ag(SO_2)_2^+$ bp svp 0 0                                                                                                                 | 2.478968175                |
| Ag(SO <sub>2</sub> ) <sub>2</sub> <sup>+</sup> pbe0 tzvpp -1243.583969 0.0165106 -1243.567458 -3264986.261                                | -3264959.061               |
| $AgSe_6SO_2^+$ bp svp 0 0                                                                                                                 | 2.478968175                |
| AgSe <sub>6</sub> SO <sub>2</sub> <sup>+</sup> pbe0 tzvpp -15102.95981 0.013837 -15102.94597 -39652783.45                                 | -39652736.34               |
| AgSe <sub>6</sub> <sup>+</sup> bp svp -14556.28883 0.0052026 -14556.28363 -38217521.49                                                    | -38217486.08               |
| AgSe <sub>6</sub> <sup>+</sup> pbe0 tzvpp -14554.52527 0.0058344 -14554.51943 -38212889.61                                                | -38212855.42               |
| Se <sub>8</sub> bp svp -19212.58706 0.0062727 -19212.58079 -50442629.33                                                                   | -50442588.78               |
| Se <sub>8</sub> pbe0 tzvpp -19210.34421 0.0069981 -19210.33721 -50436738.81                                                               | -50436699.63               |
| $Aq_2Se_6(SO_2)_4^{2+}$ pbe0 tzvpp -16894.92007 0.0381615 -16894.88191 -44357511.1                                                        | -44357423.83               |
| Ag <sub>2</sub> pbe0 tzvpp -293,9899614 0,0004115 -293,9895499 -771869,5398                                                               | -771859.3212               |
| Ag(SO <sub>2</sub> ) <sub>3</sub> <sup>+</sup> pbe0 tzvpp -1792.013727 0.0241167 -1791.98961 -4704868.578                                 | -4704827.638               |
| AqSe6(SO <sub>2</sub> ) <sub>2</sub> <sup>+</sup> pbe0 tzvpp -15651.38298 0.0216066 -15651.36137 -41092648.03                             | -41092587.54               |

# Electronic Supplementary Information for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2011

|                                                   | free enthalpy   |                         | freeh                 | freeh chem. |                   | diel+OC      | diel+Occorrecte | free enthalpy |
|---------------------------------------------------|-----------------|-------------------------|-----------------------|-------------|-------------------|--------------|-----------------|---------------|
| compound                                          | 298.15 (kJ/mol) | freeh energy 3.71845226 | entropy<br>0.16713862 | pot.        | diel+OC (hartree) | (kJ/mol)     | d               | solvation     |
| Ag⁺                                               | -385361.1439    | 3                       | 3                     | -43.63496   | -0.108216374      | -284.12208   | -276.19208      | -385637.336   |
| -                                                 |                 | 3.71845226              | 0.16713862            |             |                   |              |                 |               |
| Ag⁺                                               | -385163.7065    | 3                       | 3                     | -43.63496   | -0.108216543      | -284.122525  | -276.192525     | -385439.899   |
| Ag <sub>2</sub> Se <sub>6</sub> <sup>2+</sup>     | -38602858.47    | 53.96                   | 0.56969               | -113.41     | -0.247464417      | -649.7178078 | -641.7878078    | -38603500.25  |
| $Ag_2Se_6^{2+}$                                   | -38598014.87    | 54.46                   | 0.55698               | -109.12     | -0.249228936      | -654.3505513 | -646.4205513    | -38598661.29  |
| Se <sub>6</sub> <sup>2+</sup> _boat               | -37830084.37    | 39.28                   | 0.45995               | -95.38      | -0.268634165      | -705.2989785 | -697.3689785    | -37830781.74  |
| Se <sub>6</sub> <sup>2+</sup> _boat               | -37825659.99    | 39.69                   | 0.44259               | -89.79      | -0.273260134      | -717.4444602 | -709.5144602    | -37826369.51  |
| Se <sub>6</sub> <sup>2+</sup> _chair              | -37830090.95    | 38.95                   | 0.47336               | -99.7       | -0.263132172      | -690.8534957 | -682.9234957    | -37830773.87  |
| Se <sub>6</sub> <sup>2+</sup> _chair              | -37825642.91    | 39.48                   | 0.46465               | -96.58      | -0.264423733      | -694.2444909 | -686.3144909    | -37826329.23  |
| Se <sub>8</sub> <sup>2+</sup>                     | -50440891.22    | 54.66                   | 0.55776               | -109.16     | -0.243323118      | -638.8448271 | -630.9148271    | -50441522.14  |
| Se <sub>8</sub> <sup>2+</sup>                     | -50434981.03    | 55.29                   | 0.54031               | -103.33     | -0.24660319       | -647.4566564 | -639.5266564    | -50435620.56  |
| Se <sub>6</sub>                                   | -37832041.44    | 38.96                   | 0.44769               | -92.04      | -0.003928146      | -10.31334596 | -2.383345959    | -37832043.83  |
| Se <sub>6</sub>                                   | -37827630.79    | 39.48                   | 0.4364                | -88.15      | -0.003957287      | -10.3898567  | -2.459856702    | -37827633.24  |
|                                                   |                 | 3.71845226              | 0.16713862            |             |                   |              |                 |               |
| Ag                                                | -386147.3689    | 3                       | 3                     | -43.63496   | -3.464E-07        | -0.000909473 | 7.929090527     | -386139.4398  |
| ٨                                                 | 205000 4075     | 3.71845226              | 0.16713862            | 42 62406    | 0.00000640        | 0.001702040  | 7 000000000     | 205001 1702   |
| Ag $A = C = (C \cap A)^{2+}$                      | -365609.1075    | 3                       | 3                     | -43.03490   | -0.000000649      | -0.001703949 | 7.928296051     | -365601.1792  |
| $Ag_2Se_6(SO_2)_2$                                | 2.478968175     | 400.00                  | 0.00004               | 444.0       | 0 000444700       |              | 7.93            | 1.93          |
| $Ag_2Se_6(SO_2)_2$                                | -41477941.53    | 122.33                  | 0.89221               | -141.2      | -0.222111782      | -583.1544667 | -5/5.224466/    | -414/8516.75  |
| SO <sub>2</sub>                                   | -1439922.831    | 24.93                   | 0.24987               | -47.09      | -0.006733579      | -17.67900981 | -9.749009813    | -1439932.58   |
| $SO_2$                                            | -1439898.765    | 26.46                   | 0.24838               | -45.11      | -0.007050361      | -18.5107225  | -10.5807225     | -1439909.34   |
| AgSO <sub>2</sub> *                               | -1825391.206    | 32.41                   | 0.3286                | -63.09      | -0.091543741      | -240.3480839 | -232.4180839    | -1825623.631  |
| AgSO <sub>2</sub>                                 | -1825139.338    | 33.95                   | 0.32947               | -61.8       | -0.092989886      | -244.1449377 | -236.2149377    | -1825375.55   |
| $Ag(SO_2)_2$                                      | 2.478968175     |                         |                       |             |                   | 0            | 7.93            | 7.93          |
| Ag(SO <sub>2</sub> ) <sub>2</sub> <sup>+</sup>    | -3265100.73     | 68.07                   | 0.47516               | -71.12      | -0.081594424      | -214.2261524 | -206.2961524    | -3265307.026  |
| AgSe <sub>6</sub> SO <sub>2</sub> <sup>+</sup>    | 2.478968175     |                         |                       |             |                   | 0            | 7.93            | 7.93          |
| AgSe <sub>6</sub> SO <sub>2</sub> <sup>+</sup>    | -39652934.3     | 80.96                   | 0.66397               | -114.53     | -0.067136694      | -176.2673853 | -168.3373853    | -39653102.64  |
| AgSe <sub>6</sub> <sup>+</sup>                    | -38217636.6     | 46.59                   | 0.50482               | -101.44     | -0.0690293        | -181.2364227 | -173.3064227    | -38217809.9   |
| AgSe <sub>6</sub> <sup>+</sup>                    | -38213003.1     | 47.03                   | 0.49533               | -98.18      | -0.071028649      | -186.4857128 | -178.5557128    | -38213181.66  |
| Se <sub>8</sub>                                   | -50442751.71    | 54.54                   | 0.54649               | -105.91     | -0.003547455      | -9.313843869 | -1.383843869    | -50442753.09  |
| Se <sub>8</sub>                                   | -50436860.09    | 55.08                   | 0.53821               | -102.9      | -0.003765823      | -9.88716746  | -1.95716746     | -50436862.04  |
| $Ag_2Se_6(SO_2)_4^{2+}$                           | -44357746.3     | 184.98                  | 1.08157               | -135.01     | -0.204647993      | -537.3032903 | -529.3732903    | -44358275.68  |
| Ag <sub>2</sub>                                   | -771933.2147    | 8.82                    | 0.24784               | -62.59      | -0.005247062      | -13.77616086 | -5.846160861    | -771939.0563  |
| $Ag(SO_2)_3^+$                                    | -4705022.822    | 101.78                  | 0.65465               | -90.92      | -0.076978564      | -202.1072128 | -194.1772128    | -4705216.994  |
| AgSe6(SO <sub>2</sub> ) <sub>2</sub> <sup>+</sup> | -41092827.32    | 114.74                  | 0.80422               | -122.56     | -0.065766206      | -172.6691694 | -164.7391694    | -41092992.06  |

## S4.2 Born-Fajans-Haber cycles for estimation of lattice enthalpies



Electronic Supplementary Information for Dalton Transactions This journal is  $\ensuremath{\mathbb{C}}$  The Royal Society of Chemistry 2011

$$418 \text{ kJ mol}^{-1}$$

$$2 \text{ Ag}^{+}(g) + 2 [\text{A}]^{-}(g) \qquad \Delta_{r} \mathcal{H}(g) \qquad 2 \text{ Ag}^{0}_{(g)} + \text{Se}_{8}^{2+} \text{ boat } (g) + 2 [\text{A}]^{-}(g)$$

$$916 \text{ kJ mol}^{-1} \qquad + 2 \Delta_{\text{latt}} \mathcal{H}(\text{Ag}[\text{A}]) \qquad \qquad - \Delta_{\text{latt}} \mathcal{H}([\text{Se}_{8}][\text{A}]_{2}) \qquad - 1615 \text{ kJ mol}^{-1}$$

$$2 \text{ Ag}[\text{A}] (s) + \text{Se}_{\text{grey}} (s) \qquad \Delta_{r} \mathcal{H}(s) \qquad [\text{Se}_{8}][\text{A}]_{2} (s)$$

$$[\text{A}]^{-} = [\text{Sb}(\text{OTeF}_{5})_{6}]^{-}$$

$$-397 \text{ kJ mol}^{-1} \qquad - 397 \text{ kJ mol}^{-1}$$

$$2 \text{ Ag}^{+}(g) + 2 [\text{A}]^{-}(g) \qquad \Delta_{r} \mathcal{H}(g) \qquad [\text{Ag}_{2}\text{Se}_{6}(\text{SO}_{2})_{4}]^{2+} (g) + 2 [\text{A}]^{-}(g)$$

$$961 \text{ kJ mol}^{-1} \qquad + 4 \Delta_{\text{vap}} \mathcal{H}(\text{SO}_{2}) \qquad + 2 \Delta_{\text{latt}} \mathcal{H}([\text{Ag}_{2}\text{Se}_{6}(\text{SO}_{2})_{4}]^{2+} (g) + 2 [\text{A}]^{-}(g)$$

$$961 \text{ kJ mol}^{-1} \qquad + 4 \Delta_{\text{vap}} \mathcal{H}(\text{SO}_{2}) \qquad + 2 \Delta_{\text{latt}} \mathcal{H}(\text{Ag}[\text{A}]) \qquad - \Delta_{\text{latt}} \mathcal{H}([\text{Ag}_{2}\text{Se}_{6}(\text{SO}_{2})_{4}][\text{A}]_{2}) \quad - 1024 \text{ kJ mol}^{-1}$$

$$2 \text{ Ag}[\text{A}] (s) + \text{Se}_{\text{grey}} (s) \qquad \Delta_{r} \mathcal{H}(s) \qquad (\text{Ag}_{2}\text{Se}_{6}(\text{SO}_{2})_{4}][\text{A}]_{2} (s) \qquad + 4 \text{ SO}_{2} (l) \qquad - \Delta_{\text{latt}} \mathcal{H}([\text{Ag}_{2}\text{Se}_{6}(\text{SO}_{2})_{4}][\text{A}]_{2} (s) \qquad + 4 \text{ SO}_{2} (l) \qquad - \Delta_{\text{latt}} \mathcal{H}([\text{Ag}_{2}\text{Se}_{6}(\text{SO}_{2})_{4}][\text{A}]_{2} (s) \qquad + 4 \text{ SO}_{2} (l) \qquad - (\text{Ag}_{2}\text{Se}_{6}(\text{SO}_{2})_{4}][\text{A}]_{2} (s) \qquad + (\text{Ag}_{2}\text{Se}_{6}(\text{SO}_{2})_{4}][\text{Ag}_{2} (s) \ + (\text{Ag}_{2}\text{Se}_{6}(\text{S$$

Table S4.2.1: Collected Volumes of Ions used.

| Ion                                                | Volume [nm <sup>3</sup> ] | Origin                  |
|----------------------------------------------------|---------------------------|-------------------------|
| $[Sb(OTeF_5)_6]^-$                                 | 0.724                     | Reference <sup>38</sup> |
| $\left[\mathrm{Ag}_{2}\mathrm{Se}_{6}\right]^{2+}$ | 0.255                     | Pbe0/tzvpp//cosmo       |
| $[(OSO)AgSe_6Ag(OSO)]^{2+}$                        | 0.308                     | X-RAY                   |
| $\left[(OSO)_2AgSe_6Ag(OSO)_2\right]^{2+}$         | 0.385                     | X-RAY                   |
| Se <sub>6</sub> <sup>2+</sup> chair                | 0.196                     | Pbe0/tzvpp/cosmo        |
| $\mathrm{Se_6}^{2+}$ boat                          | 0.190                     | Pbe0/tzvpp/cosmo        |
| Ag+                                                | 0.006                     | Calcd. from Shannon r = |
|                                                    |                           | 1.15Å <sup>39</sup>     |
| $Se_8^{2^+}$                                       | 0.214                     | Reference <sup>40</sup> |

A scaling of the calculated volumes of compound  $\text{Se}_6^{2+}$  according to reference <sup>41</sup> on the cosmopbe0/tzvpp level leads to a change in U<sub>pot</sub> of 0.4 kJ mol<sup>-1</sup> and therefore the volumes are used without scaling.

# S 4.3 Details of the Quantum Chemical Investigations

## S 4.3.1 Calculated Geometries and Spectra PBE0/TZVPP

ag2se6\_1\_pbe0tzvpp \_\_\_\_\_ \$coord 1.99136671143657 3.44914832070948 0.99561803164237 se 1.99136671143657 -3.44914832070948 0.99561803164237 se 

 -3.44914832070948
 -1.99136671143657
 -0.99561803164237
 se

 -3.44914832070948
 -1.99136671143657
 -0.99561803164237
 se

 3.44914832070948
 -1.99136671143657
 -0.99561803164237
 se

 0.0000000000000
 3.98273342287314
 -0.99561803164237
 se

 0.0000000000000
 -3.98273342287314
 0.99561803164237
 se

 0.0000000000000
 -3.98273342287314
 0.99561803164237
 se

 0.0000000000000
 -3.0000000000000
 4.76863270495494
 ag

 0.0000000000000
 0.000000000000
 -4.76863270495494
 ag

 -3.44914832070948 \$user-defined bonds Send \_\_\_\_\_ SCF and ZP-Energy \* zero point VIBRATIONAL energy : 0.0061552 Hartree \* : -14701.1643206 SCF-energy \* : -14701.1581654 SCF + E(vib0) \_\_\_\_\_ Vibrational Spectrum wave number IR intensity selection rules # mode symmetry cm\*\*(-1) km/mol 0.00 0.00000 # IR RAMAN 1 0.00 0.00000 2 \_ \_ 3 \_ \_ 0.00 0.00000 4 \_ \_ 0.00000 5 -0.00 \_ 0.00000 -0.54081 YES 0.54081 YES \_ б 0.00 0.00000 \_ 7 44.20 NO eu 8 44.20 NO eu 0.00000 0.00000 0.00000 10.34189 NO NO 9 eg 50.58 YES 50.58 10 eg YES 77.11 NO 11 YES alg YES YES NO NO NO 96.93 12 NO a2u 96.93 102.17 102.17 109.52 109.52 161.60 178.18 233.31 267.60 267.60 268.16 268.16 13 0.10450 NO eu 0.10450 0.00000 0.00000 NO 14 eu YES eg 15 eg alg a2u 16 YES 0.00000 YES 17 YES NO YES YES NO NO 2.85600 18 alu 0.00000 19 NO 0.14950 0.14950 0.00000 20 eu NO 21 eu NO 22 YES eg NO 23 eg 268.16 0.00000 YES 24 270.25 0.00000 NO YES alg \_\_\_\_\_ HOMO-LUMO Gap +0.16797161 H = +4.57074 eV Gap : \_\_\_\_\_ ag2se6\_2\_pbe0tzvpp -----\$coord 0.00053683796852 2.74767872767663 3.47939030925524 -3.10235075264850 -1.73596186641559 se -1.99580348918949 se 0.00010657219379 -5.20061866840011 -3.44999885732025 0.64588891946619 3.45021012610665 0.64570194230084 -0.18773876974280 se 0.29578795762287 se

se

0.29674806033669

This journal is © The Royal Society of Chemistry 2011 -3.47891921689773-3.10218361441453-1.99673220304740-0.000068101221767.262802441132950.07899936093760-0.00090235305042-1.871033117894803.81790780984209 se aq aq \$user-defined bonds \$end \_\_\_\_\_ SCF and ZP-Energy \* zero point VIBRATIONAL energy : 0.0061177 Hartree \* \* SCF-energy : -14701.1579982 \* \* : -14701.1518806 \* SCF + E(vib0) \_\_\_\_\_ Vibrational Spectrum wave number IR intensity selection rules # mode symmetry cm\*\*(-1) km/mol # IR RAMAN 

 km/mol
 IR
 RAMAN

 0.00000

 0.00000

 0.00000

 0.00000

 0.00000

 0.00000

 0.00000

 0.27970
 YES
 YES

 0.19262
 YES
 YES

 0.41026
 YES
 YES

 1.57968
 YES
 YES

 1.52061
 YES
 YES

 0.00059
 YES
 YES

 0.261293
 YES
 YES

 0.34428
 YES
 YES

 0.22368
 YES
 YES

 1.51385
 YES
 YES

 2.42451
 YES
 YES

 0.22241
 YES
 YES

 0.27184
 YES
 YES

 0.11994
 YES
 YES

 0.22470
 YES
 YES

 0.00000 0.00 1 -0.00 2 3 0.00 4 5 0.00 0.00 б 27.85 7 а 8 36.11 a 9 а 48.54 10 57.47 а а 72.32 11 85.13 88.69 a a 12 13 a 14 110.16 а 15 124.82 172.34 187.87 116.83 
 15
 a

 16
 a

 17
 a

 18
 a

 19
 a

 20
 a

 21
 a

 22
 a

 23
 a
 187.87 218.67 243.86 243.86 262.67 266.70 YES 23 а 281.10 0.02470 YES 24 284.23 0.35333 YES а YES \_\_\_\_\_ HOMO-LUMO Gap +0.14333275 H = +3.90028 eV Gap : \_\_\_\_ ag2se6\_3\_pbe0tzvpp -----\$coord 

 -0.00003164526704
 3.76196628175051
 -1.46377977650626

 3.45857467147156
 -1.99827159837028
 -0.87801428146664

 -0.00000880166699
 -3.76197262361926
 1.46378270337090

 -3.45855801262634
 1.99824300713226
 0.87807578838537

 se se se 

 3.45855580628988
 1.99828441048597
 0.87802083158133

 -3.45854239185286
 -1.99825193213670
 -0.87806784658176

 0.00000727257717
 8.38894632953931
 0.17429531959179

 0.0000032085515
 -8.38894453267594
 -0.17430807000524

 se se se aq aq \$user-defined bonds \$end \_\_\_\_\_ SCF and ZP-Energy \* zero point VIBRATIONAL energy : 0.0059618 Hartree \* SCF-energy : -14699.3088688 \* \* \* SCF + E(vib0) : -14699.3029069 \_\_\_\_\_ Vibrational Spectrum mode symmetry wave number IR intensity selection rules # cm\*\*(-1) km/mol IR RAMAN #

Electronic Supplementary Information for Dalton Transactions

| $ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\\20\\21\\22\\23\\24\end{array} $                                                                                            | a a a a a a a a a a a a a a a a a a a                                                                                                                                                   | $\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 23.01\\ 31.49\\ 42.12\\ 45.76\\ 71.16\\ 80.64\\ 81.43\\ 100.42\\ 119.92\\ 121.83\\ 182.17\\ 190.78\\ 206.50\\ 236.97\\ 250.34\\ 253.58\\ 286.48\\ 292.33\\ \end{array}$               | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>2.9<br>1.9<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00845<br>00845<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>0000              | -<br>-<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES                                                                                          | -<br>-<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES                                                                                                                                                      |             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| HOMO-LUMO Ga<br>Gap :                                                                                                                                                                                            | ıp                                                                                                                                                                                      | +0.13978354                                                                                                                                                                                                                                       | Н =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +3.803                                                                                                                                          | 71 eV                                                                                                                                                                 |                                                                                                                                                                                                                                   |             |
| ag2se6_so2_2                                                                                                                                                                                                     | 2_pbe0tzvpp                                                                                                                                                                             |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                 |                                                                                                                                                                       |                                                                                                                                                                                                                                   |             |
| \$coord<br>2.361484<br>1.914715<br>-2.367988<br>-1.920184<br>2.279739<br>-2.284408<br>3.357643<br>-3.376302<br>8.260098<br>7.881389<br>5.976434<br>-5.973607<br>-7.858547<br>-8.250467<br>\$user-define<br>\$end | 85683856<br>53666679<br>35436629<br>25491558<br>971627730<br>32406103<br>314083208<br>218880326<br>366188325<br>964965738<br>17749256<br>77443634<br>716408321<br>767898220<br>ed bonds | -3.16516710916<br>3.62476567925<br>3.17062502030<br>-3.62022968279<br>0.55295369575<br>-0.54748205639<br>-0.44957971584<br>0.47214076008<br>-4.02991522192<br>-1.62976030706<br>-0.01546277302<br>0.00796030870<br>1.60443496822<br>4.02471643389 | 646<br>215<br>217<br>511<br>575<br>367<br>814<br>444<br>597<br>722<br>005<br>667<br>175<br>369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.9057<br>-0.1697<br>0.9218<br>0.1877<br>-3.3411<br>3.3597<br>3.5547<br>-3.5233<br>6.9259<br>8.0700<br>6.9092<br>-6.8843<br>-8.1006<br>-7.0042 | 725743587<br>775556246<br>853808912<br>829224826<br>577645778<br>001529804<br>786636773<br>353985988<br>860340039<br>961979868<br>364240137<br>736530966<br>965957868 | 24       se         58       se         57       se         50       se         52       ag         53       o         54       o         58       s         59       ag         54       o         58       o         58       o |             |
| SCF and ZP-E<br>*<br>*<br>*                                                                                                                                                                                      | nergy<br>zero point<br>SCF-energ<br>SCF + E(v                                                                                                                                           | VIBRATIONAL ener<br>yy<br>yib0)                                                                                                                                                                                                                   | : -<br>37 :<br>37 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.02<br>15798.05<br>15798.03                                                                                                                    | 23001 На<br>79488<br>56487                                                                                                                                            | rtree                                                                                                                                                                                                                             | *<br>*<br>* |
| Vibrational<br># mode<br># 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                                                                                                                  | Spectrum<br>symmetry<br>a                                                                                                                                                               | wave number<br>cm**(-1)<br>-6.05<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                          | IR inte<br>km/m<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ensity<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>0000                                                                            | selectic<br>IR<br>YES<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                  | on rule<br>RAMAN<br>YES<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                   | S           |

| 9              | a             | 10.96         |              | 0.08309            | YES       | YES        |
|----------------|---------------|---------------|--------------|--------------------|-----------|------------|
| 10             | a             | 14.28         |              | 0.01475            | YES       | YES        |
| 11             | a             | 18.80         |              | 1.19987            | YES       | YES        |
| 12             | a             | 24.00         |              | 0.02722            | YES       | YES        |
| 13             | a             | 25.89         |              | 1.39361            | YES       | YES        |
| 14             | a             | 27.61         |              | 0.75242            | YES       | YES        |
| 15             | a             | 32.72         |              | 0.00264            | YES       | YES        |
| 16             | a             | 35.80         |              | 0.00186            | YES       | YES        |
| 17             | a             | 41.30         |              | 0.01717            | YES       | YES        |
| 18             | a             | 44.63         |              | 1.07858            | YES       | YES        |
| 19             | a             | 75.36         |              | 0.00064            | YES       | YES        |
| 20             | a             | 85.52         |              | 7.62148            | YES       | YES        |
| 21             | a             | 95 56         |              | 0 54886            | YES       | YES        |
| 22             | a             | 103 71        |              | 1 44957            | VES       | YES        |
| 23             | a             | 107 33        |              | 0 00001            | YES       | YES        |
| 24             | a             | 108 31        |              | 0 00001            | YES       | YES        |
| 25             | a             | 156 32        |              | 0 00013            | YES       | YES        |
| 25             | a             | 163 76        |              | 9 48712            | VFS       | VFS        |
| 20             | 2             | 164 85        | 1            | 3 94068            | VFC       | VEC        |
| 27             | a<br>2        | 174 58        | T            | 1 02532            | VFC       | VFC        |
| 20             | a<br>2        | 216 94        | 2            | 7 42302            | VEG       | VFC        |
| 20             | a             | 210.74        | 2            | 1 72005            | VEC       | VEC        |
| 21             | a             | 210.70        |              | 0 03445            | VEC       | VEC        |
| 22             | a             | 250.75        |              | 0.03445            | TEO       | VEC        |
| 2∠<br>22       | a             | 209.40        |              | 0.00000            | ILO       | IES        |
| 33             | a             | 270.02        |              | 0.00260            | IES       | ILS        |
| 34<br>2E       | a             | 271.40        |              | 0.00009            | YES       | YES        |
| 35             | d             | 273.00        |              | 0.00525            | IES       | ILS        |
| 30             | d             | 277.01        | 7            | 0.00001<br>7.11000 | IES       | ILS        |
| 37             | a             | 543.23        | /            | 7.11998            | YES       | IES        |
| 38             | a             | 544.UL        | 10           | 9.41/65            | YES       | YES        |
| 39             | a             | 1182.06       | 42           | 1.41932            | YES       | YES        |
| 40             | a             | 1183.40       | 4.0          | 4.88638            | YES       | YES        |
| 41             | a             | 1391.77       | 46           | 1.68956            | YES       | YES        |
| 42             | a             | 1392.36       |              | 0.33185            | YES       | YES        |
|                | <br>Can       |               |              |                    |           |            |
| Cap .          | Gap           | +0 1622560    | 7 U -        | +1 112             | 12 017    |            |
| Gap •          |               | +0.1032300    | /п–          | +4.442             |           |            |
| $aa^2aa6 aa^2$ | 2 cosmoont i  | hel tzunn     |              |                    |           |            |
| agzse0_50z     | _z_cosmoopc_j | vpp           |              |                    |           |            |
|                |               |               |              |                    |           |            |
| Scoord         |               |               |              |                    |           |            |
| 1 8616         | 0248160618    | 3 1986653143  | 5211         | -1 6819            | 428742043 | 7 ge       |
| 2 0068         | 6049913439    | -3 5140419666 | 9529         | -0 4579            | 948822901 | 5 90       |
| -1 8650        | 6308099907    | -3 2007108622 | 1691         | 1 6811             | 441930181 | 7 se       |
| -2 0098        | 1452720006    | 3 5121245601  | 1557         | 0 4583             | 335494425 | 8 90       |
| 3 9656         | 2842291913    | 0 2369393094  | 9039         | 0.4505             | 009894859 | 2 ge       |
| -3 9686        | 8396261800    | -0 2388998090 | 1409         | -0.8639            | 408359674 | 5 90       |
| -0 1630        | 8892677468    | _0 8273341320 | 0824         | -4 6800            | 119617212 | 5 3C       |
| 0.1620         | 4553256154    | 0 82017101/0  | 2887         | 4 6700             | 734402746 | 2 ag       |
| 0.1032         | 9012092070    |               | 4600         | -10 7012           | 622721201 | z ag       |
|                | 2213203070    | _0 3460943333 | 1000<br>0655 |                    | 033731201 | 4 0<br>7 a |
| -0.114/        | 5246510210    | -1 Q6227/0062 | 0000         | _Q 000¢            | 1605//150 | , <u> </u> |
| -0.3044        | 7044634356    | 1 9660707/27  | 0290<br>5907 | -0.0000            | 120770002 | 5 0        |
| 0.3333         | 2076140206    | 1.0009797437  | 7126         | 11 1/51            | 002054201 | 2 0        |
| 0.1134         | 2970140200    | 0.3404239200  | 1430         | 10 7005            | 902054201 | 2 S<br>1 o |
| -U.3244        | visite (0017  | -2.2000//9001 | 1200         | 10./095            | 10202019/ | τU         |
| Suser-derr     | neu bonus     |               |              |                    |           |            |
| şena           |               |               |              |                    |           |            |
| CCE and CD     |               |               |              |                    |           |            |
| SCF AND ZP     | -тпетду       |               |              |                    |           |            |
| Vibrationa     | 1 Speatrum    |               |              |                    |           |            |
| # modo         | avmmetry      | wave number   | тр ÷         | ntongity           | coloctio  | n rules    |
| ποue           | Бушшесту      | m**(-1)       | тк Т<br>1-   | m/mol              | DTJJJJG   | RAMAN      |
| π<br>1         |               |               | K            | 0 00000            | -         |            |
| <u>т</u>       |               | 0.00          |              | 5.00000            |           |            |

| 2                |                 | 0.00          | 0.0        | 00000          | _           | _          |        |
|------------------|-----------------|---------------|------------|----------------|-------------|------------|--------|
| 3                |                 | 0.00          | 0.0        | 00000          | -           | _          |        |
| 4                |                 | 0.00          | 0.0        | 00000          | _           | _          |        |
| 5                |                 | 0.00          | 0.0        | 00000          | -           | -          |        |
| 6                |                 | 0.00          | 0.0        | 00000          | -           | -          |        |
| 7                | a               | 3.40          | 0.0        | 02717          | YES         | YES        |        |
| 8                | a               | 4.80          | 0.0        | 01982          | YES         | YES        |        |
| 9                | a               | 7.75          | 0.0        | 00296          | YES         | YES        |        |
| 10               | a               | 9.79          | 0.4        | 41573          | YES         | YES        |        |
| 11               | a               | 19.82         | 1.'        | 73323          | YES         | YES        |        |
| 12               | a               | 23.20         | 2.1        | 15789          | YES         | YES        |        |
| 13               | a               | 25.00         | 0.0        | 00302          | YES         | YES        |        |
| 14               | a               | 28.41         | 0.0        | 03219          | YES         | YES        |        |
| 15               | a               | 33.74         | 0.0        | 00072          | YES         | YES        |        |
| 16               | a               | 35.82         | 0.0        | 00070          | YES         | YES        |        |
| 17               | a               | 42.28         | 0.0        | 10011          | YES         | YES        |        |
| 18               | a               | 45.90         | 1          | 15979          | YES         | YES        |        |
| 19               | a               | //.65         | 0.0        | JU314          | YES         | YES        |        |
| 20               | a               | 85.18         | /          | 40548          | YES         | YES        |        |
| 21               | a               | 95.88         | 0.1        | 20∠⊥8<br>40100 | YES         | YES        |        |
| 22               | a               | 100.07        | 1.4        | 42123          | IES         | IES<br>VEC |        |
| 23               | a               | 107.41        | 0.0        | 10030          | IES         | IES<br>VEC |        |
| 24               | a               | 157 24        | 0.0        | 00362          | ILS         | ILS<br>VFC |        |
| 25               | a               | 162 28        | 5.9        | D0010<br>20521 | ILS         | ILS<br>VFC |        |
| 20               | a               | 162.20        | 17         | 35211          | VEC         | VFC        |        |
| 28               | a               | 174 75        | ±/         | 96329          | VES         | VEG        |        |
| 20               | a               | 218 89        | 27         | 57086          | VES         | VFC        |        |
| 30               | a               | 220.00        | 27.<br>0 ' | 73797          | YES         | YES        |        |
| 31               | a               | 220.00        | 0.0        | 14162          | YES         | YES        |        |
| 32               | a               | 269 40        | 0.0        | 01102          | YES         | YES        |        |
| 32               | a               | 269.10        | 0.0        | 0571           | YES         | YES        |        |
| 34               | a               | 271 52        | 0 0        | 00007          | YES         | YES        |        |
| 35               | a               | 274.73        | 0.0        | 00582          | YES         | YES        |        |
| 36               | a               | 278.32        | 0.0        | 00003          | YES         | YES        |        |
| 37               | a               | 543.24        | 91.        | 30463          | YES         | YES        |        |
| 38               | a               | 543.72        | 3.0        | 59708          | YES         | YES        |        |
| 39               | a               | 1181.28       | 432.8      | 82428          | YES         | YES        |        |
| 40               | a               | 1182.63       | 1.1        | 15636          | YES         | YES        |        |
| 41               | a               | 1391.54       | 461.1      | 14812          | YES         | YES        |        |
| 42               | a               | 1392.20       | 9.0        | 03841          | YES         | YES        |        |
|                  |                 |               |            |                |             |            |        |
| Gap :            | Gap             | +0.1494849    | 4 H =      | +4.06          | 769 eV      |            |        |
|                  |                 |               |            |                |             |            |        |
| ag2se6_sc        | o2_4_pbe0_tzvpp | )             |            |                |             |            |        |
|                  |                 |               |            |                |             |            |        |
| \$ a o o o o o d |                 |               |            |                |             |            |        |
| 300010<br>9 68/  | 126526802012    | _1 007/750570 | 6106       | _0 743         | 00316038603 | ,          | C      |
| 8 353            | 029532731317    | 5 8491136664  | 6232       | 0.745          | 36721313340 | )          | 2<br>2 |
| 8 473            | 229552751517    | -2 6135147325 | 3212       | -1 581         | 94274849897 | ,<br>,     | 0      |
| 8 491            | 09229084315     | -6 2384077258 | 7921       | 1 280          | 07629356654 | L          | 0      |
| 8.394            | 430344828057    | 3.1490882673  | 4467       | 0.487          | 10778034535 | 5          | 0      |
| 5.959            | 963176241307    | 6.9301511589  | 0122       | -0.551         | 49714936861 | _          | 0      |
| 1.529            | 904447141169    | 0.1075566865  | 4391       | 3.749          | 83871674576 | 5          | se     |
| 1.123            | 383513358135    | 3.1674644804  | 5698       | -2.310         | 36641507338 | 3          | se     |
| -0.305           | 582032322738    | 3.6629551269  | 0186       | 1.831          | 60569909455 | 5          | se     |
| 5.132            | 224100637098    | -0.2114590895 | 3699       | 0.047          | 94438492229 | )          | ag     |
| -1.121           | L02433056916    | -3.1768769555 | 4074       | 2.3184         | 45949058521 | _          | se     |
| -1.525           | 566387421486    | -0.1172440776 | 5433       | -3.7442        | 13261322508 | 3          | se     |
| -5.131           | L76171850995    | 0.2157760644  | 7002       | -0.054         | 29016953143 | 3          | ag     |
| 0.305            | 564500025488    | -3.6736993249 | 2713       | -1.824         | 06233830470 | )          | se     |
| -8.460           | 012611128538    | 2.6512959832  | 9077       | 1.547          | 84407856776 | 5          | 0      |
| -8.395           | 571002512593    | -3.1440013426 | 4289       | -0.468         | 46987803553 | 3          | 0      |

|    | -9.68215758204089 | 4.95077751035687  | 0.68681458698494  | S |
|----|-------------------|-------------------|-------------------|---|
|    | -8.36431407310235 | -5.84063436454799 | -0.03649405363596 | s |
|    | -8.49914914062949 | 6.24477480577682  | -1.35382402244844 | 0 |
|    | -5.97728700316467 | -6.92489865566237 | 0.60865378697991  | 0 |
| 4. | -                 |                   |                   |   |

\$end

· ------

SCF and ZP-Energy

Vibrational Spectrum

-----

| # | mode         | symmetry | wave number       | IR intensity          | selecti       | on rules   |
|---|--------------|----------|-------------------|-----------------------|---------------|------------|
| # |              |          | cm**(-1)          | km/mol                | IR            | RAMAN      |
|   | 1            | a        | -6.75             | 0.00000               | YES           | YES        |
|   | 2            | a        | -5.32             | 0.00000               | YES           | YES        |
|   | 3            |          | 0.00              | 0.00000               | -             | -          |
|   | 4            |          | 0.00              | 0.00000               | -             | -          |
|   | 5            |          | 0.00              | 0.00000               | -             | -          |
|   | 6            |          | 0.00              | 0.00000               | -             | -          |
|   | 7            |          | 0.00              | 0.00000               | _             | _          |
|   | 8            |          | 0.00              | 0.00000               | _             | _          |
|   | 9            | a        | 7.69              | 0.01896               | YES           | YES        |
|   | 10           | a        | 8.40              | 0.07947               | YES           | YES        |
|   | 11           | a        | 12.72             | 0.79760               | YES           | YES        |
|   | 12           | a        | 14.41             | 0.01298               | YES           | YES        |
|   | 13           | a        | 14.87             | 1.11760               | YES           | YES        |
|   | 14           | a        | 18.95             | 0.61620               | YES           | YES        |
|   | 15           | a        | 22.07             | 0.00131               | YES           | YES        |
|   | 16           | a        | 23.81             | 0.00753               | YES           | YES        |
|   | 17           | a        | 24.72             | 0.02411               | YES           | YES        |
|   | 18           | a        | 26.98             | 1.31421               | YES           | YES        |
|   | 19           | a        | 31.98             | 0.00067               | YES           | YES        |
|   | 20           | a        | 35.08             | 0.00282               | YES           | YES        |
|   | 21           | a        | 37.66             | 0.99368               | YES           | YES        |
|   | 22           | a        | 39.91             | 0.00253               | YES           | YES        |
|   | 23           | a        | 44.72             | 0.92320               | YES           | YES        |
|   | 2.4          | a        | 45 66             | 0 14373               | YES           | YES        |
|   | 25           | a        | 55 99             | 4 81138               | YES           | YES        |
|   | 26           | a        | 56 38             | 0 00806               | YES           | YES        |
|   | 27           | a        | 77 97             | 0.00625               | YES           | YES        |
|   | 28           | a        | 80.21             | 3 80923               | VES           | VES        |
|   | 29           | a        | 93 67             | 0 46077               | VES           | VES        |
|   | 30           | a        | 106 13            | 0.00003               | YES           | VES        |
|   | 31           | a        | 110 35            | 0 00500               | VES           | VES        |
|   | 32           | a        | 110.55            | 0.00500               | VES           | VES        |
|   | 22           | a        | 128 25            | 0.04538               | VES           | VES        |
|   | 34           | a        | 120.25            | 8 61824               | VEC           | VFC        |
|   | 35           | a        | 135 27            | 0 96990               | VEC           | VFC        |
|   | 35           | a        | 136 08            | 20 12476              | VEC           | VEG        |
|   | 30           | a        | 150.00            | 7 32821               | VES           | VES        |
|   | 38           | a        | 151 14            | 20 16786              | VES           | VES        |
|   | 20           | a        | 156 32            | 0 01320               | VES           | VES        |
|   | 40           | a        | 175 04            | 0 18180               | YES           | YES        |
|   | 41           | a        | 188 40            | 23 10176              | VES           | VES        |
|   | 42           | a        | 189 79            | 0 43015               | VEC           | VFC        |
|   | 43           | a        | 235 65            | 0.43013               | VEC           | VEG        |
|   | 44           | a        | 255.05            | 0 00029               | VEC           | VFC        |
|   | 15           | a        | 269.04            | 0.60802               | VEC           | VEC        |
|   | 46           | a        | 200.05            | 0.09092               | VEC           | VEG        |
|   | 40<br>47     | a        | 272.10<br>970 /r  | 0.00003               | VEC<br>TEO    | VFC<br>TFO |
|   |              | a        | 270.45            | 0.10910               | VFC<br>TED    | VFC<br>TEO |
|   | 10           | a        | 202.2/<br>5/0 17  | 17 1//0/              | TED           | VEC<br>TEO |
|   | 49<br>50     | a        | 544.1/<br>5/0 01  | 12 71671              | 1 E D<br>Vec  | TRO        |
|   | 50           | a        | 542.31<br>542.31  | 43./40/1<br>175 507// | ILD           | TRO        |
|   | E J<br>D T C | a        | 544.90<br>EAA 71  | L/J.J2/44<br>0 00100  | 1 E O<br>Ve o | TRO        |
|   | 5∠<br>⊑2     | d        | 544./⊥<br>1100 04 | U.ZUI30<br>222 7520   | 155<br>Vec    | IES        |
|   | 53<br>E 4    | a        | 1102 07           | 334./33/8<br>2 15/70  | IES           | IES        |
|   | 54           | a        | LLY3.4/           | 3.⊥34/8               | IES           | IED        |

| Electronic Su<br>This journal | upplementary Info<br>is © The Royal So | ormation for Dalton Transacti<br>ociety of Chemistry 2011 | ons      |        |             |            |
|-------------------------------|----------------------------------------|-----------------------------------------------------------|----------|--------|-------------|------------|
| 55                            | а                                      | 1203 05                                                   | 207 94   | 678    | VFS         | VFC        |
| 55                            | a                                      | 1203.05                                                   | 207.94   | 454    | VEC         | VFC        |
| 57                            | a                                      | 1379 09                                                   | 0.34     | 212    | VES         | VEG        |
| 58                            | a                                      | 1379 98                                                   | 503 32   | 833    | VEC         | VEG        |
| 59                            | a<br>2                                 | 1391 49                                                   | 246 05   | 795    | VEC         | VFC        |
| 50<br>60                      | a                                      | 1391 95                                                   | 10.38    | 030    | VES         | VFC        |
|                               | a<br>                                  |                                                           |          |        |             | 120        |
| HOMO-LUMO G                   | Jap                                    |                                                           |          |        |             |            |
| Gap :                         |                                        | +0.16057755                                               | 5 Н =    | +4.36  | 954 eV      |            |
| ag2se6_so2_                   | 4_cosmoopt                             | _pbe0_tzvpp                                               |          |        |             |            |
| \$coord                       |                                        |                                                           |          |        |             |            |
| 9.47090                       | 287793709                              | -4.95301278334                                            | 1396     | -0.654 | 02065486008 | S          |
| 8.33052                       | 090101478                              | 5.82635488579                                             | 9429     | 0.059  | 31329404041 | S          |
| 8.39745                       | 076978998                              | -2.5958979538                                             | 7131     | -1.519 | 69944642088 | 0          |
| 8.15022                       | 330537413                              | -6.23896685709                                            | 9750     | 1.315  | 00487928301 | 0          |
| 8.37313                       | 513980486                              | 3.11304809036                                             | 5595     | 0.315  | 66290843826 | 0          |
| 5.92191                       | 745589423                              | 6.96736192043                                             | 3293     | -0.386 | 97685987598 | 0          |
| 1.41810                       | 540941003                              | 0.39145080175                                             | 5970     | 3.758  | 30762539387 | se         |
| 1.03585                       | 701020313                              | 3.1040016268                                              | 7322     | -2.448 | 20947114104 | se         |
| -0.56095                      | 288889031                              | 3.72762992753                                             | 3064     | 1.624  | 72204207591 | se         |
| 4.92700                       | 932837524                              | -0.05676696629                                            | 9517     | -0.162 | 27284048538 | ag         |
| -1.03300                      | 250852191                              | -3.06766863723                                            | 3910     | 2.425  | 94149118199 | se         |
| -1.42271                      | 356063769                              | -0.34944985868                                            | 3218     | -3.779 | 76712420078 | se         |
| -4.92412                      | 687534574                              | 0.07988441660                                             | 0761     | 0.139  | 56544264008 | ag         |
| 0.56000                       | 964594452                              | -3.68750544668                                            | 3444     | -1.650 | 19206125818 | se         |
| -8.37473                      | 146011004                              | 2.55250259219                                             | 9370     | 1.649  | 58723226697 | 0          |
| -8.36616                      | 828048373                              | -3.08961119166                                            | 5751     | -0.415 | 31606449402 | 0          |
| -9.47561                      | 416151056                              | 4.90425066743                                             | 3062     | 0.802  | 99996933143 | S          |
| -8.32128                      | 476266489                              | -5.80512888000                                            | )873     | -0.182 | 79155468152 | S          |
| -8.20758                      | 120010281                              | 6.18336159128                                             | 3270     | -1.204 | 75528606002 | 0          |
| -5.91553                      | 161450816                              | -6.94509572106                                            | 5084     | 0.280  | 62566134268 | 0          |
| \$user-defin<br>\$end         | led bonds                              |                                                           |          |        |             |            |
| SCF and ZP-                   | Energy                                 |                                                           |          |        |             |            |
| Vibrational                   | . Spectrum                             |                                                           |          |        |             |            |
| # mode                        | symmetry                               | wave number                                               | IR inten | sity   | selection   | rules      |
| #                             |                                        | cm**(-1)                                                  | km/mo    | 1      | IR I        | RAMAN      |
| 1                             | а                                      | -6.75                                                     | 0.00     | 000    | YES         | YES        |
| 2                             | а                                      | -5.32                                                     | 0.00     | 000    | YES         | YES        |
| 3                             |                                        | 0.00                                                      | 0.00     | 000    | -           | -          |
| 4                             |                                        | 0.00                                                      | 0.00     | 000    | -           | -          |
| 5                             |                                        | 0.00                                                      | 0.00     | 000    | -           | -          |
| 6                             |                                        | 0.00                                                      | 0.00     | 000    | -           | -          |
| 7                             |                                        | 0.00                                                      | 0.00     | 000    | -           | -          |
| 8                             |                                        | 0.00                                                      | 0.00     | 000    | -           | -          |
| 9                             | а                                      | 7.69                                                      | 0.01     | 896    | YES         | YES        |
| 10                            | а                                      | 8.40                                                      | 0.07     | 947    | YES         | YES        |
| 11                            | a                                      | 12.72                                                     | 0.79     | 760    | YES         | YES        |
| 12                            | а                                      | 14.41                                                     | 0.01     | 298    | YES         | YES        |
| 13                            | a                                      | 14.87                                                     | 1.11     | 760    | YES         | YES        |
| 14                            | a                                      | 18.95                                                     | 0.61     | 620    | YES         | YES        |
| 15                            | a                                      | 22.07                                                     | 0.00     | 131    | YES         | YES        |
| 16                            | a                                      | 23.81                                                     | 0.00     | 753    | YES         | YES        |
| 17                            | a                                      | 24.72                                                     | 0.02     | 411    | YES         | YES        |
| 18                            | a                                      | 26.98                                                     | 1 31     | 421    | YES         | YES        |
| 19                            | a                                      | 20.20                                                     | 0 00     | 067    | VES         | YES        |
| 20                            | a                                      | 35 08                                                     | 0.00     | 282    | VES         | YES        |
| 20                            | 2                                      | 27 66                                                     | 0.00     | 368    | VFC         | YES        |
| 2⊥<br>22                      | a                                      | 20 01                                                     | 0.99     | 253    | VEG<br>TRO  | VFC<br>7EC |
| 23                            | a                                      | 44.72                                                     | 0.00     | 320    | YES         | YES        |
|                               |                                        |                                                           | 0.74     |        |             |            |

| 24           | a           | 45.66            | 0.          | .14373    | YES       | YES      |  |
|--------------|-------------|------------------|-------------|-----------|-----------|----------|--|
| 25           | a           | 55.99            | 4.          | .81138    | YES       | YES      |  |
| 26           | a           | 56.38            | 0.          | .00806    | YES       | YES      |  |
| 27           | a           | 77.97            | 0.          | .00625    | YES       | YES      |  |
| 28           | a           | 80.21            | 3.          | .80923    | YES       | YES      |  |
| 29           | a           | 93.67            | 0.          | .46077    | YES       | YES      |  |
| 30           | a           | 106.13           | 0.          | .00003    | YES       | YES      |  |
| 31           | a           | 110.35           | 0.          | .00500    | YES       | YES      |  |
| 32           | a           | 110.64           | 0.          | .04927    | YES       | YES      |  |
| 33           | a           | 128.25           | 0.          | .04638    | YES       | YES      |  |
| 34           | a           | 129.68           | 8.          | .61824    | YES       | YES      |  |
| 35           | a           | 135.27           | 0.          | .96990    | YES       | YES      |  |
| 36           | a           | 136.08           | 20.         | .12476    | YES       | YES      |  |
| 37           | a           | 150.19           | 7.          | .32821    | YES       | YES      |  |
| 38           | a           | 151.14           | 20.         | .16786    | YES       | YES      |  |
| 39           | a           | 156.32           | 0.          | .01320    | YES       | YES      |  |
| 40           | a           | 175.04           | 0.          | .18180    | YES       | YES      |  |
| 41           | a           | 188.40           | 23.         | .10176    | YES       | YES      |  |
| 42           | a           | 189.79           | 0.          | .43015    | YES       | YES      |  |
| 43           | a           | 235.65           | 0.          | .14891    | YES       | YES      |  |
| 44           | a           | 265.54           | 0.          | .00029    | YES       | YES      |  |
| 45           | a           | 268.09           | 0.          | .69892    | YES       | YES      |  |
| 46           | a           | 272.10           | 0.          | .00003    | YES       | YES      |  |
| 47           | a           | 278.45           | 0.          | .10916    | YES       | YES      |  |
| 48           | a           | 282.27           | 0.          | .00002    | YES       | YES      |  |
| 49           | a           | 542.17           | 17.         | .14494    | YES       | YES      |  |
| 50           | a           | 542.31           | 43.         | .74671    | YES       | YES      |  |
| 51           | a           | 542.96           | 175.        | .52744    | YES       | YES      |  |
| 52           | a           | 544.71           | 0.          | .20138    | YES       | YES      |  |
| 53           | a           | 1192.84          | 332.        | .75378    | YES       | YES      |  |
| 54           | a           | 1193.27          | 3.          | .15478    | YES       | YES      |  |
| 55           | a           | 1203.05          | 207.        | .94678    | YES       | YES      |  |
| 56           | a           | 1203.96          | 0.          | .34454    | YES       | YES      |  |
| 57           | a           | 1379.09          | 0.          | .83313    | YES       | YES      |  |
| 58           | a           | 1379.98          | 503.        | .32832    | YES       | YES      |  |
| 59           | a           | 1391.49          | 246.        | .05795    | YES       | YES      |  |
| 60           | a           | 1391.95          | 10.         | .38030    | YES       | YES      |  |
|              | <br>ໃຈກ     |                  |             |           |           |          |  |
| Gan :        | Jap         | +0 14895074      | ਪਸ =        | +4 053    | 16 eV     |          |  |
|              |             |                  |             |           |           |          |  |
| agse6pbe0_t  | zvpp        |                  |             |           |           |          |  |
|              |             |                  |             |           |           |          |  |
|              |             |                  |             |           |           |          |  |
| Şcoord       | 016050000   | 2 4051060050     |             | 1 6050    |           |          |  |
| 2.01328      | 3216358389  | 3.48710699729    | 9953        | -1.6278   | 596876169 | 95 se    |  |
| 2.01328      | 3216358389  | -3.48/10699/29   | 9953        | -1.62/8   | 5968/6165 | 95 se    |  |
| -1.963U      | / 521405401 | -3.40014600982   | 10/3<br>072 | 0.3236    |           | L SE     |  |
| -1.9630      | 7521405401  | 3.40014600982    | 2073        | 0.3236    | 55/244802 | 21 se    |  |
| 3.92015      | 0U42010003  |                  |             | 0.3236    |           | st se    |  |
| -4.02656     | 0432/10/83  |                  |             | -1.02/8:  | 0908/0103 | s se     |  |
| 0.00000      | 10000000000 | 0.0000000000     | 1000        | 3.9126.   | 118894102 | ag ag    |  |
| Suser-uern   | lea bollas  |                  |             |           |           |          |  |
|              |             |                  |             |           |           |          |  |
| SCF and 7.P- | -Enerav     |                  |             |           |           |          |  |
| *            | zero point  | VIBRATIONAL ener | av :        | 0.00      | 58344 на  | artree * |  |
| *            | SCF-energ   | ту<br>ТУ         | :           | -14554.52 | 52674     | *        |  |
| *            | SCF + E(x)  | /ib0)            | :           | -14554.51 | 94329     | *        |  |
|              |             | - ,              |             |           |           |          |  |
| Vibrational  | l Spectrum  |                  |             |           |           |          |  |
| # mode       | symmetry    | wave number      | IR int      | censity   | selectio  | on rules |  |
| #            |             | cm**(-1)         | km/         | mol       | IR        | RAMAN    |  |
| 1            |             | 0.00             | 0.          | .00000    | -         | -        |  |
| 2            |             | 0.00             | 0.          | .00000    | -         | -        |  |

| $\begin{array}{c} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                     | D000       -         D000       -         D000       -         D34       YES         P34       YES         P34       YES         F49       YES         542       YES         555       YES         556       YES         000       NO         476       YES         963       YES         615       YES | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| .0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| +0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 802401 H =                                                                                                                                                                                               | +4.57217 ev                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| tzvpp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 83071 3.29149<br>00390 -3.59854<br>25296 -3.33351<br>34775 3.35547<br>28925 0.17398<br>48624 -0.33065<br>68015 0.56422<br>99243 1.64660<br>60159 0.41880<br>31104 -2.18787<br>onds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 901399081<br>900903202<br>233804769<br>143820866<br>455617372<br>062324477<br>689268098<br>231918143<br>104798441<br>329789557                                                                           | -5.1541739951<br>-4.1985813803<br>-2.0669848116<br>-3.0128207798<br>-2.8156657335<br>-4.3961031028<br>1.0253373697<br>5.2620799198<br>7.6892087933<br>7.6677037205                                                                                                                                      | L7500 se<br>39336 se<br>53009 se<br>31598 se<br>57424 se<br>36127 se<br>72357 ag<br>33262 o<br>38538 s<br>50840 o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| gy<br>o point VIBRATIONA<br>CF-energy<br>CF + E(vib0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L energy :<br>: -1!<br>: -1                                                                                                                                                                              | 0.0138370<br>5102.9598108<br>5102.9459738                                                                                                                                                                                                                                                               | Hartree *<br>*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ctrum<br>metry wave num<br>cm**(-1<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ber IR intens<br>) km/mo<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>1 0.460<br>6 0.122<br>6 0.714<br>7 0.399<br>4 0.255<br>7 0.215<br>9 3.144<br>9 0.366<br>4 0.389<br>7 0.499 | sity select<br>I IR<br>000<br>000<br>000<br>000<br>000<br>834 YES<br>507 YES<br>577 YES<br>557 YES<br>557 YES<br>477 YES<br>555 YES<br>475 YES                                                                                                                                                          | ction rules<br>RAMAN<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0<br>0.0<br>0.0<br>60.4<br>60.4<br>91.0<br>91.0<br>1 94.3<br>119.1<br>1.9.1<br>1.19.1<br>1.144.5<br>1.184.3<br>2 231.0<br>270.4<br>274.2<br>274.2<br>1.276.0<br>                                       | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                    | 0.00 0.0000 -<br>0.00 0.00000 -<br>0.00 0.00000 -<br>0.00 0.00000 -<br>60.41 0.24934 YES<br>91.09 0.13449 YES<br>91.09 0.13449 YES<br>1.09 0.13449 YES<br>1.19.17 0.13625 YES<br>1.19.17 0.13625 YES<br>1.19.17 0.13625 YES<br>1.19.17 0.13625 YES<br>2.231.00 0.0000 NO<br>2.70.49 0.30476 YES<br>2.74.20 0.53963 YES<br>2.74.20 0.10615 YES<br>2.76.05 0.10615 YES<br>2.76.071 YES<br>3.104 -2.18787329789557 7.6677037205<br>0.0138370<br>CF - mergy : -15102.9598108<br>CF + E(vib0) : -15102.959778<br>.7.6677037205<br>0.00 0.00000 -<br>0.00 0.00000 - |

|                 | 18     |        | а                      | 142.70            |       | 9.                                                                         | 51544  |                  | YES           | YES              |        |
|-----------------|--------|--------|------------------------|-------------------|-------|----------------------------------------------------------------------------|--------|------------------|---------------|------------------|--------|
|                 | 19     |        | a                      | 143.07            |       | 0.                                                                         | 11495  |                  | YES           | YES              |        |
|                 | 20     |        | a                      | 173 80            |       | 1                                                                          | 20581  |                  | YES           | YES              |        |
|                 | 21     |        | a                      | 189 92            |       | 11                                                                         | 56070  |                  | VEG           | VFC              |        |
|                 | 22     |        | a                      | 233 20            |       |                                                                            | 00055  |                  | VEG           | VFC              |        |
|                 | 22     |        | a<br>2                 | 255.20            |       | 0.                                                                         | 17720  |                  | VEC           | VEC              |        |
|                 | 23     |        | a                      | 271.11            |       | 0.                                                                         | 10701  |                  | VEC           | I LO<br>VEC      |        |
|                 | 24     |        | a                      | 271.09            |       | 0.                                                                         | 10/94  |                  | IES           | IES              |        |
|                 | 25     |        | a                      | 276.14            |       | 0.                                                                         | 69834  |                  | YES           | YES              |        |
|                 | 26     |        | a                      | 276.58            |       | 0.                                                                         | 71243  |                  | YES           | YES              |        |
|                 | 27     |        | a                      | 278.96            |       | 0.                                                                         | 21090  |                  | YES           | YES              |        |
|                 | 28     |        | a                      | 539.11            | 4     | 41.                                                                        | 98620  |                  | YES           | YES              |        |
|                 | 29     |        | a                      | 1196.60           | 1:    | 35.                                                                        | 98132  |                  | YES           | YES              |        |
|                 | 30     |        | a                      | 1398.12           | 24    | 48.                                                                        | 16900  |                  | YES           | YES              |        |
|                 |        |        |                        |                   |       |                                                                            |        |                  |               |                  |        |
| НО№             | 10-LUM | io Ga  | ıр                     |                   |       |                                                                            |        |                  |               |                  |        |
|                 | Gap :  |        |                        | +0.1327141        | 9 H : | =                                                                          | +3.    | 61134            | eV            |                  |        |
|                 |        |        |                        |                   |       |                                                                            |        |                  |               | · ·              |        |
| ags<br>         | se6_so | 2_2_   | _pbe0_tzvpp            | )<br>             |       |                                                                            |        |                  |               |                  |        |
| \$cc            | ord    |        |                        |                   |       |                                                                            |        |                  |               |                  |        |
|                 | -0.06  | 1045   | 90979782               | 1.5358148317      | 7638  |                                                                            | 5.0    | 492104           | 89206         | 67 o             |        |
|                 | 0.27   | 3470   | 39162383               | -0.0306521747     | 6318  |                                                                            | 7.2    | 541507           | 16563         | 91 s             |        |
|                 | 0.62   | 1891   | 09906828               | -2.6760906082     | 6551  |                                                                            | 6.8    | 581801           | 65252         | 84 0             |        |
|                 | -0 30  | 3192   | 23868376               | 0 6546581976      | 3408  |                                                                            | 0.3    | 070765           | 85331         | 12 ag            |        |
|                 | _0.90  | 2666   | 20000070               | -0 9943937945     | 6520  |                                                                            | -5 0   | 762965           | 67/06         | 11 ao            |        |
|                 | 2 50   | 2000   | 040701124<br>020541405 | 0 2624212054      | 6155  |                                                                            | -5.0   | 703002           | 01490         |                  |        |
|                 | 3.50   | 1000   | 29541405               | -0.2024213034     | 6455  |                                                                            | -5.5   | 10390U<br>202110 |               | .95 Se           |        |
|                 | 4./3   | 1931   | 80285011               | -0.0152224094     | 0225  |                                                                            | -1.3   | 303118           | 80148         | ssi se           |        |
|                 | 4.56   | 3315   | 85002662               | -4.2199367296     | 7150  |                                                                            | 0.0    | 521960           | )47218        | 31 se            |        |
|                 | 0.17   | 6629   | 18244117               | -4.7183707087     | 7825  |                                                                            | 0.3    | 876656           | 519652        | 246 se           |        |
|                 | -1.11  | 8290   | 09189377               | -5.1102144000     | 3723  |                                                                            | -3.8   | 248739           | 917735        | 683 se           |        |
|                 | -3.17  | 0034   | 75731896               | 4.2162894082      | 3359  |                                                                            | 0.6    | 603833           | 351970        | )30 o            |        |
|                 | -4.41  | 6875   | 67183140               | 5.9295608452      | 4331  |                                                                            | -1.0   | 622394           | 15329         | 93 s             |        |
|                 | -3.97  | 4797   | 54428702               | 5.5809778381      | 2030  |                                                                            | -3.6   | 966531           | .92593        | 20 o             |        |
| ີ່ <del>ເ</del> | ser-de | fine   | d bonds                |                   |       |                                                                            |        |                  |               |                  |        |
| \$er            | nd     |        |                        |                   |       |                                                                            |        |                  |               |                  |        |
|                 |        |        |                        |                   |       |                                                                            |        |                  |               |                  |        |
| SCE             | and    | ZP-F   | 'nerav                 |                   |       |                                                                            |        |                  |               |                  |        |
| 001             | ana    | *      | zero noint             | VIBRATIONAL ene   | rav   | •                                                                          | 0      | 02160            | а н           | artree           | *      |
|                 |        | *      | SCE onor               | VIDICATIONAL EILE | 191   | :                                                                          | 15651  | 202100           | 100 II<br>200 | artree           | *      |
|                 |        | ~<br>+ | SCF-ener               | y                 |       | :                                                                          | -15051 | .38291           | / 8 Z         |                  | ~<br>+ |
|                 |        | ^      | SCF + E(               | (UQLV)            |       | •                                                                          | -12021 | .3613/           | 1/            |                  | ^      |
|                 |        |        |                        |                   |       |                                                                            |        |                  |               |                  |        |
| л<br>ЛТV        | madio  | IIdI   | Spectrum               |                   | TD .  |                                                                            |        | _                | 1             | <b>1</b>         |        |
| Ŧ               | mode   |        | symmetry               | wave number       | IR 1  | Int                                                                        | ensity | Se               | Tecti         | on rule          | es     |
| Ħ               |        |        |                        | Cm**(-1)          | 1     | <m <="" td=""><td>mol</td><td></td><td>IR</td><td>RAMAI</td><td>N</td></m> | mol    |                  | IR            | RAMAI            | N      |
|                 | 1      |        |                        | 0.00              |       | 0.                                                                         | 00000  |                  | -             | -                |        |
|                 | 2      |        |                        | 0.00              |       | 0.                                                                         | 00000  |                  | -             | -                |        |
|                 | 3      |        |                        | 0.00              |       | Ο.                                                                         | 00000  |                  | -             | -                |        |
|                 | 4      |        |                        | 0.00              |       | Ο.                                                                         | 00000  |                  | -             | -                |        |
|                 | 5      |        |                        | 0.00              |       | Ο.                                                                         | 00000  |                  | -             | _                |        |
|                 | 6      |        |                        | 0.00              |       | Ο.                                                                         | 00000  |                  | -             | -                |        |
|                 | 7      |        | а                      | 3.73              |       | 0.                                                                         | 01302  |                  | YES           | YES              |        |
|                 | 8      |        | a                      | 12 06             |       | 0                                                                          | 11974  |                  | YES           | VES              |        |
|                 | q      |        | a                      | 16 64             |       | n.                                                                         | 07378  |                  | YES           | VFC              |        |
|                 | 10     |        | 2                      | 10.04             |       | ٥.<br>١                                                                    | 00800  |                  | VEC           | A L L<br>C T T C |        |
|                 | 11     |        | a                      | 19.40<br>07 FF    |       | 1                                                                          | 21252  |                  | VEC           | VEC<br>VEC       |        |
|                 |        |        | d                      | 4/.55             |       | ⊥.<br>^                                                                    | 24333  |                  | ILS           | IES              |        |
|                 | 12     |        | a                      | 29.12             |       | υ.                                                                         | 29447  |                  | YES           | YES              |        |
|                 | 13     |        | a                      | 36.62             |       | 0.                                                                         | 08091  |                  | YES           | YES              |        |
|                 | 14     |        | a                      | 49.22             |       | 1.                                                                         | 72618  |                  | YES           | YES              |        |
|                 | 15     |        | a                      | 50.89             |       | 0.                                                                         | 44674  |                  | YES           | YES              |        |
|                 | 16     |        | a                      | 52.75             |       | 1.                                                                         | 89392  |                  | YES           | YES              |        |
|                 | 17     |        | a                      | 83.99             |       | 0.                                                                         | 82652  |                  | YES           | YES              |        |
|                 | 18     |        | a                      | 86.59             |       | 0                                                                          | 36338  |                  | YES           | YES              |        |
|                 | 19     |        | a                      | 89 97             |       | 0                                                                          | 31064  |                  | YES           | YES              |        |
|                 | 20     |        | ∽<br>a                 | 105 20            |       | 1                                                                          | 61897  |                  | VEC           | VPC<br>T DD      |        |
|                 | 2 U    |        | u                      | T07.20            |       | т.                                                                         | 01021  |                  | С             | т E O            |        |

| 21                 | a           | 107.96          | 5.41632       | YES                       | YES      |          |
|--------------------|-------------|-----------------|---------------|---------------------------|----------|----------|
| 22                 | a           | 113.20          | 1.74201       | YES                       | YES      |          |
| 23                 | a           | 117.26          | 2.87596       | YES                       | YES      |          |
| 24                 | a           | 120.46          | 9.29559       | YES                       | YES      |          |
| 25                 | a           | 141.16          | 1.52757       | YES                       | YES      |          |
| 26                 | a           | 153.73          | 9.10607       | YES                       | YES      |          |
| 27                 | a           | 177.85          | 2.41408       | YES                       | YES      |          |
| 28                 | a           | 234.16          | 0.00563       | YES                       | YES      |          |
| 29                 | a           | 270.81          | 0.05853       | YES                       | YES      |          |
| 30                 | a           | 272.90          | 0.14298       | YES                       | YES      |          |
| 31                 | a           | 276.59          | 0.80229       | YES                       | YES      |          |
| 32                 | a           | 277.87          | 0.84601       | YES                       | YES      |          |
| 33                 | a           | 280.91          | 0.11164       | YES                       | YES      |          |
| 34                 | a           | 537.64          | 24.96011      | YES                       | YES      |          |
| 35                 | a           | 539.52          | 81.85859      | YES                       | YES      |          |
| 36                 | a           | 1201.27         | 115.59533     | YES                       | YES      |          |
| 37                 | a           | 1207.04         | 86.57893      | YES                       | YES      |          |
| 38                 | a           | 1391.56         | 350.23577     | YES                       | YES      |          |
| 39                 | а           | 1398.72         | 27.20642      | YES                       | YES      |          |
| HOMO-LUMO<br>Gap : | <br>Gap     | +0.1317915      | 58 н = +3.586 | 523 eV                    |          |          |
|                    |             |                 |               |                           |          |          |
| pDe0               |             |                 |               |                           |          |          |
| Å                  |             |                 |               |                           |          |          |
| \$coord            | E0222E2001  | 4 0075105006    |               |                           |          |          |
| -1.4325            | 2200201204  | -4.00/5105200   |               |                           | JU ag    |          |
| -1.60/5            | 3309381384  | 0.1996655141    |               |                           |          |          |
| 0.2262             | 18388/24/8  | 2.2590451650    |               |                           |          |          |
| 2.8138             | 1403861883  | 1.548/99840/    | 0.0000        |                           | 0 0      |          |
| Suser-dell         | nea bonas   |                 |               |                           |          |          |
| şena               |             |                 |               |                           |          |          |
| SCF and ZP         | -Energy     |                 |               |                           |          |          |
| *                  | zero point  | VIBRATIONAL ene | ergv : 0.00   | )81043 На                 | artree * |          |
| *                  | SCF-energ   | 2V              | : -695.13     | 52469                     | *        | <i>.</i> |
| *                  | SCF + E(    | vib0)           | : -695.12     | 271426                    | *        | 7        |
| <br>Vibrationa     |             |                 |               |                           |          |          |
| # mode             | symmetry    | wave number     | IR intensity  | selectio                  | on rules |          |
| #                  | 57          | $cm^{**}(-1)$   | km/mol        | TR                        | RAMAN    |          |
|                    |             | 0.00            | 0.00000       | _                         | _        |          |
| 2                  |             | 0.00            | 0.00000       | -                         | _        |          |
| 3                  |             | 0.00            | 0.00000       | -                         | _        |          |
| 4                  |             | 0.00            | 0.00000       | -                         | _        |          |
| 5                  |             | 0.00            | 0.00000       | -                         | _        |          |
| 6                  |             | 0.00            | 0.00000       | -                         | _        |          |
| 7                  | a'          | 46.14           | 2.88456       | YES                       | YES      |          |
| 8                  | a"          | 162.22          | 18.52103      | YES                       | YES      |          |
| 9                  | a'          | 231.83          | 5.49873       | YES                       | YES      |          |
| 10                 | a'          | 541.86          | 33.13113      | YES                       | YES      |          |
| 11                 | a'          | 1180.54         | 152.32553     | YES                       | YES      |          |
| 12                 | a'          | 1394.77         | 211.18907     | YES                       | YES      |          |
|                    | <br>Can     |                 |               |                           |          |          |
| Gap :              | Gap         | +0.2267667      | 72 н = +6.170 | 064 eV                    |          |          |
|                    |             |                 |               |                           |          |          |
| agso2_2_pb<br>     | eutzvpp<br> |                 |               |                           |          |          |
| t ac and           |             |                 |               |                           |          |          |
| a o o o o o        | 0206201601  |                 |               | 226771601                 |          |          |
| -0.0000            | 0200301001  | 1 1207002465    |               | 520111002                 | ay ay    |          |
| -U.UO51            | 2754055240  | -A 12070/1/04   |               | , JHLLJ4401<br>154157710, | 10 0     |          |
| 0.0051             | 4/74/22/40  | -4.130/041486   | リェッシュ −∪・∪∠/> | ·JHLJ//LZ4                | 19 U     |          |

|      | This journ | al is   | © The Royal Soc | ciety of Chemistry 2011 |       |          |                  |                  |                   |      |       |   |
|------|------------|---------|-----------------|-------------------------|-------|----------|------------------|------------------|-------------------|------|-------|---|
|      | 1 701      | 710     | E2400020        | 6 1552540404            | 6116  | -        | 0.00             | 06500            | 0001              | 0001 | a     |   |
|      | _1 781     | 642     | 37209782        | -6 1552540494           | 5465  | )<br>7   | 0.00             | 100592           | 230<br>2921       | 1595 | 5     |   |
|      | 4 361      | 365     | 95433189        | 5 4164576937            | 1946  | 5        | 0.00             | 005551           | 649               | 2838 | 0     |   |
|      | -4.361     | 330     | 22927887        | -5.4165815263           | 30515 | 5        | 0.04             | 04613            | 3333              | 7450 | 0     |   |
| \$us | ser-def    | ine     | d bonds         |                         |       |          |                  |                  |                   |      | -     |   |
| Şer  | nd<br>     |         |                 |                         |       |          |                  |                  |                   |      |       |   |
| SCE  | and Z      | P-E     | nergy           |                         |       |          |                  |                  |                   |      |       |   |
|      |            | *       | zero point      | VIBRATIONAL ene         | ergy  | :        | 0.               | 01651            | .06               | Hart | tree  | * |
|      |            | *       | SCF-ener        | ах                      |       | :        | -1243.           | 58396            | 86                |      |       | * |
|      |            | ×<br>   | SCF + E(        | V1DU)<br>               |       | :        | -1243.           | 56745            |                   |      |       | * |
| Vik  | oration    | al      | Spectrum        |                         |       |          |                  |                  | _                 |      | _     |   |
| #    | mode       |         | symmetry        | wave number             | IR    | in       | tensity          | se               | elec              | tion | rule  | S |
| Ŧ    | 1          |         |                 | Cm^^(-1)                |       | Km.      | / mol            |                  | IR                | ł    | KAMAN |   |
|      | ⊥<br>2     |         |                 | 0.00                    |       | 0        | .00000           |                  | _                 |      | _     |   |
|      | 2          |         |                 | 0.00                    |       | 0        | 00000            |                  | _                 |      | _     |   |
|      | 4          |         |                 | 0.00                    |       | 0        | 00000            |                  | _                 |      | _     |   |
|      | 5          |         |                 | 0.00                    |       | 0        | .00000           |                  | _                 |      | _     |   |
|      | 6          |         |                 | 0.00                    |       | 0        | .00000           |                  | _                 |      | _     |   |
|      | 7          |         | a               | 3.29                    |       | 0        | .41052           |                  | YES               |      | YES   |   |
|      | 8          |         | a               | 23.88                   |       | 0        | .84170           |                  | YES               |      | YES   |   |
|      | 9          |         | a               | 42.53                   |       | 2        | .82568           |                  | YES               |      | YES   |   |
|      | 10         |         | a               | 46.26                   |       | 0        | .00969           |                  | YES               |      | YES   |   |
|      | 11         |         | a               | 72.50                   |       | 3        | .49235           |                  | YES               |      | YES   |   |
|      | 12         |         | a               | 155.00                  |       | 0        | .00788           |                  | YES               |      | YES   |   |
|      | 13         |         | a               | 172.68                  |       | 29       | .84483           |                  | YES               |      | YES   |   |
|      | 14         |         | a               | 203.16                  |       | 0        | .00015           |                  | YES               |      | YES   |   |
|      | 15         |         | a               | 279.67                  |       | 7        | .27616           |                  | YES               |      | YES   |   |
|      | 16         |         | a               | 541.50                  |       | _0       | .00214           |                  | YES               |      | YES   |   |
|      | 17         |         | a               | 543.70                  | _     | 70       | .04177           |                  | YES               |      | YES   |   |
|      | 18         |         | a               | 1184.23                 | 2     | 305      | .77856           |                  | YES               |      | YES   |   |
|      | 19         |         | a               | 1206 56                 |       | 0        | .UI250           |                  | YES               |      | YES   |   |
|      | 20<br>21   |         | a               | 1396.56                 | 4     | 140<br>0 | .40954<br>.08186 |                  | YES               |      | YES   |   |
|      |            |         |                 |                         |       |          |                  |                  |                   |      |       |   |
| HON  | Gap :      | Ga      | p               | +0 1977369              | 9 н   | =        | +53              | 8070             | eV                |      |       |   |
|      |            |         |                 |                         |       |          |                  |                  |                   |      |       |   |
| ags  | so2_3_p    | be0     | tzvpp           |                         |       |          |                  |                  |                   |      |       |   |
|      |            |         |                 |                         |       |          |                  |                  |                   |      |       |   |
| \$cc | oord       |         |                 |                         |       |          |                  |                  |                   |      |       |   |
|      | 0.007      | 740     | 60494933        | -0.0114292110           | 7023  | 3        | 0.88             | 373222           | 2286              | 3560 | ag    |   |
|      | 3.845      | 614     | 29677453        | -2.1358769638           | 35104 | Ł        | 1.02             | 269663           | 3966              | 0071 | 0     |   |
|      | -0.083     | 326     | 28317468        | 4.3772909757            | 3029  | )        | 1.03             | 32851            | .979              | 3023 | 0     |   |
|      | -3.766     | 598     | 93498988        |                         | 3891  | -        | 1.03             | 571157<br>157674 | 970               | 0945 | 0     |   |
|      | 4.704      | 123     | 39803557        | -4.5408053525           | 0455  | ,<br>)   | 0.04             | 107570<br>107520 | E / / エ<br>いつ E / | 6017 | s     |   |
|      | 1 562      | 200     | 51660424        | -1.//0400110/           | 0012  | í<br>I   | 0.04             | 10/005<br>170050 | ,354<br>)//7      | 0017 | S     |   |
|      | 2 928      | 716     | 63353396        |                         | 7566  |          | -1 37            | 19230            | )763              | 8780 | 5     |   |
|      | -6 618     | 460     | 30020348        | 0 4751585089            | 6264  | ,<br>L   | -1 37            | 03270<br>91913   | 1926              | 0188 | 0     |   |
|      | 3.696      | 464     | 86742177        | 5.5257945361            | 2418  | }        | -1.37            | 74176            | 5085              | 5353 | 0     |   |
| \$us | ser-def    | ine     | d bonds         | 5.5257515501            | 2110  | ,        | 1.57             | , 11, 10         | ,005              | 5555 | 0     |   |
| \$er | nd         |         |                 |                         |       |          |                  |                  |                   |      |       |   |
| SCE  | and Z      | <br>Р-Е | nergy           |                         |       |          |                  |                  | -                 |      |       |   |
|      |            | *       | zero point      | VIBRATIONAL ene         | ergy  | :        | 0.               | 02411            | .67               | Har  | tree  | * |
|      |            | *       | SCF-ener        | ах                      |       | :        | -1792.           | 01372            | 269               |      |       | * |
|      |            | *       | SCF + E(        | vib0)                   |       | :        | -1791.           | 98961            | .02               |      |       | * |
| vir  | oration    | <br>al  | Spectrum        |                         |       |          |                  |                  |                   |      |       |   |
| #    | mode       | ~-      | symmetrv        | wave number             | IR    | in       | tensitv          | se               | elec              | tion | rule  | s |
| #    |            |         | 4               | cm**(-1)                |       | km,      | /mol             |                  | IR                | ]    | RAMAN | ſ |

Electronic Supplementary Information for Dalton Transactions

60

| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>a<br>8<br>a<br>9<br>a<br>10<br>a<br>11<br>a<br>12<br>a<br>13<br>a<br>14<br>a<br>15<br>a<br>16<br>a<br>17<br>a<br>18<br>a<br>19<br>a<br>20<br>a<br>21<br>a<br>22<br>a<br>23<br>a<br>24<br>a<br>25<br>a<br>26<br>a<br>27<br>a<br>28<br>a<br>29<br>a<br>20<br>a<br>21<br>a<br>22<br>a<br>23<br>a<br>24<br>a<br>25<br>a<br>26<br>a<br>27<br>a<br>28<br>a<br>29<br>a<br>20<br>a<br>21<br>a<br>22<br>a<br>23<br>a<br>24<br>a<br>25<br>a<br>26<br>a<br>27<br>a<br>28<br>a<br>29<br>a<br>20<br>a<br>21<br>a<br>22<br>a<br>23<br>a<br>24<br>a<br>25<br>a<br>26<br>a<br>27<br>a<br>28<br>a<br>29<br>a<br>30<br>a<br>29<br>a<br>30<br>a<br>29<br>a<br>30<br>a<br>29<br>a<br>30<br>a<br>29<br>a<br>30<br>a<br>29<br>a<br>30<br>a<br>29<br>a<br>30<br>a<br>29<br>a<br>30<br>a<br>29<br>a<br>30<br>a<br>29<br>a<br>30<br>a<br>29<br>a<br>30<br>a<br>29<br>a<br>30<br>a<br>29<br>a<br>30<br>a<br>29<br>a<br>30<br>a<br>29<br>a<br>30<br>a<br>29<br>a<br>30<br>a<br>29<br>a<br>30<br>a<br>29<br>a<br>30<br>a<br>29<br>a<br>30<br>a<br>29<br>a<br>30<br>a<br>29<br>a<br>30<br>a<br>29<br>a<br>30<br>a<br>29<br>a<br>30<br>a<br>29<br>a<br>30<br>a<br>29<br>a<br>30<br>a<br>29<br>a<br>30<br>a<br>29<br>a<br>30<br>a<br>29<br>a<br>30<br>a<br>29<br>a<br>30<br>a<br>29<br>a<br>30<br>a<br>29<br>a<br>30<br>a<br>20<br>a<br>28<br>a<br>29<br>a<br>30<br>a<br>29<br>a<br>30<br>a<br>29<br>a<br>30<br>a<br>29<br>a<br>30<br>a<br>20<br>a<br>29<br>a<br>30<br>a<br>29<br>a<br>30<br>a<br>20<br>29<br>a<br>30<br>a<br>20<br>29<br>a<br>30<br>a<br>20<br>29<br>20<br>29<br>20<br>29<br>20<br>20<br>29<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | $\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 6.31\\ 6.42\\ 10.27\\ 10.56\\ 11.25\\ 32.31\\ 43.18\\ 44.09\\ 44.23\\ 139.91\\ 140.14\\ 148.43\\ 178.96\\ 185.65\\ 186.76\\ 540.86\\ 540.94\\ 543.18\\ 1193.40\\ 1193.43\\ 1199.50\\ 1394.17\\ 1394.25\\ 1397.81\\ \end{array}$ | $\begin{array}{c} 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.02624\\ 0.02861\\ 0.11972\\ 0.06688\\ 0.10341\\ 2.97875\\ 0.03129\\ 2.66431\\ 2.68397\\ 8.68954\\ 8.77128\\ 27.48237\\ 0.10971\\ 8.22272\\ 8.32365\\ 58.97852\\ 59.42589\\ 4.04592\\ 174.95926\\ 173.38537\\ 8.09388\\ 266.40357\\ 267.47234\\ 155.60470\\ \end{array}$ | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|
| \$coord<br>0.00000000000000<br>-2.32850100837618<br>2.32850100837618<br>\$user-defined bonds<br>\$end                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0000000000<br>0.0000000000<br>0.0000000000                                                                                                                                                                                                                                                              | 0000 -0.916<br>0000 0.458<br>0000 0.458                                                                                                                                                                                                                                                                                                                 | 7493727194<br>3746863597<br>3746863597(                                                     | 5 s<br>0 o<br>0 o                                                                           |  |
| SCF and ZP-Energy<br>* zero point VI<br>* SCF-energy<br>* SCF + E(vik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BRATIONAL ene:                                                                                                                                                                                                                                                                                            | rgy : 0.00<br>: -548.41<br>: -548.40                                                                                                                                                                                                                                                                                                                    | <br>072201 Нал<br>112333<br>040132                                                          | rtree *<br>*<br>*                                                                           |  |
| Vibrational Spectrum<br># mode symmetry<br>#<br>1<br>2<br>3<br>4<br>5<br>6<br>7 al<br>8 al<br>9 bl<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <pre>wave number<br/>cm**(-1)<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>532.09<br/>1217.06<br/>1420.11<br/></pre>                                                                                                                                                                                  | <pre>IR intensity     km/mol         0.00000         0.00000</pre>                                                                                                                                                                                                                                                                                      | selection<br>IR<br>-<br>-<br>-<br>YES<br>YES<br>YES<br>YES                                  | n rules<br>RAMAN<br>-<br>-<br>-<br>-<br>YES<br>YES<br>YES                                   |  |

se6\_2+\_boat\_pbe0tzvpp \_\_\_\_\_ \$coord Dora-2.082216820442092.41981630320981-1.35707560692137se-2.08231422255380-2.41973970896652-1.35706292766456se2.281745365578243.12965223531603-0.77770573455479se2.28162190848369-3.12974639124949-0.77769213219229se-3.409078368469120.000073503362712.09154079719617se3.01024213740299-0.000055941672542.17799560413685se \$user-defined bonds \$end \_\_\_\_\_ SCF and ZP-Energy \* zero point VIBRATIONAL energy : 0.0054946 Hartree \* \* SCF-energy : -14406.9972798 \* SCF + E(vib0) : -14406.9917852 \_\_\_\_\_ 
 wave number cm\*\*(-1)
 IR intensity km/mol
 selection rules IR

 0.00
 0.00000

 0.00
 0.00000

 0.00
 0.00000

 0.00
 0.00000

 0.00
 0.00000

 0.00
 0.00000

 0.00
 0.00000

 0.00
 0.00000

 0.00
 0.00000

 0.00
 0.00000

 0.01
 0.00000

 0.00
 0.00403
 YES
 YES

 92.43
 0.06403
 YES
 YES

 115.21
 0.49189
 YES
 YES

 145.24
 1.17915
 YES
 YES

 145.28
 0.15566
 YES
 YES

 210.19
 0.56141
 YES
 YES

 262.99
 0.25753
 YES
 YES

 Vibrational Spectrum # mode symmetry # 1 2 3 4 5 б 7 а 8 а 9 a 10 a 11 a 12 a 13 a 14 a 15 a 16 a 17 a a 18 а \_\_\_\_\_ HOMO-LUMO Gap +0.11861008 H = +3.22755 eV Gap : ----se6\_2+\_chair\_pbe0tzvpp \_\_\_\_\_ \$coord 3.63125846781012-2.09690436516911-0.57850219319444se-3.63128719386722-2.09695808210255-0.57796592067783se-3.631367291037012.096914616834950.57829888570805se3.631334163859322.096857928672800.57883455263395se0.00003110978762-4.195861956826700.57817666040822se0.000030743447144.19595185859061-0.57884198487799se \$user-defined bonds \$end \_\_\_\_\_ SCF and ZP-Energy \* zero point VIBRATIONAL energy : 0.0050619 Hartree \* \* SCF-energy : -14406.9881864 \* SCF + E(vib0) : -14406.9831245 \* \_\_\_\_\_ Vibrational Spectrum wave numberIR intensityselection rulescm\*\*(-1)km/molIRRAMAN0.000.000000--# mode symmetry # 1

| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>HOMO-LUMO<br>Gap :                               | a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a                               | 0.00<br>0.00<br>0.00<br>0.00<br>34.12<br>35.55<br>106.36<br>106.38<br>125.54<br>190.95<br>237.64<br>252.70<br>273.86<br>275.55<br>290.65<br>292.63<br>+0.09032298 F                                                                                | 0.0<br>0.0<br>0.0<br>0.0<br>2.8<br>2.8<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.2<br>0.2<br>0.2<br>0.2 | 0000<br>0000<br>0000<br>0000<br>6780<br>6474<br>0000<br>0000<br>4787<br>0030<br>0000<br>8381<br>8451<br>0000<br>0000<br>+2.4 | -<br>-<br>-<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES                             | -<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES                                |             |
|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------|
|                                                                                                                                                |                                                                                                                           |                                                                                                                                                                                                                                                    |                                                                                                              |                                                                                                                              |                                                                                                               |                                                                                                        |             |
| \$coord<br>-2.1465<br>1.2831<br>-0.4174<br>-0.0449<br>1.2831<br>-2.1465<br>-0.4174<br>2.6065<br>\$user-defi<br>\$end                           | 7692974305<br>7746386817<br>1026823280<br>3003904956<br>7746386817<br>7692974305<br>1026823280<br>4950726488<br>ned bonds | -0.1235771146880<br>-2.8320541990715<br>3.8984551920686<br>-5.6222549553799<br>-2.8320541990715<br>-0.1235771146880<br>3.8984551920686<br>3.7366071987616                                                                                          | )2<br>50<br>53<br>90<br>50<br>)2<br>53<br>57                                                                 | -2.77<br>-3.13<br>-3.18<br>0.00<br>3.13<br>2.77<br>3.18<br>0.00                                                              | 7215000467<br>3118703230<br>3641627981<br>0000000000<br>3118703230<br>7215000467<br>3641627981<br>00000000000 | 2083 se<br>2046 se<br>269 se<br>2000 se<br>2046 se<br>2083 se<br>2083 se<br>2083 se<br>2083 se         |             |
| SCF and ZF<br>*<br>*                                                                                                                           | -Energy<br>zero point<br>SCF-energ<br>SCF + E(v                                                                           | VIBRATIONAL energy<br>yy<br>vib0)                                                                                                                                                                                                                  | / :<br>: -<br>: -                                                                                            | 0.<br>19209.<br>19209.                                                                                                       | 0073466<br>6283545<br>6210079                                                                                 | Hartree                                                                                                | *<br>*<br>* |
| Vibrationa<br># mode<br>#<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21 | l Spectrum<br>symmetry<br>a'<br>a'<br>a'<br>a'<br>a'<br>a'<br>a'<br>a'<br>a'<br>a'<br>a'<br>a'<br>a'                      | <pre>wave number IF<br/>cm**(-1)<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>45.04<br/>55.84<br/>83.00<br/>88.61<br/>98.16<br/>99.17<br/>115.59<br/>129.37<br/>152.37<br/>152.52<br/>217.31<br/>241.81<br/>265.91<br/>282.10<br/>283.57</pre> | <pre>     inte     km/m         0.0         0.0         0.0</pre>                                            | ensity<br>00000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000                                                              | select<br>IR<br>-<br>-<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES                  | ion rule<br>RAMAN<br>-<br>-<br>-<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES<br>YES | 5           |

| 22<br>23            | a"<br>a'     | 300.75<br>300.95 |              | 0.3   | 1113<br>0003     |                | YES<br>YES | YES<br>YES |    |
|---------------------|--------------|------------------|--------------|-------|------------------|----------------|------------|------------|----|
| 24                  | a'           | 312.69           |              | 0.1   | 3104<br>         |                | YES<br>-   | YES        |    |
| HOMO-LUMO<br>Gap :  | Gap          | +0.0972137       | 6 Н          | =     | +2.64            | 4532           | eV         |            |    |
| se8_pbe0t           | zvpp         |                  |              |       |                  |                |            |            |    |
| с                   |              |                  |              |       |                  |                |            |            |    |
| \$coora<br>1,912    | 00403889871  | 4,6159860820     | 2144         |       | 1.08             | 59878          | 7782985    | se         |    |
| 1.912               | 00403889871  | -4.6159860820    | 2144         |       | -1.08            | 59878          | 7782985    | se         |    |
| -4.615              | 98608202144  | 1.9120040388     | 9871         |       | 1.08             | 59878          | 7782985    | se         |    |
| -4.615              | 98608202144  | -1.9120040388    | 9871         |       | -1.08            | 59878          | 7782985    | se         |    |
| -1.912              | 00403889871  | 4.6159860820     | 2144         |       | -1.08            | 9878<br>0070   | 7782985    | se         |    |
| 4.015               | 98608202144  | -1.9120040388    | 90/1<br>9871 |       | -1 08            | 590/0<br>59878 | 7782985    | se         |    |
| -1.912              | 00403889871  | -4.6159860820    | 2144         |       | 1.08             | 59878          | 7782985    | se         |    |
| \$user-def<br>\$end | ined bonds   |                  |              |       |                  |                |            |            |    |
| SCF and Z           | P-Energy     |                  |              |       |                  |                | -          |            |    |
|                     | * zero point | VIBRATIONAL ene  | rgy          | :     | 0.0              | )0699          | 81 Har     | tree       | *  |
|                     | * SCF-energ  | gy<br>wib0)      |              | · _ · | 19210<br>19210 - | 34420<br>22721 | 91<br>10   |            | *  |
|                     |              |                  |              | •     |                  |                | -          |            |    |
| Vibration           | al Spectrum  |                  |              |       |                  |                |            |            |    |
| # mode              | symmetry     | wave number      | IR           | inte  | nsity            | se             | lection    | rule       | S  |
| #                   |              | cm**(-1)         |              | km/m  | ol               |                | IR         | RAMAN      |    |
| 1                   |              | 0.00             |              | 0.0   | 0000             |                | -          | -          |    |
| 2                   |              | 0.00             |              | 0.0   | 0000             |                | -          | -          |    |
| 3                   |              | 0.00             |              | 0.0   | 0000             |                | _          | _          |    |
| 5                   |              | 0.00             |              | 0.0   | 0000             |                | -          | _          |    |
| 6                   |              | 0.00             |              | 0.0   | 0000             |                | -          | _          |    |
| 7                   | e2           | 36.90            |              | 0.0   | 0000             |                | NO         | YES        |    |
| 8                   | e2           | 36.90            |              | 0.0   | 0000             |                | NO         | YES        |    |
| 9                   | e2           | 74.17            |              | 0.0   | 0000             |                | NO         | YES        |    |
| 10<br>11            | e2           | 74.17            |              | 0.0   | 0000<br>9162     |                | NO         | YES        |    |
| 12                  | e1           | 96 58            |              | 1 1   | 8162             |                | YES        | NO         |    |
| 13                  | al           | 109.95           |              | 0.0   | 0000             |                | NO         | YES        |    |
| 14                  | b2           | 119.14           |              | 0.5   | 0378             |                | YES        | NO         |    |
| 15                  | e3           | 124.32           |              | 0.0   | 0000             |                | NO         | YES        |    |
| 16                  | e3           | 124.32           |              | 0.0   | 0000             |                | NO         | YES        |    |
| 17                  | bl           | 252.41           |              | 0.0   | 0000             |                | NO         | NO         |    |
| 18<br>19            | e3           | 263.69           |              | 0.0   |                  |                | NO         | YES        |    |
| 20                  | e3<br>61     | 203.09           |              | 1 7   | 1304             |                | NU<br>VES  | NO         |    |
| 20                  | el           | 278.81           |              | 1.7   | 1304             |                | YES        | NO         |    |
| 22                  | al           | 279.42           |              | 0.0   | 0000             |                | NO         | YES        |    |
| 23                  | e2           | 280.97           |              | 0.0   | 0000             |                | NO         | YES        |    |
| 24                  | e2           | 280.97           |              | 0.0   | 0000             |                | NO         | YES        |    |
| HOMO-LUMO           | <br>Gap      |                  |              |       |                  |                | -          |            |    |
| Gap :               |              | +0.1654146       | 0 н          | =     | +4.50            | )116           | eV         |            |    |
| se6_pbe0t           | zvpp         |                  |              |       |                  |                | _          |            |    |
| Ścoord              |              |                  |              |       |                  |                |            |            |    |
| 3.415               | 96475639717  | -1.9722081716    | 4818         |       | -0.990           | 03146          | 3448427    |            | se |
| -3.415              | 96475639716  | -1.9722081716    | 4818         |       | -0.990           | 03146          | 3448427    |            | se |
| -3.415              | 96475639716  | 1.9722081716     | 4818         |       | 0.990            | 03146          | 3448427    |            | se |

| 3.4<br>0.0<br>0.0<br>\$end                                                                                                                            | 1596<br>0000<br>0000                                                                                                                             | 475639717<br>000000000<br>0000000000                                                                                                                                                                                   | 1.97220817164<br>-3.94441634329<br>3.94441634329                                                                                                                                                                                                                  | 4818<br>9635<br>9635                                                                                                         |                                                                                     | 0.990<br>0.990<br>-0.990                                                                                                                 | 31463448<br>31463448<br>31463448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3427<br>3427<br>3427                                                                                                                    | se<br>se<br>se                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| SCF and                                                                                                                                               | <br>ZP-<br>*<br>*                                                                                                                                | Energy<br>zero point<br>SCF-ener<br>SCF + E(                                                                                                                                                                           | VIBRATIONAL ener<br>gy<br>vib0)                                                                                                                                                                                                                                   |                                                                                                                              | :<br>: -,<br>: -,                                                                   | 0.0<br>14407.7<br>14407.7                                                                                                                | <br>052028<br>485374<br>433345<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hartree                                                                                                                                 | *<br>*<br>*                                                                |
| Vibrati<br># mode<br># 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18                                | onal                                                                                                                                             | eu<br>eu<br>eu<br>eg<br>eg<br>alg<br>a2u<br>alu<br>eg<br>eg<br>eu<br>eu<br>eu                                                                                                                                          | <pre>wave number<br/>cm**(-1)<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>0.00<br/>81.92<br/>81.92<br/>101.46<br/>101.46<br/>134.55<br/>157.22<br/>235.79<br/>272.24<br/>272.24<br/>279.37<br/>279.37<br/>286.25</pre>                                                | IR                                                                                                                           | inte:<br>km/m<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.2<br>0.2<br>0.0<br>0.0 | nsity<br>ol<br>0000<br>0000<br>0000<br>0000<br>2858<br>2858<br>0000<br>0000                                                              | select<br>IR<br>-<br>-<br>YES<br>YES<br>NO<br>NO<br>NO<br>YES<br>NO<br>NO<br>NO<br>YES<br>YES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | cion rule<br>RAMAN<br>-<br>-<br>-<br>-<br>NO<br>NO<br>YES<br>YES<br>NO<br>NO<br>YES<br>YES<br>NO<br>NO<br>YES<br>YES<br>NO<br>NO<br>YES | S                                                                          |
| HOMO-LU<br>Gap                                                                                                                                        | <br>MO G<br>:                                                                                                                                    | ap                                                                                                                                                                                                                     | +0.15831980                                                                                                                                                                                                                                                       | он                                                                                                                           | =                                                                                   | +4.30                                                                                                                                    | <br>810 eV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                         |                                                                            |
| ag3se6_<br><br>\$coord<br>-4.5<br>12.5<br>-10.4<br>6.7<br>-12.5<br>4.5<br>-6.7<br>10.4<br>-6.7<br>10.4<br>-10.4<br>6.7<br>0.0<br>-9.3<br>9.3<br>\$end | 2_pb<br><br>8608<br>8149<br>3850<br>3507<br>8149<br>8608<br>3507<br>3850<br>3507<br>3850<br>3850<br>3850<br>3850<br>3850<br>3850<br>3850<br>3850 | e0tzvpp<br>472476816<br>741021154<br>245800284<br>343421790<br>741021154<br>472476816<br>343421790<br>245800284<br>343421790<br>245800284<br>245800284<br>245800284<br>343421790<br>00000000<br>861283560<br>861283560 | -1.65784546438<br>0.27220843919<br>-2.03113808852<br>-0.33438183773<br>-0.27220843919<br>1.65784546438<br>0.33438183773<br>2.03113808852<br>0.33438183773<br>2.03113808852<br>-2.03113808852<br>-0.33438183773<br>0.0000000000<br>3.81464125422<br>-3.81464125422 | 8280<br>9987<br>2881<br>1069<br>9987<br>8280<br>1070<br>2881<br>1070<br>2881<br>1070<br>2881<br>1069<br>0000<br>1326<br>1326 |                                                                                     | 0.000<br>0.000<br>3.479<br>3.440<br>0.000<br>-3.440<br>-3.479<br>3.440<br>3.479<br>-3.479<br>-3.479<br>-3.440<br>0.000<br>0.000<br>0.000 | 00000000<br>00000000<br>57002063<br>56284544<br>00000000<br>56284544<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>57002063<br>570020000000000000000000000000000000000 | 0000<br>0000<br>3485<br>4297<br>0000<br>0000<br>4297<br>3485<br>4297<br>3485<br>3485<br>3485<br>4297<br>0000<br>0000                    | se<br>se<br>se<br>se<br>se<br>se<br>se<br>se<br>se<br>se<br>se<br>ag<br>ag |
| SCF and<br><br>Vibrati                                                                                                                                | . ZP-<br>*<br>*<br>*<br>onal                                                                                                                     | Energy<br>zero point<br>SCF-ener<br>SCF + E(<br>Spectrum                                                                                                                                                               | VIBRATIONAL ener<br>9y<br>vib0)                                                                                                                                                                                                                                   | rgy<br>                                                                                                                      | :                                                                                   | 0.0<br>29255.5<br>29255.5<br>                                                                                                            | 122686<br>930513<br>807827<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hartree                                                                                                                                 | *<br>*<br>*                                                                |
| # mode<br># 1                                                                                                                                         |                                                                                                                                                  | symmetry                                                                                                                                                                                                               | wave number<br>cm**(-1)<br>0.00                                                                                                                                                                                                                                   | IR                                                                                                                           | inte<br>km/m<br>0.0                                                                 | nsity<br>ol<br>0000                                                                                                                      | select<br>IR<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tion rule<br>RAMAN<br>-                                                                                                                 | S                                                                          |

| 2<br>3    |          | 0.00<br>0.00 | 0.00000<br>0.00000 | _     |     |
|-----------|----------|--------------|--------------------|-------|-----|
| 4         |          | 0.00         | 0.00000            | -     | -   |
| 5         |          | 0.00         | 0.00000            | -     | -   |
| б         |          | 0.00         | 0.00000            | -     | -   |
| 7         | au       | 3.62         | 0.17852            | YES   | NO  |
| 8         | au       | 6.67         | 0.09790            | YES   | NO  |
| 9         | bu       | 6.91         | 0.24268            | YES   | NO  |
| 10        | ag       | 17.59        | 0.00000            | NO    | YES |
| 11        | bg       | 26.26        | 0.00000            | NO    | YES |
| 12        | ag       | 38.60        | 0.00000            | NO    | YES |
| 13        | bu       | 41.12        | 0.93158            | YES   | NO  |
| 14        | au       | 44.11        | 0.45432            | YES   | NO  |
| 15        | bg       | 45.66        | 0.00000            | NO    | YES |
| 16        | ag       | 55.68        | 0.00000            | NO    | YES |
| 17        | au       | 62.17        | 0.00633            | YES   | NO  |
| 18        | bu       | 63.68        | 2.01476            | YES   | NO  |
| 19        | bu       | 84.22        | 0.32458            | YES   | NO  |
| 20        | pd       | 85.54        | 0.00000            | NO    | YES |
| 21        | au       | 85./4        | 0.01690            | YES   | NO  |
| 22        | ag       | 88.39        | 0.00000            | NO    | YES |
| 23        | bu<br>ba | 89.17        | 5.09804            | YES   | NO  |
| 24        | ga       | 109.61       | 0.00000            | NO    | ILS |
| 25        | au       | 109.88       | 1.11/94            | IES   | NU  |
| 20        | ag       | 110.28       | 0.00000            | NO    | YES |
| 27        | ay       | 110.00       | 0.00000            | NU    | IES |
| 20        | bu       | 120 70       | 1 50610            | ILS   | NO  |
| 30        | ad       | 165 81       | 1.39019            | NO    | NU  |
| 31        | bu       | 174 94       | 4 38169            | VFS   | NO  |
| 32        | ad       | 181 69       | 0 00000            | NO    | YES |
| 22        | bu       | 198 62       | 4 47297            | YES   | NO  |
| 34        | ba       | 218 49       | 0 00000            | NO    | YES |
| 35        | au       | 219.93       | 0.24666            | YES   | NO  |
| 36        | bu       | 242.95       | 19.12701           | YES   | NO  |
| 37        | aq       | 244.38       | 0.00000            | NO    | YES |
| 38        | bg       | 262.79       | 0.00000            | NO    | YES |
| 39        | au       | 263.30       | 0.50985            | YES   | NO  |
| 40        | ag       | 266.39       | 0.00000            | NO    | YES |
| 41        | bu       | 266.44       | 0.22759            | YES   | NO  |
| 42        | bg       | 280.91       | 0.00000            | NO    | YES |
| 43        | au       | 281.12       | 0.07659            | YES   | NO  |
| 44        | ag       | 284.09       | 0.0000             | NO    | YES |
| 45        | bu<br>   | 284.18       | 1.01866            | YES   | NO  |
| HOMO-LUMO | Gap      |              |                    |       |     |
| Gap :     | -        | +0.14625249  | H = +3.979         | 74 eV |     |
|           |          |              |                    |       |     |

#### S 4.3.2 Bond Analysis

 $\underline{\operatorname{Ag}}_{2}\operatorname{Se}_{6}(\operatorname{SO}_{2})_{4}^{\underline{2+}} (\mathbf{2})$ 

Second Order Perturbation Theory Analysis of Fock Matrix in NBO Basis

| Threshold f<br>(Intermolecu                                                                                                  | or pri<br>lar th                                      | nting:<br>reshold                         | 1.0 }<br>: 0.05                                                             | kcal<br>kca                                          | /mol<br>l/mol)                                        |                                                                                                     |                  |                                                         |                                                      |                                                             |
|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|
| Donor NBO (                                                                                                                  | Acceptor NBO (j)                                      |                                           |                                                                             |                                                      |                                                       | E(2) E<br>kcal/mol                                                                                  | (j)-E(i)<br>a.u. | ) F(i,j)<br>a.u.                                        |                                                      |                                                             |
| 1. BD ( 1) S<br>1. BD ( 1) S<br>1. BD ( 1) S<br>2. BD ( 2) S | $ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | /284. R<br>/796. BJ<br>/797. BJ<br>/284. R<br>/300. R<br>/795. B<br>/796. B | Y* (<br>D* (<br>D* (<br>Y* (<br>Y* (<br>D* (<br>D* ( | 2) O<br>2) S<br>1) S<br>2) O<br>18) O<br>1) S<br>2) S | $ \begin{array}{c} 4 \\ 1 & - & 0 \\ 4 & - & 0 \\ 4 & - & 0 \\ 1 & - & 0 \\ 1 & - & 0 \end{array} $ | 3<br>4<br>3<br>3 | 1.21<br>22.02<br>19.96<br>2.61<br>2.17<br>19.14<br>2.21 | 1.96<br>1.10<br>1.07<br>1.66<br>2.17<br>0.82<br>0.80 | 0.044<br>0.143<br>0.133<br>0.061<br>0.063<br>0.113<br>0.038 |

\_\_\_\_

| 2. BD (     | 2) S | 1 - 0 | 3 | /797. BD*(               | ( 1) S | 1 - 0          | 4 | 47.95  | 0.78  | 0.173   |
|-------------|------|-------|---|--------------------------|--------|----------------|---|--------|-------|---------|
| 2. BD (     | 2) S | 1 - 0 | 3 | /798, BD*(               | 2) S   | 1 - 0          | 4 | 1.84   | 0.88  | 0.036   |
| 2.00(       | 1) 0 | 1 0   | 4 | /2E0 DV*/                | 2) 0   | 2              | - | 2.01   | 1 20  | 0 051   |
| з. вр (     | 1) 5 | 1 - 0 | - | /259. RI*(               | 3)0    | 3              |   | 2.52   | 1.20  | 0.051   |
| 3. BD (     | 1) S | 1 - 0 | 4 | /263. RY*(               | 7) 0   | 3              |   | 1.81   | 2.14  | 0.058   |
| 3. BD (     | 1) S | 1 - 0 | 4 | /274. RY*(               | 18) 0  | 3              |   | 1.01   | 2.40  | 0.046   |
| 3. BD (     | 1) S | 1 - 0 | 4 | /284. RY*(               | 2) 0   | 4              |   | 1.48   | 1.52  | 0.044   |
| 3 80 (      | 1) 9 | 1 - 0 | 4 | /300 PV*/                | 18) 0  | 4              |   | 1 11   | 2 0 2 | 0 044   |
| ) עם . כ    | 1) 0 | 1 0   | 1 | /705 DD*/                |        | 1 0            | 2 | 10 02  | 0 60  | 0.011   |
| 5. BD (     | 1) 5 | 1 - 0 | 4 | /795. BD"(               | 1) 5   | 1 - 0          | 5 | 19.95  | 0.00  | 0.104   |
| 3. BD (     | 1) S | 1 - 0 | 4 | /796. BD*(               | 2) S   | 1 - 0          | 3 | 61.34  | 0.66  | 0.180   |
| 3. BD (     | 1) S | 1 - 0 | 4 | /797. BD*(               | 1) S   | 1 - 0          | 4 | 16.39  | 0.63  | 0.091   |
| 3. BD (     | 1) S | 1 - 0 | 4 | /798. BD*(               | 2) S   | 1 - 0          | 4 | 1.15   | 0.73  | 0.026   |
| 4 D (       | 2) 9 | 1 - 0 | 4 | /796                     | 2) 9   | 1 - 0          | 2 | 3 07   | 1 27  | 0 058   |
| 4. DD (     | 2) 3 | 1 - 0 | - | /790. BD (               | 2/3    | 1 0            | 1 | 1.00   | 1 27  | 0.000   |
| 4. BD (     | 2) 5 | 1 - 0 | 4 | //9/. BD*(               | 1) S   | 1 - 0          | 4 | 1.28   | 1.25  | 0.037   |
| 34. CR (    | 1) 0 | 4     |   | /194. RY*(               | (2) S  | 1              |   | 1.25   | 19.92 | 0.142   |
| 34. CR (    | 1) 0 | 4     |   | /195. RY*(               | 3) S   | 1              |   | 1.01   | 20.65 | 0.129   |
| 145. LP (   | 1) 0 | 3     |   | /196. RY*(               | 4) S   | 1              |   | 3.20   | 2.36  | 0.079   |
| 145 T.D (   | 1) 0 | 2     |   | /798 (                   | 2) 9   | 1 - 0          | 4 | 1 54   | 1 21  | 0 030   |
| 146 TD (    | 2) 0 | 2     |   | /102                     |        | 1 0            | 1 | 11 24  | 1 02  | 0.000   |
| 140. LP (   | 2) 0 | 5     |   | /195. RI" (              | 1) 5   | 1              |   | 11.34  | 1.03  | 0.098   |
| 146. LP (   | 2) 0 | 3     |   | /194. RY*(               | 2) S   | 1              |   | 3.46   | 1.27  | 0.061   |
| 146. LP (   | 2) 0 | 3     |   | /798. BD*(               | (2) S  | 1 - 0          | 4 | 17.64  | 0.73  | 0.103   |
| 147. LP (   | 1) 0 | 4     |   | /195. RY*(               | 3) S   | 1              |   | 4.25   | 2.47  | 0.092   |
| 148. T.P (  | 2) 0 | 4     |   | /193 RY*(                | 1) S   | 1              |   | 20.35  | 0.99  | 0.130   |
| 140 TD (    | 2) 0 | 1     |   | /705 00*/                | 1) 0   | 1 0            | 2 | 10 65  | 0.64  | 0 101   |
| 140. LP (   | 2)0  | 4     |   | /795. BD*(               |        | 1 - 0          | 2 | 19.05  | 0.04  | 0.101   |
| 148. LP (   | 2) 0 | 4     |   | //96. BD*(               | 2) S   | 1 - 0          | 3 | 7.64   | 0.62  | 0.061   |
| 795. BD*(   | 1) S | 1 - 0 | 3 | /193. RY*(               | ( 1) S | 1              |   | 10.27  | 0.36  | 0.168   |
| 795. BD*(   | 1) S | 1 - 0 | 3 | /194. RY*(               | (2) S  | 1              |   | 9.08   | 0.59  | 0.227   |
| 795. BD*(   | 1) S | 1 - 0 | 3 | /260, RY*(               | 4) 0   | 3              |   | 1.02   | 1.11  | 0.116   |
| 795 BD*(    | 1) 9 | 1 - 0 | 3 | /798 BD*(                | 2) 9   | 1 - 0          | 4 | 1 65   | 0 06  | 0 026   |
| 70C DD*(    | 1, 5 | 1 0   | 2 | (102 DX+)                | 1) 0   | 1 0            | 1 | 1.05   | 0.00  | 0.020   |
| 796. BD*(   | 2) S | 1 - 0 | 3 | /193. RY*(               | 1) S   | 1              |   | 3.99   | 0.38  | 0.101   |
| 796. BD*(   | 2) S | 1 - 0 | 3 | /194. RY*(               | 2) S   | 1              |   | 3.55   | 0.62  | 0.133   |
| 796. BD*(   | 2) S | 1 - 0 | 3 | /198. RY*(               | ( 6) S | 1              |   | 1.41   | 0.59  | 0.090   |
| 796. BD*(   | 2) S | 1 - 0 | 3 | /259. RY*(               | 3) 0   | 3              |   | 1.78   | 0.54  | 0.096   |
| 796 BD*(    | 2) 5 | 1 - 0 | З | /263 RY*(                | 7)0    | 3              |   | 1 32   | 1 48  | 0 138   |
| 706 DD*(    | 2) 0 | 1 0   | 2 | /203. RI (               |        | 4              |   | 1 70   | 0.96  | 0.100   |
| 796. BD"(   | 2) 5 | 1 - 0 | 2 | /204. RI" (              | 2)0    | 4              |   | 1.79   | 0.00  | 0.122   |
| 796. BD*(   | 2) S | 1 - 0 | 3 | /300. RY*(               | 18) 0  | 4              |   | 1.04   | 1.37  | 0.117   |
| 796. BD*(   | 2) S | 1 - 0 | 3 | /795. BD*(               | ( 1) S | 1 - 0          | 3 | 1.54   | 0.02  | 0.013   |
| 796. BD*(   | 2) S | 1 - 0 | 3 | /798. BD*(               | 2) S   | 1 - 0          | 4 | 8.47   | 0.08  | 0.064   |
| 797. BD*(   | 1) S | 1 - 0 | 4 | /218 RY*(                | 26) 5  | 1              |   | 1.06   | 2.00  | 0.157   |
| 797 BD*(    | 1) 9 | 1 - 0 | 4 | /259 PV*/                | 3) 0   | 3              |   | 1 34   | 0 56  | 0 094   |
| 707 DD*(    | 1) 0 | 1 0   | 4 | /2004 DX+/               |        | 4              |   | 1 77   | 0.50  | 0.001   |
| /9/. BD^(   | 1) 5 | 1 - 0 | 4 | /284. RY*(               | 2)0    | 4              |   | 1.//   | 0.88  | 0.135   |
| '/9'/. BD*( | 1) S | 1 - 0 | 4 | /300. RY*(               | 18) 0  | 4              |   | 2.85   | 1.39  | 0.215   |
| 797. BD*(   | 1) S | 1 - 0 | 4 | /795. BD*(               | ( 1) S | 1 - 0          | 3 | 123.02 | 0.04  | 0.178   |
| 797. BD*(   | 1) S | 1 - 0 | 4 | /796. BD*(               | 2) S   | 1 - 0          | 3 | 770.44 | 0.02  | 0.305   |
| 1 BD (      | 1) 5 | 1 - 0 | З | /165 T.P*(               | 7) A a | 10             |   | 2 89   | 0 90  | 0 046   |
| 2 PD (      | 2) 0 | 1 0   | 2 | /165 TD*/                | 7)79   | 10             |   | 1 14   | 0.50  | 0.010   |
| Z. BD (     | 2) 3 | 1 - 0 | 2 | /105. LP*(               | 7)Ag   | 10             |   | 1.14   | 1.00  | 0.023   |
| 4. BD (     | 2) S | 1 - 0 | 4 | /165. LP*(               | /)Ag   | 10             |   | 1.30   | 1.07  | 0.034   |
| 24. CR (    | 2) S | 1     |   | /165. LP*(               | 7)Ag   | 10             |   | 4.20   | 9.39  | 0.182   |
| 33. CR (    | 1) 0 | 3     |   | /165. LP*(               | ( 7)Ag | 10             |   | 2.23   | 19.14 | 0.189   |
| 143. LP (   | 1) S | 1     |   | /164. LP*(               | 6)Aq   | 10             |   | 1.01   | 0.61  | 0.024   |
| 143 T.P (   | 1) 5 | 1     |   | /165 T.P*(               | 7) A a | 10             |   | 9 38   | 0 73  | 0 075   |
| 145 LD (    | 1) 0 | 2     |   | /164 TD*/                | 6) A g | 10             |   | 5 96   | 0 82  | 0 066   |
| 145. LF (   | 1) 0 | 2     |   | /104. DF (               | 0/Ag   | 10             |   | 10.50  | 0.02  | 0.000   |
| 145. ЦР (   | 1) 0 | 3     |   | /165. LP*(               | /)Ag   | 10             |   | 12.63  | 0.94  | 0.098   |
| 145. LP (   | 1) 0 | 3     |   | /166. LP*(               | 8)Ag   | 10             |   | 1.69   | 0.93  | 0.036   |
| 145. LP (   | 1) 0 | 3     |   | /167. LP*(               | 9)Ag   | 10             |   | 1.37   | 0.92  | 0.032   |
| 146. LP (   | 2) 0 | 3     |   | /164. LP*(               | 6)Ag   | 10             |   | 5.33   | 0.33  | 0.039   |
| 146 T.P (   | 2) 0 | 3     |   | /165. LP*(               | 7) Ag  | 10             |   | 2.78   | 0.45  | 0.032   |
| 147 LD (    | 1) 0 | 4     |   | /165 TD*/                | 7)70   | 10             |   | 2 91   | 0 03  | 0 047   |
| тт, ш (     | 1) 0 | 2 0   | F | /105. 11 (               |        | - <sup>2</sup> | F | 2.01   | 1 04  | 0.047   |
| 5. BD (     | 1) 5 | 2 - 0 | 5 | /800. BD*(               | 2)3    | 2 - 0          | 5 | 24.41  | 1.04  | 0.145   |
| 5. BD (     | 1) S | 2 - 0 | 5 | /801. BD*(               | 1) S   | 2 - 0          | 6 | 27.62  | 1.01  | 0.152   |
| 6. BD (     | 2) S | 2 - 0 | 5 | /337. RY*(               | 3) 0   | 6              |   | 2.50   | 1.68  | 0.059   |
| 6. BD (     | 2) S | 2 - 0 | 5 | /342. RY*(               | 8) 0   | б              |   | 1.53   | 2.33  | 0.055   |
| 6. BD (     | 2) S | 2 - 0 | 5 | /799, BD*(               | 1) S   | 2 - 0          | 5 | 22.85  | 0.88  | 0.128   |
| 6 PD (      | 2) 6 | 2 0   | 5 | /*00 0/0/                | 2) 6   | 2 0            | 5 | 1 01   | 0 96  | 0 0 2 7 |
| 0. BD (     | 2) 3 | 2 - 0 | 5 | /000. BD (               | 2/3    | 2 - 0          | ç | 1.01   | 0.00  | 0.027   |
| 6. BD (     | 2) 5 | 2 - 0 | 5 | /801. BD*(               | 1) 5   | 2 - 0          | 6 | 40.39  | 0.84  | 0.166   |
| 6. BD (     | 2) S | 2 - 0 | 5 | /802. BD*(               | 2) S   | 2 - 0          | 6 | 3.68   | 0.92  | 0.052   |
| 7. BD (     | 1) S | 2 - 0 | 6 | /253. RY*(               | (29) S | 2              |   | 1.25   | 2.66  | 0.053   |
| 7. BD (     | 1) S | 2 - 0 | б | /311. RY*(               | 3) 0   | 5              |   | 2.63   | 1.31  | 0.054   |
| 7 BD (      | 1) 5 | 2 - 0 | 6 | /315 RY*(                | 7) 0   | 5              |   | 1 09   | 2 36  | 0 047   |
| 7. DD (     | 1) 0 | 2 0   | 6 | /216 DV*/                |        | 5              |   | 1 05   | 2.50  | 0.015   |
| 7. DD (     | 1) S | 2 - 0 | c | / SID. KI* (             |        | 5              |   | 1.05   | 2.2/  | 0.045   |
| и. вр (     | 1) S | ∠ - 0 | Ö | /322. RY*(               | 14) U  | 5              |   | 1.21   | ∠.⊥⊥  | 0.047   |
| 7. BD (     | 1) S | 2 - 0 | 6 | /337. RY*(               | 3) 0   | 6              |   | 1.29   | 1.50  | 0.041   |
| 7. BD (     | 1) S | 2 - 0 | 6 | /799. BD*(               | ( 1) S | 2 - 0          | 5 | 27.43  | 0.70  | 0.124   |
| 7. BD (     | 1) S | 2 - 0 | б | /800. BD*(               | 2) S   | 2 - 0          | 5 | 45.29  | 0.68  | 0.157   |
| ) בכב ד     | 1) e | 2 - 0 | 6 | /201 /201 /*/            | 1) 9   | 2 - 0          | 6 | 12 21  | 0 65  | 0 082   |
| ) עם . י    | 1) 0 | 2 0   | ć | /001. DD"(               | , T D  | 2 0            | ć | 10.01  | 0.05  | 0.005   |
| 1. BD (     | 1) S | ∠ - 0 | D | /8UZ. BD*(               | 2) S   | ∠ - 0          | 0 | 3.09   | 0./4  | 0.043   |
| 8.BD (      | 2) S | 2 - 0 | 6 | /800. BD*(               | 2) S   | 2 - 0          | 5 | 5.23   | 1.26  | 0.075   |
| 8. BD (     | 2) S | 2 - 0 | 6 | /801. BD*(               | 1) S   | 2 - 0          | 6 | 3.48   | 1.23  | 0.060   |
| 36. CR (    | 1) 0 | 6     |   | /226. RY*(               | 2) S   | 2              |   | 1.17   | 19.93 | 0.138   |
| 149 T.D (   | 1) 0 | 5     |   | /228 RV*/                | 4) 5   | 2              |   | 2 24   | 2.36  | 0.080   |
| 149 10 (    | 1) 0 | 5     |   | /200, MI (<br>/200, MI ( | 2) 9   | 2 - 0          | 6 | 1 00   | 1 20  | 0.000   |
| 150 TD (    | T) 0 | 5     |   | /002. BD*(               | 4/5    | 2 - 0          | 0 | 12.08  | 1 00  | 0.033   |
| тро. ПЪ (   | ∠) U | 5     |   | /225. RY*(               | ) S    | 2              |   | 13.22  | 1.00  | 0.105   |
| 150. LP (   | 2) 0 | 5     |   | /226. RY*(               | 2) S   | 2              |   | 3.02   | 1.26  | 0.057   |

| 1 5 0      | TD       | , )                 | $\rangle$          | -      |     | (001 DD+              | ( 1) 0   | 2   | ~        | <i>c</i> | 1 07      | 0 60  | 0 0 0 0 0 |
|------------|----------|---------------------|--------------------|--------|-----|-----------------------|----------|-----|----------|----------|-----------|-------|-----------|
| 150.       | ЦΡ       | ( 2                 | ) ()               | 5      |     | /801. BD*             | ( I) S   | 2   | - 0      | 6        | 1.07      | 0.62  | 0.023     |
| 150.       | LP       | (2                  | ) ()               | 5      |     | /802. BD*             | ( 2) S   | 2   | - 0      | 6        | 19.17     | 0.70  | 0.105     |
| 151        | T.D      | ( 1                 | $\hat{\mathbf{b}}$ | 6      |     | /227 PV*              |          | 2   |          |          | 4 38      | 2 59  | 0 095     |
| 1          |          |                     | , 0                | ć      |     | /22/. RT              |          | 2   |          |          | 10.00     | 2.55  | 0.000     |
| 152.       | ЦΡ       | ( 2                 | ) 0                | ю      |     | /225. RI*             | ( 1) S   | 2   |          |          | 18.90     | 0.99  | 0.125     |
| 152.       | LP       | (2                  | ) 0                | 6      |     | /226. RY*             | ( 2) S   | 2   |          |          | 1.28      | 1.24  | 0.037     |
| 152        | T.P      | ( 2                 | ) ()               | 6      |     | /799 BD*              | ( 1) S   | 2   | - 0      | 5        | 16 58     | 0 64  | 0 093     |
| 150        | TD       | ( <u>-</u>          | , o                | e<br>e |     | /900                  |          | 2   | õ        | E        | 10.00     | 0.62  | 0 071     |
| 152.       | ШΡ       |                     | ) 0                | 0      | _   | /800. BD"             | ( 2) 5   | 2   | - 0      | 5        | 10.02     | 0.03  | 0.071     |
| 799.       | BD*      | ( 1                 | ) S                | 2 - 0  | 5   | /225. RY*             | ( 1) S   | 2   |          |          | 7.47      | 0.34  | 0.140     |
| 799.       | BD*      | ( 1                 | ) S                | 2 - 0  | 5   | /226. RY*             | ( 2) S   | 2   |          |          | 9.04      | 0.60  | 0.226     |
| 000        | *        | , –                 |                    | 2 0    | 5   | / 22E DX*             | ( 1) C   | 2   |          |          | 4 47      | 0.26  | 0 107     |
| 000.       | вр       | ( 2                 | 15                 | 2 - 0  | 5   | /225. RI"             | ( 1) 5   | 2   |          |          | 4.4/      | 0.30  | 0.107     |
| 800.       | BD*      | (2                  | ) S                | 2 - 0  | 5   | /226. RY*             | ( 2) S   | 2   |          |          | 5.38      | 0.61  | 0.168     |
| 800.       | BD*      | ( 2                 | ) S                | 2 - 0  | 5   | /230. RY*             | ( 6) S   | 2   |          |          | 2.06      | 0.30  | 0.081     |
| 000        | <br>     | , _<br>, _          | ) C                | 2 0    | 5   | /252 DV*              | ( 20) 9  | 2   |          |          | 1 10      | 1 0 0 | 0 167     |
| 800.       | Бυ       | ( 4                 | , 5                | 2 - 0  | 5   | /255. RI              | ( 29) 5  | 4   |          |          | 1.19      | 1.90  | 0.157     |
| 800.       | BD*      | (2                  | ) S                | 2 - 0  | 5   | /311. RY*             | ( 3) 0   | 5   |          |          | 1.35      | 0.63  | 0.094     |
| 800.       | BD*      | ( 2                 | ) S                | 2 - 0  | 5   | /322. RY*             | (14)0    | 5   |          |          | 1.07      | 1.43  | 0.127     |
| 800        | אחם*     | í a                 | ) C                | 2 - 0  | 5   | /227 DV*              |          | 6   |          |          | 1 26      | 0 82  | 0 103     |
| 000.       | 50       | \ <u></u>           | , ,                | 2 - 0  | 5   | /55/. КІ              | ( 5) 0   | 0   | _        | -        | 1.20      | 0.02  | 0.105     |
| 800.       | BD*      | (2                  | ) S                | 2 - 0  | 5   | /'/99. BD*            | ( 1) S   | 2   | - 0      | 5        | 4.91      | 0.02  | 0.021     |
| 800.       | BD*      | (2                  | ) S                | 2 - 0  | 5   | /802. BD*             | ( 2) S   | 2   | - 0      | 6        | 20.62     | 0.06  | 0.086     |
| 801        | BD*      | ( 1                 | ) g                | 2 - 0  | 6   | /230 PV*              | 6 9      | 2   |          |          | 1 82      | 0 33  | 0 082     |
| 001.       |          | ( <u> </u>          |                    | 2 0    | ć   | /250. RI              |          | 2   |          |          | 1.02      | 0.55  | 0.002     |
| 80I.       | BD*      | ( 1                 | ) S                | 2 - 0  | 6   | /253. RY*             | ( 29) S  | 2   |          |          | 1.12      | 2.00  | 0.157     |
| 801.       | BD*      | ( 1                 | ) S                | 2 - 0  | 6   | /311. RY*             | ( 3) 0   | 5   |          |          | 1.48      | 0.66  | 0.103     |
| 801        | BD*      | ( 1                 | ) S                | 2 - 0  | 6   | /337 RY*              | ( 3) 0   | 6   |          |          | 1 39      | 0 84  | 0 113     |
| 001        |          | ( <u> </u>          |                    | 2 0    | ć   | /340 DV+              |          | ć   |          |          | 1 20      | 1 40  | 0.111     |
| 801.       | BD.      | ( I                 | ) 5                | 2 - 0  | ю   | /342. RI*             | ( 8) 0   | ю   |          |          | 1.38      | 1.49  | 0.151     |
| 801.       | BD*      | ( 1                 | ) S                | 2 - 0  | 6   | /799. BD*             | ( 1) S   | 2   | - 0      | 5        | 191.52    | 0.04  | 0.213     |
| 801        | BD*      | ( 1                 | ) S                | 2 - 0  | 6   | /800 BD*              | ( 2) S   | 2   | - 0      | 5        | 549.77    | 0.02  | 0.271     |
| с с с      |          | ( <u> </u>          |                    | 2 0    | Ē   | /166 ID*              | ( 2) 7   | 10  | Ŭ        | 5        | 2 2 2 7 7 | 0.02  | 0 047     |
| 5.         | вD       | ( I                 | ) 5                | 2 - 0  | 5   | /100. LP*             | ( 8)Ag   | ΤU  |          |          | 3.3/      | 0.83  | 0.04/     |
| 6.         | BD       | (2                  | ) S                | 2 - 0  | 5   | /166. LP*             | ( 8)Ag   | 10  |          |          | 1.79      | 0.66  | 0.031     |
| 29.        | CR       | ( 2                 | ) S                | 2      |     | /166. LP*             | ( 8)Aq   | 10  |          |          | 3.14      | 9.38  | 0.157     |
| 25.        | CD       | ( 1                 | , ,                | 5      |     | /100. 10*             | ( 0)7    | 10  |          |          | 0.21      | 10.10 | 0 100     |
| 35.        | CR       | ( I                 | ) 0                | 5      |     | /100. LP*             | ( 8)Ag   | ΤU  |          |          | 2.2/      | 19.13 | 0.190     |
| 144.       | LP       | ( 1                 | ) S                | 2      |     | /164. LP*             | ( 6)Ag   | 10  |          |          | 1.17      | 0.61  | 0.025     |
| 144        | T.P      | ( 1                 | ) S                | 2      |     | /166. LP*             | ( 8)Ag   | 10  |          |          | 7.03      | 0.73  | 0.065     |
| 140        | <br>T D  | ( <u> </u>          | , D                | -      |     | /100. 10*             |          | 10  |          |          | 4 5 4     | 0.00  | 0.000     |
| 149.       | ЦΡ       | ( I                 | ) 0                | 5      |     | /164. LP*             | ( 6)Ag   | ΤU  |          |          | 4.54      | 0.82  | 0.058     |
| 149.       | LP       | ( 1                 | ) 0                | 5      |     | /166. LP*             | ( 8)Ag   | 10  |          |          | 14.86     | 0.93  | 0.106     |
| 150        | T.P      | ( 2                 | ) ()               | 5      |     | /164. LP*             | ( 6)Ag   | 10  |          |          | 3.05      | 0.32  | 0.029     |
| 1 5 0 .    | TD       | ( <u>-</u>          | , o                | F      |     | /166 ID*              | ( 0)7.2  | 10  |          |          | 1 76      | 0.44  | 0 025     |
| 150.       | ЦΡ       |                     | ) 0                | 5      |     | /100. LP.             | ( o)Ag   | 10  |          |          | 1.76      | 0.44  | 0.025     |
| 151.       | LP       | ( 1                 | ) ()               | 6      |     | /165. LP*             | ( 7)Ag   | 10  |          |          | 1.05      | 0.93  | 0.029     |
| 151.       | LP       | ( 1                 | ) ()               | 6      |     | /166. LP*             | ( 8)Aq   | 10  |          |          | 1.31      | 0.93  | 0.032     |
| 152        | тр.      | ( 1                 | 100                | 7      |     | /005 20*              | ( 1)50   |     | 50       | 0        | 1 07      | 0 72  | 0 0 2 5   |
| 105.       | ШР<br>   |                     | 150                | /      |     | /803. BD*             | ( 1)50   | 0   | -56      | 9        | 1.07      | 0.72  | 0.025     |
| 153.       | LP       | ( 1                 | )Se                | ./     |     | /807. BD*             | ( 1)Se   | 11  | -Se      | 14       | 1.13      | 0.72  | 0.026     |
| 154.       | LP       | (2)                 | )Se                | 7      |     | /368. RY*             | ( 8)Se   | 7   |          |          | 1.53      | 1.23  | 0.040     |
| 154        | TD       | í a                 | 100                | 7      |     | /805 00*              | ( 1)00   | Q   | - 50     | ٩        | 1 97      | 0 34  | 0 024     |
| 151.       |          |                     | 150                | ,      |     | /005. BD              | ( 1)30   | 11  | -56      |          | 1.97      | 0.34  | 0.024     |
| 154.       | LР       | ( 2                 | )Se                | 7      |     | /807. BD*             | ( I)Se   | ΤT  | -Se      | 14       | 1.95      | 0.34  | 0.024     |
| 156.       | LP       | (2                  | )Se                | 8      |     | /421. RY*             | ( 1)Se   | 9   |          |          | 1.30      | 0.87  | 0.031     |
| 156        | TD       | ໍ່                  | 100                | 0      |     | × dd 200/             | ( 1)50   | 7   | 50       | 0        | 2 0/      | 0 20  | 0 020     |
| 150.       | ШР<br>   |                     | 150                | 0      |     | /803. BD*             | ( 1)50   |     | -56      | 9        | 3.04      | 0.20  | 0.030     |
| 156.       | LP       | (2                  | )Se                | 8      |     | /808. BD*             | ( 1)Se   | 12  | -Se      | 14       | 3.63      | 0.28  | 0.029     |
| 158.       | LP       | (2)                 | )Se                | 9      |     | /361. RY*             | ( 1)Se   | 7   |          |          | 1.45      | 0.78  | 0.031     |
| 158        | TD       | í a                 | 100                | Q      |     | /201 DV*              | ( 1)00   | Q   |          |          | 1 55      | 0 82  | 0 033     |
| 150.       |          | ( <u> </u>          | ,50                | ~      |     | / 301. RI             | ( 1)2    |     | ~        |          | 1.55      | 0.02  | 0.055     |
| 158.       | LР       | ( 2                 | )Se                | 9      |     | /804. BD*             | ( I)Se   | 1   | -Se      | ΤT       | 5.13      | 0.25  | 0.032     |
| 158.       | LP       | (2                  | )Se                | 9      |     | /806. BD*             | ( 1)Se   | 8   | -Se      | 12       | 5.56      | 0.25  | 0.033     |
| 169        | T.P      | ( 2                 | )Se                | 11     |     | /597 RY*              | ( 1)Se   | 14  |          |          | 1 31      | 0 87  | 0 031     |
| 100.       |          | ( <u> </u>          | ) DC               | 11     |     | /002 DD*              | ( 1)0-   | ± ; | <u> </u> | 0        | 2.51      | 0.07  | 0.001     |
| 109.       | ЦΡ       | ( 2                 | )se                | ΤT     |     | /803. BD*             | ( I)Se   | /   | -se      | 9        | 3.08      | 0.28  | 0.029     |
| 169.       | LP       | (2                  | )Se                | 11     |     | /808. BD*             | ( 1)Se   | 12  | -Se      | 14       | 3.90      | 0.28  | 0.030     |
| 170        | T.P      | ( 1                 | )Se                | 12     |     | /805 BD*              | ( 1)Se   | 8   | -Se      | 9        | 1 1 3     | 0 72  | 0 026     |
| 170        | TD       | ( <u> </u>          | 100                | 10     |     | /007                  | ( 1)00   | 11  | 00       | 1 /      | 1 09      | 0.72  | 0 025     |
| 1/0.       | ЦΡ       | ( <u> </u>          | )se                | 12     |     | /80/. BD"             | ( I)Se   | 11  | -se      | 14       | 1.08      | 0.72  | 0.025     |
| 171.       | LP       | (2                  | )Se                | 12     |     | /531. RY*             | ( 8)Se   | 12  |          |          | 1.55      | 1.23  | 0.041     |
| 171.       | LP       | (2)                 | )Se                | 12     |     | /805. BD*             | ( 1)Se   | 8   | -Se      | 9        | 1.94      | 0.34  | 0.024     |
| 171        | T.D      | ( 2                 | ,<br>) S D         | 12     |     | /807 BD*              | 1190     | 11  | - 90     | 14       | 1 96      | 0 34  | 0 024     |
| 100        | <br>T T  | , 2                 | 10-                | 14     |     | /404 575              | ( 1)00   | 11  | 20       |          | 1 - 4     | 0.01  | 0 027     |
| ⊥0∠.       | шΡ       | <u> </u>            | 100                | T.4    |     | /494. KI*             | ()Se     | 11  |          |          | 1.54      | 0.82  | 0.033     |
| 182.       | LP       | (2                  | )Se                | 14     |     | /524. RY*             | ( 1)Se   | 12  |          |          | 1.46      | 0.78  | 0.031     |
| 182.       | LP       | ( 2                 | )Se                | 14     |     | /804. BD*             | ( 1)Se   | 7   | -Se      | 11       | 5.57      | 0.25  | 0.033     |
| 182        | T.D      | ( <sup>-</sup>      | 190                | 14     |     | /206 *77*             | ( 1)00   | Q   | - 20     | 12       | 5 15      | 0 25  | 0 033     |
| 102.       |          | \                   | ,                  |        | 1 1 | /000. BD*             | ( 1)C    | 11  | 50       | 14       | 5.15      | 0.20  | 0.054     |
| 804.       | RD .     | ι Ι                 | , ъе               | / -Se  | ΤT  | /80/. BD*             | ( I)Se   | ΤT  | -se      | ⊥4       | 1.98      | 0.01  | 0.014     |
| 806.       | BD*      | ( 1                 | )Se                | 8 -Se  | 12  | /805. BD*             | ( 1)Se   | 8   | -Se      | 9        | 1.95      | 0.01  | 0.014     |
| 9          | BD       | ( 1                 | )Se                | 7 -Se  | 9   | /164 T.D*             | ( 6)Aa   | 10  |          |          | 3.07      | 0.50  | 0.038     |
| ~·         | 22       | 、 <u>+</u><br>/   7 | 100                | 7 0-   | ~   | /165 554              | · ·····  | 10  |          |          | 2.07      | 0.00  | 0.040     |
| э.         | вυ       | ι Ι                 | 150                | / -50  | 9   | /тор. пР*             | ( /)Ag   | τU  |          |          | 3.42      | U.02  | 0.042     |
| 9.         | BD       | ( 1                 | )Se                | 7 -Se  | 9   | /167. LP*             | ( 9)Ag   | 10  |          |          | 1.34      | 0.60  | 0.026     |
| 10         | BD       | ( 1                 | )Se                | 7 -Se  | 11  | /164 LP*              | ( 6)Aa   | 10  |          |          | 2.25      | 0.50  | 0.032     |
| 10         | תם       | , <u> </u>          | 100                | 7 50   | 11  | /165 10*              | ( 7) ~~  | 10  |          |          | 1 07      | 0 60  | 0 006     |
| ±0.        | עם       | ( <u> </u>          | , 50               | / -50  | 11  | /105. LP              | ( /)Ag   | 10  |          |          | 1.2/      | 0.02  | 0.020     |
| 10.        | ВD       | (1                  | )Se                | 7 -Se  | 11  | /166. LP*             | ( 8)Ag   | 10  |          |          | 2.33      | 0.62  | 0.034     |
| 10.        | BD       | ( 1                 | )Se                | 7 -Se  | 11  | /167. LP*             | ( 9)Aq   | 10  |          |          | 1.47      | 0.60  | 0.027     |
| 11         | חם       | , <u> </u>          | 100                | 8 - 50 | 0   | /16/ TD*              | ( 617~   | 10  |          |          | 2 61      |       |           |
| ±±.        | עם       |                     | , 50               | 0 -30  | 2   | /104. LP"             | , ojag   | 10  |          |          | 2.01      | 0.50  | 0.035     |
| ±1.        | ВD       | ( 1                 | )Se                | 8 -Se  | 9   | /165. LP*             | ( 7)Ag   | Τ0  |          |          | 4.77      | 0.62  | 0.050     |
| 12.        | BD       | ( 1                 | )Se                | 8 -Se  | 12  | /164. LP*             | ( 6)Aq   | 10  |          |          | 1.25      | 0.50  | 0.024     |
| 10         | -        | <br>( 1             | 100                | 8 50   | 10  | /16E TD*              | ( 7) ~~  | 10  |          |          | 2 10      | 0 60  | 0 022     |
| 12.        | עם       | ( <u> </u>          | , 50               | 0 - 58 | 12  | /105. LP              | ( /)Ag   | 10  |          |          | 2.10      | 0.02  | 0.033     |
| 12.        | ВD       | ( 1                 | )Se                | 8 -Se  | 12  | /167. LP*             | ( 9)Ag   | Τ0  |          |          | 1.04      | 0.60  | 0.023     |
| 13.        | BD       | ( 1                 | )Se                | 11 -Se | 14  | /164. LP*             | ( 6)Aq   | 10  |          |          | 1.43      | 0.50  | 0.026     |
| 1 3        | BD       | ( 1                 | )Se                | 11 -Se | 14  | /166 T.D*             | ( 8) 2 7 | 10  |          |          | 3 49      | 0 62  | 0 042     |
| 14         | 70       | 、 <u> </u>          | ,                  | 10 00  | 14  | /100. HF              |          | 10  |          |          | 5.19      | 0.02  | 0.012     |
| ⊥4.        | RD       | ( 1                 | )Se                | ⊥∠ -Se | ⊥4  | /164. LP*             | ( 6)Ag   | ΤÜ  |          |          | 1.04      | 0.50  | 0.022     |
| 14.        | BD       | ( 1                 | )Se                | 12 -Se | 14  | /166. LP*             | ( 8)Ag   | 10  |          |          | 2.34      | 0.62  | 0.035     |
|            | 22       | ر <i>م</i>          | \ <b>~</b>         | -      |     | /16/ TD*              | ( 6)70   | 10  |          |          | F 07      |       |           |
| 39         | CR       | ( ≺                 | )Se                |        |     | /104. 08.             | ( DIAG   | ± U |          |          | ה. אי     | 10.72 | 0.241     |
| 39.        | CR       | ( 3<br>( 7          | )Se                | 7      |     | /104. LP*<br>/165 TP+ | ( 0)Ag   | 10  |          |          | 5.8/      | 10.72 | 0.241     |
| 39.<br>39. | CR<br>CR | ( 3                 | )Se<br>)Se         | 7      |     | /165. LP*             | ( 7)Ag   | 10  |          |          | 3.10      | 10.72 | 0.241     |

| 39.     | CR       | (             | 3)Se | 7      |    | /167. | LP*(  | 9   | )Ag   | 10 | 5.44  | 10.82 | 0.219 |
|---------|----------|---------------|------|--------|----|-------|-------|-----|-------|----|-------|-------|-------|
| 53.     | CR       | (             | 3)Se | 8      |    | /164. | LP*(  | 6   | )Aq   | 10 | 3.55  | 10.66 | 0.187 |
| 53.     | CR       | (             | 3)Se | 8      |    | /165. | LP*(  | 7   | ) Aq  | 10 | 5.87  | 10.78 | 0.230 |
| 53.     | CR       | ì             | 3)Se | 8      |    | /167. | LP*(  | 9   | )Aq   | 10 | 2.23  | 10.76 | 0.140 |
| 67.     | CR       | ì             | 3)Se | 9      |    | /164. | LP*(  | 6   | )Aq   | 10 | 1.26  | 10.61 | 0.111 |
| 67      | CR       | ì             | 3)Se | 9      |    | /165  | T.P*( | 7   | ) Aa  | 10 | 3.00  | 10.73 | 0.164 |
| 85      | CR       | ì             | 3)Se | 11     |    | /166  | T.D*/ | , , | ) A a | 10 | 1 78  | 10 77 | 0 126 |
| 117     | CR       | ì             | 3)Se | 14     |    | /164  | T.D*/ | 6   | ) 🗛   | 10 | 2 21  | 10.61 | 0 147 |
| 117     | CP       | ì             | 3)50 | 14     |    | /166  | T.D*/ |     | ) A a | 10 | 5 11  | 10.01 | 0 214 |
| 152     | TD       | $\hat{i}$     | 1)50 |        |    | /16/  |       | 6   | ) 7 g | 10 | 9.12  | 10.75 | 0.211 |
| 153.    | ТР       |               | 1)00 | 7      |    | /104. |       | . 0 | )Ag   | 10 | 9.42  | 0.72  | 0.078 |
| 153.    | ЪΡ       | (             | 1)Se | 7      |    | /105. | LP"(  |     | ) Ag  | 10 | 4.10  | 0.04  | 0.053 |
| 153.    | ЪΡ       | (             | 1)Se | 7      |    | /100. | LP"(  |     | ) Ag  | 10 | 2.45  | 0.04  | 0.041 |
| 153.    | ЦΡ       | (             | I)Se | /      |    | /16/. | LP^(  | . 9 | ) Ag  | 10 | 10.34 | 0.82  | 0.082 |
| 154.    | LP       | (             | 2)Se | 7      |    | /164. | LP*(  | 6   | ) Ag  | 10 | 45.82 | 0.34  | 0.115 |
| 154.    | ЦΡ       | (             | 2)Se | 7      |    | /165. | ГЬ*(  | 1   | ) Ag  | 10 | 3.77  | 0.46  | 0.038 |
| 154.    | ΓЬ       | (             | 2)Se | .7     |    | /166. | LP*(  | 8   | ) Ag  | 10 | 2.81  | 0.46  | 0.033 |
| 154.    | LΡ       | (             | 2)Se | 7      |    | /167. | LP*(  | 9   | )Ag   | 10 | 9.93  | 0.45  | 0.061 |
| 154.    | LΡ       | (             | 2)Se | 7      |    | /458. | RY*(  | 8   | )Ag   | 10 | 2.67  | 4.93  | 0.107 |
| 154.    | LΡ       | (             | 2)Se | 7      |    | /460. | RY*(  | 10  | )Ag   | 10 | 1.40  | 2.55  | 0.056 |
| 154.    | LP       | (             | 2)Se | 7      |    | /463. | RY*(  | 13  | )Ag   | 10 | 1.19  | 2.67  | 0.053 |
| 154.    | LP       | (             | 2)Se | 7      |    | /467. | RY*(  | 17  | )Ag   | 10 | 4.43  | 37.40 | 0.379 |
| 154.    | LP       | (             | 2)Se | 7      |    | /473. | RY*(  | 23  | )Ag   | 10 | 1.17  | 2.37  | 0.049 |
| 155.    | LP       | (             | 1)Se | 8      |    | /164. | LP*(  | 6   | )Ag   | 10 | 7.14  | 0.76  | 0.070 |
| 155.    | LP       | (             | 1)Se | 8      |    | /165. | LP*(  | 7   | )Ag   | 10 | 9.66  | 0.88  | 0.083 |
| 155.    | LP       | (             | 1)Se | 8      |    | /167. | LP*(  | 9   | )Ag   | 10 | 4.41  | 0.86  | 0.055 |
| 156.    | LP       | (             | 2)Se | 8      |    | /164. | LP*(  | 6   | )Ag   | 10 | 22.35 | 0.29  | 0.074 |
| 156.    | LP       | (             | 2)Se | 8      |    | /165. | LP*(  | 7   | )Aq   | 10 | 7.29  | 0.41  | 0.049 |
| 156.    | LP       | (             | 2)Se | 8      |    | /167. | LP*(  | 9   | ) Aq  | 10 | 3.81  | 0.39  | 0.035 |
| 156.    | LΡ       | (             | 2)Se | 8      |    | /458. | RY*   | 8   | ) Aa  | 10 | 1.06  | 4.87  | 0.067 |
| 156.    | LP       | ì             | 2)Se | 8      |    | /467. | RY*   | 17  | ) Aa  | 10 | 1.32  | 37.34 | 0.206 |
| 157     | T.P      | ì             | 1)Se | 9      |    | /164  | T.P*( | 6   | ) Aa  | 10 | 2.37  | 0.77  | 0.041 |
| 157     | T.P      | ì             | 1)Se | 9      |    | /165  | T.P*( | 7   | ) Aa  | 10 | 4.89  | 0.89  | 0.060 |
| 168     | T.P      | ì             | 1)Se | 11     |    | /164  | T.D*/ | 6   | ) A a | 10 | 1 53  | 0.76  | 0 032 |
| 168     | T.D      | ì             | 1)50 | 11     |    | /166  | T.D*/ |     | ) A a | 10 | 2.79  | 0.88  | 0.032 |
| 181     | T.D      | ì             | 1)50 | 14     |    | /164  | T.D*/ | 6   | ) Aa  | 10 | 5 15  | 0.00  | 0.045 |
| 181     | T.D      | ì             | 1)50 | 14     |    | /166  | T.D*/ | 8   | ) Aa  | 10 | 9.13  | 0.99  | 0.000 |
| 101.    | LD       | $\hat{i}$     | 1)00 | 14     |    | /167  | T.D*/ | , o | ) Ag  | 10 | 1 48  | 0.09  | 0.000 |
| 182     |          | $\hat{i}$     | 2)00 | 14     |    | /16/  |       | 6   | ) Ag  | 10 | 11 47 | 0.00  | 0.052 |
| 182     | T.D      | ì             | 2)50 | 14     |    | /166  | T.D*/ | 8   | ) Aa  | 10 | 5 43  | 0.20  | 0.050 |
| 102.    | חם       | $\hat{i}$     | 1)00 | 7 - 90 | 9  | /177  | T.D*/ | 6   | ) Ag  | 13 | 1 04  | 0.57  | 0.041 |
| ير<br>م | מפ       | $\hat{i}$     | 1)00 | 7 - 50 | 9  | /179  |       | , O | ) Ag  | 13 | 2 22  | 0.50  | 0.022 |
| 10      | מפ       | $\hat{i}$     | 1)00 | 7 - 50 | 11 | /177  |       | 6   | ) Ag  | 13 | 1 22  | 0.02  | 0.034 |
| 10.     | םם       | $\frac{1}{2}$ | 1)50 | 7 50   | 11 | /170  |       |     | )Ag   | 12 | 2.00  | 0.50  | 0.024 |
| 10.     | םם       | $\frac{1}{2}$ | 1)50 | 7 50   | 11 | /1/0. |       |     | )Ag   | 12 | 1 01  | 0.02  | 0.033 |
| 10.     | BD       | (             | 1)Se | 7 -Se  | 11 | /100. | LP"(  | 9   | ) Ag  | 12 | 1.01  | 0.60  | 0.022 |
| 11      | BD       | (             | 1)Se | 0 -Se  | 9  | /1//. | LP"(  |     | ) Ag  | 12 | 1.44  | 0.50  | 0.020 |
| 10      | עם<br>מת |               | 1)00 | 0 -50  | 10 | /1/9. |       |     | )Ag   | 12 | 2.49  | 0.02  | 0.042 |
| 10      | עם       | (             | 1)0- | 0 -30  | 12 | /170  |       |     | )Ag   | 10 | 2.20  | 0.50  | 0.032 |
| 12.     | BD       | (             | 1)Se | 0 -Se  | 12 | /1/0. | LP"(  |     | ) Ag  | 12 | 1.20  | 0.62  | 0.025 |
| 10      | עם<br>מת |               | 1)00 | 0 -50  | 12 | /1/9. |       |     | )Ag   | 12 | 2.34  | 0.02  | 0.033 |
| 12.     | BD       | (             | 1)Se | 0 -Se  | 14 | /100. | LP"(  | 9   | ) Ag  | 12 | 1.40  | 0.60  | 0.027 |
| 10.     | BD       | (             | 1)50 | 11 -Se | 14 | /1//. | LP"(  |     | ) Ag  | 10 | 2.50  | 0.50  | 0.035 |
| 13.     | BD       | (             | I)Se | II -Se | 14 | /1/8. | LP^(  |     | ) Ag  | 13 | 4./3  | 0.62  | 0.050 |
| 14.     | BD       | (             | I)Se | 12 -se | 14 | /1//. | LP^(  | 0   | ) Ag  | 13 | 3.06  | 0.50  | 0.038 |
| 14.     | BD       | (             | I)Se | 12 -Se | 14 | /1/8. | LP^(  |     | ) Ag  | 13 | 3.39  | 0.62  | 0.042 |
| 14.     | BD       | (             | I)Se | 12 -Se | 14 | /180. | LР^(  | 9   | ) Ag  | 13 | 1.35  | 0.60  | 0.026 |
| 53.     | CR       | (             | 3)Se | 8      |    | /1/9. | LP*(  | 8   | ) Ag  | 13 | 1.80  | 10.78 | 0.127 |
| 67.     | CR       | (             | 3)Se | 9      |    | /177. | LP*(  | 6   | ) Ag  | 13 | 2.22  | 10.61 | 0.147 |
| 67.     | CR       | (             | 3)Se | 9      |    | /1/9. | LР^(  | 8   | ) Ag  | 13 | 5.09  | 10.73 | 0.213 |
| 85.     | CR       | (             | 3)Se | 11     |    | /177. | LP*(  | 6   | )Ag   | 13 | 3.50  | 10.66 | 0.186 |
| 85.     | CR       | (             | 3)Se | 11     |    | /1/8. | LP*(  | /   | )Ag   | 13 | 5.85  | 10.78 | 0.230 |
| 85.     | CR       | (             | 3)Se | 11     |    | /180. | LP*(  | 9   | )Ag   | 13 | 2.17  | 10.76 | 0.138 |
| 99.     | CR       | (             | 3)Se | 12     |    | /177. | LP*(  | 6   | )Ag   | 13 | 5.89  | 10.72 | 0.241 |
| 99.     | CR       | (             | 3)Se | 12     |    | /178. | LP*(  | (7  | )Ag   | 13 | 3.07  | 10.84 | 0.167 |
| 99.     | CR       | (             | 3)Se | 12     |    | /179. | LP*(  | 8   | )Ag   | 13 | 2.09  | 10.83 | 0.137 |
| 99.     | CR       | (             | 3)Se | 12     |    | /180. | LP*(  | 9   | )Ag   | 13 | 5.45  | 10.82 | 0.219 |
| 117.    | CR       | (             | 3)Se | 14     |    | /177. | LP*(  | 6   | )Ag   | 13 | 1.26  | 10.61 | 0.111 |
| 117.    | CR       | (             | 3)Se | 14     |    | /178. | LP*(  | 7   | )Ag   | 13 | 2.98  | 10.73 | 0.164 |
| 155.    | LP       | (             | 1)Se | 8      |    | /177. | LP*(  | 6   | ) Ag  | 13 | 1.53  | 0.76  | 0.032 |
| 155.    | LP       | (             | 1)Se | 8      |    | /179. | LP*(  | 8   | ) Ag  | 13 | 2.81  | 0.88  | 0.045 |
| 157.    | LP       | (             | 1)Se | 9      |    | /177. | LP*(  | 6   | ) Ag  | 13 | 5.16  | 0.77  | 0.060 |
| 157.    | LP       | (             | 1)Se | 9      |    | /179. | LP*(  | 8   | ) Ag  | 13 | 9.38  | 0.89  | 0.083 |
| 157.    | LP       | (             | 1)Se | 9      |    | /180. | LP*(  | 9   | ) Ag  | 13 | 1.53  | 0.88  | 0.033 |
| 158.    | LP       | (             | 2)Se | 9      |    | /177. | LP*(  | 6   | ) Ag  | 13 | 11.53 | 0.26  | 0.050 |
| 158.    | LP       | (             | 2)Se | 9      |    | /179. | LP*(  | 8   | )Ag   | 13 | 5.42  | 0.37  | 0.041 |
| 168.    | LP       | (             | 1)Se | 11     |    | /177. | LP*(  | 6   | )Ag   | 13 | 7.07  | 0.76  | 0.070 |
| 168.    | LP       | (             | 1)Se | 11     |    | /178. | LP*(  | 7   | ) Ag  | 13 | 9.65  | 0.88  | 0.083 |
| 168.    | LP       | (             | 1)Se | 11     |    | /180. | LP*(  | 9   | ) Ag  | 13 | 4.30  | 0.86  | 0.054 |
| 169.    | LP       | (             | 2)Se | 11     |    | /177. | LP*(  | 6   | ) Ag  | 13 | 21.90 | 0.28  | 0.073 |
| 169.    | LP       | (             | 2)Se | 11     |    | /178. | LP*(  | 7   | ) Ag  | 13 | 7.21  | 0.40  | 0.049 |
| 169.    | LP       | (             | 2)Se | 11     |    | /180. | LP*(  | 9   | ) Ag  | 13 | 3.68  | 0.39  | 0.035 |
| 169.    | LP       | (             | 2)Se | 11     |    | /561. | RY*(  | 8   | ) Ag  | 13 | 1.04  | 4.88  | 0.066 |
| 169.    | LP       | (             | 2)Se | 11     |    | /570. | RY*(  | 17  | )Ag   | 13 | 1.28  | 37.26 | 0.202 |

| 170.    | LP          | ( 1)S                                   | le 12               | /177. LP*   | ( 6)Aq         | 13       |          | 9.43         | 0.72  | 0.078 |
|---------|-------------|-----------------------------------------|---------------------|-------------|----------------|----------|----------|--------------|-------|-------|
| 170     | T.P         | (1)S                                    | e 12                | /178. LP*   | ( 7) Ag        | 13       |          | 4 04         | 0.84  | 0.053 |
| 170     | T.D         | ( 1)9                                   | a 12                | /179 T.D*   | ( 8)Ag         | 13       |          | 2 48         | 0 84  | 0 041 |
| 170.    |             | ( 1)C                                   | lo 12               | /190 IF     | ( 0)Ag         | 12       |          | 10 26        | 0.04  | 0.041 |
| 170.    | ЦΡ          |                                         | 12                  | /160. LP"   | ( 9)Ag         | 13       |          | 10.30        | 0.02  | 0.062 |
| 1/1.    | ЦΡ          | ( 2)S                                   | e 12                | /1//. LP*   | ( 6)Ag         | 13       |          | 46.05        | 0.34  | 0.116 |
| 171.    | LP          | (2)S                                    | le 12               | /178. LP*   | ( 7)Ag         | 13       |          | 3.72         | 0.46  | 0.038 |
| 171.    | LP          | (2)S                                    | le 12               | /179. LP*   | ( 8)Ag         | 13       |          | 2.84         | 0.46  | 0.033 |
| 171.    | LP          | ( 2)S                                   | le 12               | /180. LP*   | ( 9)Ag         | 13       |          | 10.00        | 0.45  | 0.062 |
| 171.    | LP          | ( 2)S                                   | le 12               | /561. RY*   | ( 8)Aq         | 13       |          | 2.70         | 4.94  | 0.108 |
| 171     | T.P         | 2)5                                     | e 12                | /563 RY*    | ( 10) A a      | 13       |          | 1 35         | 2 51  | 0 054 |
| 171     | TD          | ( 2)9                                   | a 12                | /566 PV*    | (13) Ag        | 13       |          | 1 1 2        | 2.51  | 0.051 |
| 171     |             | ( 2)3                                   | 10 10               | /500. RI    | ( 17)Ag        | 10       |          | 1.10         | 2.05  | 0.052 |
| 1 / 1 . | ЦΡ          |                                         | 12                  | /5/0. RI"   | ( 17)Ag        | 13       |          | 4.49         | 57.52 | 0.301 |
| 171.    | ЦΡ          | (2)S                                    | e 12                | /576. RY*   | (23)Ag         | 13       |          | 1.17         | 2.37  | 0.049 |
| 181.    | LP          | ( 1)S                                   | le 14               | /177. LP*   | ( 6)Ag         | 13       |          | 2.36         | 0.77  | 0.041 |
| 181.    | LP          | ( 1)S                                   | le 14               | /178. LP*   | ( 7)Ag         | 13       |          | 4.84         | 0.89  | 0.060 |
| 164.    | LP*         | (6)A                                    | .g 10               | /364. RY*   | ( 4)Se         | 7        |          | 1.12         | 0.53  | 0.058 |
| 164.    | LP*         | ( 6)A                                   | .g 10               | /365. RY*   | ( 5)Se         | 7        |          | 1.05         | 0.55  | 0.057 |
| 164.    | LP*         | ( 6)A                                   | a 10                | /368. RY*   | ( 8)Se         | 7        |          | 2.15         | 0.88  | 0.105 |
| 164     | T.D*        | 6)                                      | a 10                | /165 T.P*   | ( 7) A a       | 10       |          | 1 22         | 0 12  | 0 025 |
| 161     | тр <b>*</b> |                                         | a 10                | /105. HI    | ( 7)Ag         | 10       |          | 1 / 2        | 1 44  | 0.025 |
| 104.    | пр.         | ( 0)A                                   | 19 10               | /450. RI    | ( 0)Ag         | 10       |          | 1.43         | 1.44  | 0.109 |
| 164.    | ГЬ.         | ( 6)A                                   | 'à IN               | /458. RY*   | ( 8) Ag        | 10       |          | 4.48         | 4.59  | 0.345 |
| 164.    | LP*         | (6)A                                    | .g 10               | /460. RY*   | ( 10)Ag        | 10       |          | 2.06         | 2.21  | 0.162 |
| 164.    | LP*         | (6)A                                    | g 10                | /462. RY*   | ( 12)Ag        | 10       |          | 1.09         | 1.48  | 0.096 |
| 164.    | LP*         | (6)A                                    | .g 10               | /463. RY*   | ( 13)Ag        | 10       |          | 1.92         | 2.32  | 0.161 |
| 164.    | LP*         | ( 6)A                                   | a 10                | /467. RY*   | ( 17)Aq        | 10       |          | 5.45         | 37.06 | 1.081 |
| 164     | T.P*        | ( 6)A                                   | a 10                | /471 RY*    | (21) Ag        | 10       |          | 1.00         | 1.85  | 0.104 |
| 164     | T.D*        | ( 6) A                                  | a 10                | /473 PV*    | ( 23) A a      | 10       |          | 1 90         | 2 03  | 0 150 |
| 164     |             |                                         | ~ 10                | /170 ID*    | ( 25)Ag        | 10       |          | 1.90         | 2.03  | 0.130 |
| 104.    | LP"         | ( 6)A                                   | 19 10               | /1/8. LP"   | ( /)Ag         | 13       |          | 1.04         | 0.12  | 0.031 |
| 164.    | LP*         | (6)A                                    | lg 10               | /179. LP*   | ( 8)Ag         | 13       |          | 1.66         | 0.12  | 0.029 |
| 177.    | LP*         | (6)A                                    | .g 13               | /527. RY*   | ( 4)Se         | 12       |          | 1.12         | 0.53  | 0.058 |
| 177.    | LP*         | (6)A                                    | .g 13               | /528. RY*   | ( 5)Se         | 12       |          | 1.06         | 0.55  | 0.058 |
| 177.    | LP*         | ( 6)A                                   | g 13                | /531. RY*   | ( 8)Se         | 12       |          | 2.17         | 0.88  | 0.105 |
| 177.    | LP*         | ( 6)A                                   | a 13                | /165. LP*   | ( 7) Ag        | 10       |          | 1.86         | 0.12  | 0.031 |
| 177     | T.D*        | 6)                                      | a 13                | /166 LP*    | ( 8) A a       | 10       |          | 1 66         | 0 12  | 0 029 |
| 177     |             | ( 6)7                                   | a 12                | /170 ID*    | ( 7) Ag        | 12       |          | 1 10         | 0.12  | 0.025 |
| 177     |             | ( 0)A                                   | - 12                | /1/8. LP**  | ( /)Ag         | 10       |          | 1.10         | 1 45  | 0.025 |
| 1//.    | ЦΡ^         | ( 6)A                                   | IG 13               | /559. RI*   | ( 6)Ag         | 13       |          | 1.45         | 1.45  | 0.110 |
| 177.    | LP*         | (6)A                                    | lg 13               | /561. RY*   | ( 8)Ag         | 13       |          | 4.48         | 4.59  | 0.346 |
| 177.    | LP*         | (6)A                                    | .g 13               | /563. RY*   | ( 10)Ag        | 13       |          | 1.97         | 2.17  | 0.158 |
| 177.    | LP*         | (6)A                                    | g 13                | /565. RY*   | ( 12)Ag        | 13       |          | 1.18         | 1.50  | 0.101 |
| 177.    | LP*         | ( 6)A                                   | .g 13               | /566. RY*   | ( 13)Aq        | 13       |          | 1.89         | 2.31  | 0.159 |
| 177.    | LP*         | ( 6)A                                   | a 13                | /570. RY*   | (17) Ag        | 13       |          | 5.46         | 36.98 | 1.082 |
| 177     | T.D*        | 6)                                      | a 13                | /574 RY*    | ( 21) A a      | 13       |          | 1 02         | 1 86  | 0 105 |
| 177     |             | ( 6) 7.                                 | a 13                | /576 PV*    | (23) A         | 13       |          | 1 99         | 2 02  | 0 148 |
| 1 .     |             | ( 0)A                                   |                     | /370. RI    | ( 23)A9        | 10       |          | 1.00         | 2.02  | 0.140 |
| 15.     | BD          |                                         | 0 15 - 5 17         | /1/8. LP*   | ( /)Ag         | 13       |          | 2.88         | 0.89  | 0.046 |
| 16.     | BD          | (2)                                     | 0 15 - S 17         | /178. LP*   | ( 7)Ag         | 13       |          | 1.15         | 0.60  | 0.024 |
| 20.     | BD          | (2)                                     | S 17 - O 19         | /178. LP*   | ( 7)Ag         | 13       |          | 1.27         | 1.07  | 0.034 |
| 129.    | CR          | ( 1)                                    | 0 15                | /178. LP*   | ( 7)Ag         | 13       |          | 2.24         | 19.14 | 0.190 |
| 132.    | CR          | (2)                                     | S 17                | /178. LP*   | ( 7) Ag        | 13       |          | 4.18         | 9.39  | 0.181 |
| 183.    | LP          | ( 1)                                    | 0 15                | /177. LP*   | ( 6)Aq         | 13       |          | 6.00         | 0.82  | 0.066 |
| 183     | T.P         | (1)                                     | 0 15                | /178 T.P*   | ( 7) A a       | 13       |          | 12 69        | 0 94  | 0 099 |
| 183     | TD          | ( 1)                                    | 0 15                | /179 1.0*   | ( 8) A g       | 13       |          | 1 64         | 0.91  | 0.035 |
| 103.    |             |                                         | 0 15                | /1/9. LF    | ( 0)Ag         | 10       |          | 1.04         | 0.93  | 0.033 |
| 183.    | ЦΡ          |                                         | 0 15                | /180. LP*   | ( 9)Ag         | 13       |          | 1.36         | 0.92  | 0.032 |
| 184.    | LP          | (2)                                     | 0 15                | /177. LP*   | ( 6)Ag         | 13       |          | 5.26         | 0.33  | 0.039 |
| 184.    | LP          | (2)                                     | 0 15                | /178. LP*   | ( 7)Ag         | 13       |          | 2.77         | 0.45  | 0.032 |
| 187.    | LP          | ( 1)                                    | S 17                | /177. LP*   | ( 6)Ag         | 13       |          | 1.01         | 0.61  | 0.024 |
| 187.    | LP          | ( 1)                                    | S 17                | /178. LP*   | ( 7) Aq        | 13       |          | 9.33         | 0.73  | 0.075 |
| 189.    | LP          | ( 1)                                    | 0 19                | /178. LP*   | ( 7)Aq         | 13       |          | 2.76         | 0.93  | 0.046 |
| 15      | BD          | ( 1)                                    | 0 15 - 5 17         | /744 RY*    |                | 19       |          | 1.25         | 1.95  | 0.045 |
| 15      | <br>RD      | ( 1)                                    | 0 15 - 5 17         | /760 RV*    | (18)           | 19       |          | 1 1 4        | 2 28  | 0 046 |
| 15      | - תם        | · · · / · / · · · · · · · · · · · · · · | 0 15 - 0 17         | /010 NI*    | ( 2) 0         | <br>15 C | 17       | <br>         | 1 00  | 0 1/2 |
| 15.     | БD          |                                         | 0 15 - 5 17         | /010. BD*   |                | 15 - 5   | 10       | 22.37        | 1.09  | 0.143 |
| 15.     | BD          |                                         | 0 15 - 5 17         | /813. BD*   |                | 17 - 0   | 19       | 20.43        | 1.07  | 0.135 |
| 16.     | BD          | (2)                                     | 0 15 - S 17         | /744. RY*   | (2)0           | 19       |          | 2.59         | 1.67  | 0.060 |
| 16.     | BD          | (2)                                     | 0 15 - S 17         | /760. RY*   | ( 18) O        | 19       |          | 2.44         | 2.00  | 0.064 |
| 16.     | BD          | (2)                                     | 0 15 - S 17         | /809. BD*   | (1)0           | 15 – S   | 17       | 19.49        | 0.83  | 0.114 |
| 16.     | BD          | (2)                                     | 0 15 - S 17         | /810. BD*   | (2)0           | 15 – S   | 17       | 2.08         | 0.81  | 0.037 |
| 16      | BD          | (2)                                     | 0 15 - 5 17         | /813 BD*    | (1) S          | 17 - 0   | 19       | 47.38        | 0.78  | 0.173 |
| 16      | <br>RD      | (2)                                     | 0 15 - 5 17         | /814 BD*    | ( 2) 9         | 17 - 0   | 19       | 1 90         | 0 88  | 0 037 |
| 10.     | יים         | ( <u>4</u> )                            | c 17 0 10           | /620 - 4274 | ( 2) 0         | 15       | ±.2      | 1.2U<br>0 E0 | 1 20  | 0.03/ |
| 19.     | BU          | ( <u> </u>                              | D 17 0 19           | /029. KY*   | ( 5) 0         | 10       |          | 4.54         | 1.20  | 0.051 |
| 19.     | RD          | ( <u> </u>                              | S 1/ - 0 19         | /633. RY*   | ( /) 0         | 15       |          | 1.74         | 2.14  | 0.057 |
| 19.     | BD          | ( 1)                                    | s 17 - 0 19         | /744. RY*   | (2)0           | 19       |          | 1.48         | 1.52  | 0.044 |
| 19.     | BD          | (1)                                     | S 17 - O 19         | /760. RY*   | ( 18) O        | 19       |          | 1.32         | 1.85  | 0.046 |
| 19.     | BD          | (1)                                     | S 17 - O 19         | /809. BD*   | (1)0           | 15 – S   | 17       | 20.52        | 0.68  | 0.106 |
| 19.     | BD          | (1)                                     | S 17 - O 19         | /810. BD*   | (2)0           | 15 – S   | 17       | 60.61        | 0.66  | 0.179 |
| 19      | BD          | ( 1)                                    | S 17 - 0 19         | /813 BD*    | ( 1) S         | 17 - 0   | 19       | 16 34        | 0.63  | 0.091 |
| 19      | BD          | ( <u>1</u> )                            | S 17 - 0 10         | /214 /214   | ( 2) 9         | 17 - 0   | 19       | 1 20         | 0 73  | 0 027 |
| 20      | ייק         | ( <u>1</u> )                            | g 17 0 19           | /010 + dd   |                | 15 0     | ±2<br>17 | 2.20         | 1 07  | 0.027 |
| ∠∪.     | עם          |                                         | $5 \pm 7 = 0 \pm 9$ | /010. BD*   |                | 17 0     | 1 /      | 3.15         | 1.2/  | 0.059 |
| ∠0.     | вD          | (2)                                     | 5 I/- 0 19          | /813. BD*   | ( <u>1</u> ) S | 1/ - 0   | т9       | 1.33         | 1.25  | 0.038 |
| 141.    | CR          | ( 1)                                    | 0 19                | /680. RY*   | (2)S           | 17       |          | 1.25         | 19.92 | 0.142 |
| 141.    | CR          | (1)                                     | 0 19                | /681. RY*   | ( 3) S         | 17       |          | 1.01         | 20.65 | 0.129 |
| 183.    | LP          | ( 1)                                    | 0 15                | /682. RY*   | ( 4) S         | 17       |          | 3.20         | 2.36  | 0.079 |
| 183.    | LP          | (1)                                     | 0 15                | /814. BD*   | (2) S          | 17 - 0   | 19       | 1.53         | 1.21  | 0.039 |
| 184     | I.P         | ( 2)                                    | 0 15                | /679 RV*    | ( 1) S         | 17       |          | 11 32        | 1 03  | 0.098 |
|         |             |                                         |                     | , 0, 2. 1(1 | 、 ±, D         | - ·      |          |              | 2.05  | 0.000 |

| 184.        | LP          | ( 2)         | 0      | 15           |           | /680. RY*(                | 2) S  | 17               |            | 3.47         | 1.27         | 0.061 |
|-------------|-------------|--------------|--------|--------------|-----------|---------------------------|-------|------------------|------------|--------------|--------------|-------|
| 184.        | LP          | ( 2)         | 0      | 15           |           | /814. BD*(                | 2) S  | 17 - O           | 19         | 17.64        | 0.73         | 0.103 |
| 189.        | LP          | ( 1)         | 0      | 19           |           | /681. RY*(                | 3) S  | 17               |            | 4.26         | 2.47         | 0.092 |
| 190.        | LP          | (2)          | 0      | 19           |           | /679. RY*(                | 1) S  | 17               |            | 20.36        | 0.99         | 0.130 |
| 190.        | LP          | (2)          | 0      | 19           |           | /809. BD*(                | 1)0   | 15 - S           | 17         | 19.51        | 0.64         | 0.101 |
| 190.        | LP<br>DD*   | (2)          | 0      | 19           | 1 7       | /810. BD*(                | 2)0   | 15 - S           | Τ./        | 7.84         | 0.62         | 0.062 |
| 809.        | BD*         | ( 1)<br>( 1) | 0      | 15 - S       | 17        | /630. RI^(<br>/670 DV*/   | 4) U  | 15               |            | 1.U3         | 1.10         | 0.110 |
| 809.        | BD*         | ( 1)<br>( 1) | 0      | 15 - 5       | 17        | /680 RV*/                 | 2) 5  | 17               |            | 9.02         | 0.50         | 0.107 |
| 809         | BD*         | ( 1)         | õ      | 15 - S       | 17        | /814, BD*(                | 2) 5  | 17 - 0           | 19         | 1.53         | 0.06         | 0.025 |
| 810.        | BD*         | ( 2)         | õ      | 15 - S       | 17        | /629. RY*(                | 3) 0  | 15               |            | 1.78         | 0.54         | 0.096 |
| 810.        | BD*         | (2)          | 0      | 15 – S       | 17        | /633. RY*(                | 7) 0  | 15               |            | 1.27         | 1.48         | 0.135 |
| 810.        | BD*         | (2)          | 0      | 15 – S       | 17        | /679. RY*(                | 1) S  | 17               |            | 4.10         | 0.38         | 0.102 |
| 810.        | BD*         | ( 2)         | 0      | 15 – S       | 17        | /680. RY*(                | 2) S  | 17               |            | 3.64         | 0.62         | 0.134 |
| 810.        | BD*         | (2)          | 0      | 15 - S       | 17        | /684. RY*(                | 6) S  | 17               |            | 1.06         | 0.77         | 0.089 |
| 810.        | BD*         | (2)          | 0      | 15 - S       | 17        | /744. RY*(                | 2) 0  | 19               |            | 1.77         | 0.86         | 0.121 |
| 810.        | BD*         | (2)          | 0      | 15 - S       | 17        | /760. RY*(                | 18) 0 | 19               | 1 77       | 1.40         | 1.19         | 0.127 |
| 810.        | יעם<br>אחא  | ( 2)<br>( 2) | 0      | 15 - 5       | 17        | /809.BD"(<br>/814 BD*/    | 2) 5  | 15 - 5<br>17 - 0 | 19         | 1.00         | 0.02         | 0.013 |
| 813         | BD*         | ( 1)         | s      | 17 - 0       | 19        | /629_RY*(                 | 3)0   | 15               | 17         | 1.34         | 0.56         | 0.094 |
| 813.        | BD*         | (1)          | S      | 17 - 0       | 19        | /704. RY*(                | 26) S | 17               |            | 1.07         | 2.00         | 0.158 |
| 813.        | BD*         | (1)          | S      | 17 - O       | 19        | /744. RY*(                | 2) 0  | 19               |            | 1.77         | 0.88         | 0.135 |
| 813.        | BD*         | ( 1)         | S      | 17 - O       | 19        | /760. RY*(                | 18) O | 19               |            | 3.39         | 1.21         | 0.219 |
| 813.        | BD*         | ( 1)         | S      | 17 - 0       | 19        | /809. BD*(                | 1) 0  | 15 – S           | 17         | 127.29       | 0.04         | 0.181 |
| 813.        | BD*         | ( 1)         | S      | 17 - 0       | 19        | /810. BD*(                | 2) 0  | 15 – S           | 17         | 745.75       | 0.02         | 0.303 |
| 10          | BD          | ( 1)<br>( 2) | 0      | 16 - S       | 10        | /179. LP*(<br>/170. LP*(  | 8)Ag  | 13               |            | 3.35         | 0.83         | 0.047 |
| 130         | CR          | ( 2)<br>( 1) | 0      | 16 - 5       | 10        | /1/9. LP"(<br>/179. T.D*/ | 8)Ag  | 13               |            | 1.79         | 19 13        | 0.031 |
| 137         | CR          | ( 2)         | s      | 18           |           | /179. LP*(                | 8)Ag  | 13               |            | 3,13         | 9.38         | 0.156 |
| 185.        | LP          | (1)          | õ      | 16           |           | /177. LP*(                | 6)Aq  | 13               |            | 4.55         | 0.82         | 0.058 |
| 185.        | LP          | (1)          | 0      | 16           |           | /179. LP*(                | 8)Ag  | 13               |            | 14.86        | 0.93         | 0.106 |
| 186.        | LP          | ( 2)         | 0      | 16           |           | /177. LP*(                | 6)Ag  | 13               |            | 3.04         | 0.32         | 0.029 |
| 186.        | LP          | (2)          | 0      | 16           |           | /179. LP*(                | 8)Ag  | 13               |            | 1.75         | 0.44         | 0.025 |
| 188.        | LP          | ( 1)         | S      | 18           |           | /177. LP*(                | 6)Ag  | 13               |            | 1.16         | 0.61         | 0.025 |
| 101         | ЪΡ          | ( 1)<br>( 1) | S      | 18           |           | /179. LP*(<br>/179. TP*(  | 8)Ag  | 13               |            | 7.01         | 0.73         | 0.065 |
| 191.        | LР<br>ТР    | ( 1)<br>( 1) | 0      | 20           |           | /1/8. LP^(<br>/170. LP*(  | 7)Ag  | 13<br>12         |            | 1.04         | 0.93         | 0.028 |
| 17          | BD          | ( 1)         | 0      | 20<br>16 - S | 18        | /1/9. LP*(<br>/771 RY*(   | 3) O  | 20               |            | 1.30         | 1 85         | 0.032 |
| 17.         | BD          | (1)          | õ      | 16 - S       | 18        | /812. BD*(                | 2) 0  | 16 - S           | 18         | 24.46        | 1.04         | 0.145 |
| 17.         | BD          | (1)          | 0      | 16 - S       | 18        | /815. BD*(                | 1) S  | 18 - 0           | 20         | 27.70        | 1.01         | 0.152 |
| 18.         | BD          | (2)          | 0      | 16 – S       | 18        | /771. RY*(                | 3) 0  | 20               |            | 2.49         | 1.68         | 0.059 |
| 18.         | BD          | (2)          | 0      | 16 – S       | 18        | /811. BD*(                | 1) 0  | 16 – S           | 18         | 22.91        | 0.88         | 0.128 |
| 18.         | BD          | (2)          | 0      | 16 – S       | 18        | /812. BD*(                | 2) 0  | 16 – S           | 18         | 1.00         | 0.87         | 0.026 |
| 18.         | BD          | (2)          | 0      | 16 - S       | 18        | /815. BD*(                | 1) S  | 18 - 0           | 20         | 40.50        | 0.84         | 0.166 |
| 18.         | BD          | ( 2)<br>( 1) | 0      | 16 - S       | 20        | /816. BD*(                | 2) S  | 18 - 0           | 20         | 3.53         | 0.92         | 0.051 |
| 21.         | BD          | ( 1)         | S      | 18 - 0       | 20        | /659. RY*(                | 7)0   | 16               |            | 1.02         | 2.37         | 0.046 |
| 21.         | BD          | ( 1)         | S      | 18 - 0       | 20        | /660. RY*(                | 8) 0  | 16               |            | 1.12         | 2.26         | 0.047 |
| 21.         | BD          | (1)          | S      | 18 - 0       | 20        | /666. RY*(                | 14) O | 16               |            | 1.21         | 2.11         | 0.047 |
| 21.         | BD          | ( 1)         | S      | 18 - O       | 20        | /739. RY*(                | 29) S | 18               |            | 1.24         | 2.64         | 0.053 |
| 21.         | BD          | ( 1)         | S      | 18 - O       | 20        | /771. RY*(                | 3) 0  | 20               |            | 1.29         | 1.49         | 0.041 |
| 21.         | BD          | ( 1)         | S      | 18 - 0       | 20        | /811. BD*(                | 1) 0  | 16 - S           | 18         | 27.56        | 0.69         | 0.124 |
| 21.         | BD          | ( 1)         | S      | 18 - 0       | 20        | /812. BD*(                | 2)0   | 16 - S           | 18         | 45.46        | 0.68         | 0.157 |
| 21.<br>21   | מפ          | ( 1)<br>( 1) | S<br>C | 18 - 0       | 20<br>20  | /815. BD^(<br>/816 BD*/   | 1) S  | 18 - 0           | ∠0<br>20   | 13.51        | 0.65         | 0.084 |
| 21.         | BD          | ( 1)         | S      | 18 - 0       | 20        | /812 BD*(                 | 2) 0  | 16 - 5           | 18         | 5.04         | 1 26         | 0.042 |
| 22.         | BD          | ( 2)         | S      | 18 - 0       | 20        | /815. BD*(                | 1) S  | 18 - 0           | 20         | 3.27         | 1.23         | 0.059 |
| 142.        | CR          | (1)          | 0      | 20           |           | /712. RY*(                | 2) S  | 18               |            | 1.17         | 19.93        | 0.138 |
| 185.        | LP          | ( 1)         | 0      | 16           |           | /714. RY*(                | 4) S  | 18               |            | 3.34         | 2.36         | 0.080 |
| 185.        | LP          | ( 1)         | 0      | 16           |           | /816. BD*(                | 2) S  | 18 - 0           | 20         | 1.08         | 1.20         | 0.033 |
| 186.        | LP          | (2)          | 0      | 16           |           | /711. RY*(                | 1) S  | 18               |            | 13.21        | 1.00         | 0.105 |
| 186.        | LP<br>тр    | ( 2)<br>( 2) | 0      | 16           |           | //12. RY*(<br>/015 DD*/   | 2) S  | 18               | 20         | 3.03         | 1.26         | 0.057 |
| 186         | LР<br>T.D   | ( 2)<br>( 2) | 0      | 16           |           | /816 BD*/                 | 2) 5  | 10 - 0<br>18 - 0 | 20<br>20   | 19.20        | 0.82         | 0.022 |
| 191         | LP<br>LP    | ( 2)         | 0      | 20           |           | /713. RY*(                | 3) 5  | 18 - 0           | 20         | 4.39         | 2.59         | 0.095 |
| 192.        | LP          | ( 2)         | õ      | 20           |           | /711. RY*(                | 1) S  | 18               |            | 18.91        | 0.99         | 0.125 |
| 192.        | LP          | (2)          | 0      | 20           |           | /712. RY*(                | 2) S  | 18               |            | 1.28         | 1.24         | 0.037 |
| 192.        | LP          | ( 2)         | 0      | 20           |           | /811. BD*(                | 1) 0  | 16 – S           | 18         | 16.55        | 0.64         | 0.093 |
| 192.        | LP          | (2)          | 0      | 20           |           | /812. BD*(                | 2) 0  | 16 - S           | 18         | 10.06        | 0.63         | 0.071 |
| 811.        | BD*         | ( 1)         | 0      | 16 - S       | 18        | /711. RY*(                | 1) S  | 18               |            | 7.47         | 0.34         | 0.140 |
| 811.<br>010 | BD*         | ( 1)<br>( 2) | 0      | 16 - S       | 18<br>10  | //12. RY*(                | 2) S  | 18<br>16         |            | 9.02         | 0.60         | 0.225 |
| o⊥∠.<br>812 | вл.<br>* чв | (∠)<br>(⊃)   | 0      | 16 - 9       | ⊥8<br>1 8 | /055. KI^(<br>/666 pv*/   | 14) 0 | 10<br>16         |            | 1.35<br>1 07 | 0.03<br>1 43 | 0.094 |
| 812         | שם<br>8D*   | ( <u>2</u> ) | 0<br>0 | 16 - 5       | 18        | /711 RV*/                 | 1) S  | 18               |            | 4.49         | 0.36         | 0.107 |
| 812.        | BD*         | (2)          | õ      | 16 - S       | 18        | /712. RY*(                | 2) S  | 18               |            | 5.40         | 0.61         | 0.168 |
| 812.        | BD*         | ( 2)́        | 0      | 16 - S       | 18        | /716. RY*(                | 6) S  | 18               |            | 2.06         | 0.31         | 0.081 |
| 812.        | BD*         | (2)          | 0      | 16 - S       | 18        | /739. RY*(                | 29) S | 18               |            | 1.17         | 1.96         | 0.155 |
| 812.        | BD*         | (2)          | 0      | 16 - S       | 18        | /771. RY*(                | 3) 0  | 20               | <i>.</i> . | 1.26         | 0.82         | 0.103 |
| 812.        | BD*         | ( 2)         | 0      | 16 - S       | 18        | /811. BD*(                | 1) 0  | 16 - S           | 18         | 4.93         | 0.02         | 0.021 |
| 812.<br>915 | BD*         | (2)<br>(1)   | 0<br>C | 10 - S       | 70<br>78  | /816. BD*(                | 2) S  | 18 - 0<br>16     | 20         | 19.73        | 0.06         | 0.085 |
| 815         | BD*         | 、 エ)<br>( 1) | S      | 18 - 0       | 20        | /716 RV*/                 | 6) 5  | 18               |            | 1.82         | 0.05         | 0.082 |
|             |             | /            | -      | - 0          |           | ,                         | -, ~  | -                |            | 1.02         |              | 2.002 |

| 815. E<br>815. E<br>815. E<br>815. E                                                                                                            | 3D* (<br>3D* (<br>3D* (<br>3D* (<br>3D* ( | 1) S<br>1) S<br>1) S<br>1) S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18 - 0<br>18 - 0<br>18 - 0<br>18 - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20<br>20<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /739<br>/771<br>/811<br>/812                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . RY*(<br>. RY*(<br>. BD*(<br>. BD*(                                                                                                                                                       | 29) S 1<br>3) O 2<br>1) O 1<br>2) O 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8<br>0<br>6 - S 1<br>6 - S 1                                                                                                                                                                                                         | .8<br>.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.12<br>1.40<br>192.20<br>545.80                                                                                                                                                                     | 1.99<br>0.84<br>0.04<br>0.03 | 0.157<br>0.114<br>0.213<br>0.272 |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------|
| Wiberg                                                                                                                                          | g bo                                      | ond inde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | x matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NAO basi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s:                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                      |                              |                                  |
| At                                                                                                                                              | om                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                          | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7                                                                                                                                                                                                                                    | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9                                                                                                                                                                                                    |                              |                                  |
| 1.<br>2.<br>3.<br>4.<br>5.<br>6.<br>7.<br>8.<br>5<br>9.<br>5<br>10.<br>4<br>11.<br>5<br>13.<br>4<br>14.<br>5<br>15.<br>16.<br>17.<br>18.<br>19. | S S O O O O S S O O S S O                 | $\begin{array}{c} 0.0000\\ 0.0004\\ 1.3929\\ 1.6238\\ 0.0010\\ 0.0002\\ 0.0010\\ 0.0007\\ 0.0004\\ 0.0623\\ 0.0002\\ 0.0001\\ 0.0001\\ 0.0001\\ 0.0001\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.0$ | $\begin{array}{c}\\ 0.0004\\ 0.0000\\ 0.0008\\ 0.0002\\ 1.4421\\ 1.5780\\ 0.0016\\ 0.0021\\ 0.0008\\ 0.0487\\ 0.0003\\ 0.00487\\ 0.0003\\ 0.0012\\ 0.0001\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.0$ | $\begin{array}{c} 1.3929\\ 0.0008\\ 0.0000\\ 0.2599\\ 0.0016\\ 0.0002\\ 0.0032\\ 0.0017\\ 0.1236\\ 0.0007\\ 0.1236\\ 0.0004\\ 0.0003\\ 0.0002\\ 0.0015\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ $ | $\begin{array}{c} 1.6238\\ 0.0002\\ 0.2599\\ 0.0000\\ 0.0003\\ 0.0001\\ 0.0003\\ 0.0002\\ 0.0357\\ 0.0002\\ 0.0357\\ 0.0002\\ 0.0001\\ 0.0000\\ 0.0005\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000$ | 0.0010<br>1.4421<br>0.0016<br>0.0003<br>0.2608<br>0.0021<br>0.0022<br>0.0022<br>0.0009<br>0.1018<br>0.0007<br>0.0009<br>0.0002<br>0.0016<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | $\begin{array}{c}\\ 0.0002\\ 1.5780\\ 0.0002\\ 0.0001\\ 0.2608\\ 0.0000\\ 0.0007\\ 0.0064\\ 0.0008\\ 0.0270\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0004\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\$ | $\begin{array}{c} 0.0010\\ 0.0016\\ 0.0032\\ 0.0006\\ 0.0021\\ 0.0007\\ 0.0007\\ 0.0007\\ 0.2429\\ 0.9753\\ 0.0143\\ 0.0162\\ 0.0819\\ 0.0003\\ 0.0003\\ 0.0001\\ 0.0012\\ 0.0001\\ 0.0001\\ 0.0001\\ 0.0001\\ 0.0001\\ \end{array}$ | $\begin{array}{c}\\ 0.0007\\ 0.0021\\ 0.0017\\ 0.0003\\ 0.0022\\ 0.0064\\ 0.0788\\ 0.0000\\ 1.0253\\ 0.1589\\ 0.0142\\ 0.9747\\ 0.0255\\ 0.0875\\ 0.0014\\ 0.0007\\ 0.0025\\ 0.0003\\ 0.0002\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0004<br>0.0008<br>0.0007<br>0.0002<br>0.0009<br>0.0008<br>0.9967<br>1.0253<br>0.0000<br>0.0306<br>0.0375<br>0.0819<br>0.1179<br>0.1179<br>0.0148<br>0.0015<br>0.0016<br>0.0009<br>0.0006<br>0.0005 |                              |                                  |
| 20.                                                                                                                                             | 0                                         | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0000                                                                                                                                                                                     | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0046                                                                                                                                                                                                                               | 0.0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0004                                                                                                                                                                                               |                              |                                  |
| At<br>                                                                                                                                          | :om                                       | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14                                                                                                                                                                                         | 15<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16<br>                                                                                                                                                                                                                               | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18                                                                                                                                                                                                   |                              |                                  |
| 1.<br>2.<br>3.<br>4.<br>5.<br>6.<br>7. s<br>9. s<br>9. s<br>10. s<br>11. s<br>12. s<br>13. A<br>14. s<br>15.<br>16.<br>17.<br>18.<br>19.<br>20. | S S O O O O O O O O O O O O O O O O O O   | 0.0623<br>0.0487<br>0.1236<br>0.0357<br>0.1018<br>0.0270<br>0.2429<br>0.1589<br>0.0306<br>0.0000<br>0.0255<br>0.0163<br>0.0164<br>0.1177<br>0.0002<br>0.0002<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0002<br>0.0003<br>0.0004<br>0.0002<br>0.9753<br>0.0142<br>0.0875<br>0.0255<br>0.0000<br>0.0789<br>0.1573<br>1.0257<br>0.0017<br>0.0017<br>0.0022<br>0.0007<br>0.0021<br>0.0003<br>0.0065<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0001<br>0.0012<br>0.0003<br>0.0001<br>0.0046<br>0.0143<br>0.9747<br>0.0819<br>0.0163<br>0.0789<br>0.0000<br>0.2435<br>0.9965<br>0.0032<br>0.0021<br>0.0016<br>0.0016<br>0.0016<br>0.0016<br>0.0016<br>0.0016<br>0.0016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00016<br>0.00007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0001<br>0.0002<br>0.0002<br>0.0002<br>0.0010<br>0.0162<br>0.0255<br>0.1179<br>0.0164<br>0.1573<br>0.2435<br>0.0000<br>0.3066<br>0.1235<br>0.1019<br>0.0621<br>0.0487<br>0.0354<br>0.0269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0009<br>0.0005<br>0.0015<br>0.0015<br>0.0016<br>0.004<br>0.0875<br>0.0148<br>0.1177<br>1.0257<br>0.9965<br>0.0306<br>0.0007<br>0.0007<br>0.0009<br>0.0004<br>0.0002<br>0.0008            | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0003<br>0.0004<br>0.0015<br>0.0015<br>0.0015<br>0.0012<br>0.0017<br>0.0032<br>0.1235<br>0.0007<br>0.0000<br>0.0016<br>1.3923<br>0.0008<br>0.2599<br>0.0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0009<br>0.0007<br>0.0016<br>0.0022<br>0.0021<br>0.1019<br>0.0009<br>0.0016<br>0.0000<br>0.0016<br>0.0000<br>1.4416<br>0.0003<br>0.2608                                           | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0001<br>0.0002<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0000<br>0.0001<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00 | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0012<br>0.0003<br>0.0001<br>0.0011<br>0.0021<br>0.0016<br>0.00487<br>0.0008<br>1.4416<br>0.0008<br>1.4416<br>0.0008<br>1.4416<br>0.0002<br>1.5784          |                              |                                  |
|                                                                                                                                                 | s.                                        | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                      |                              |                                  |
| 2.<br>3.<br>4.<br>5.<br>6.<br>7.<br>8.<br>9.<br>9.<br>9.<br>9.<br>9.<br>9.<br>9.<br>9.<br>9.<br>9                                               | S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   | 0.0000<br>0.0000<br>0.0000<br>0.0001<br>0.0002<br>0.0005<br>0.0005<br>0.0003<br>0.0006<br>0.0354<br>0.0002<br>0.2599<br>0.0003<br>1.6244<br>0.0002<br>0.0003<br>1.6244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0046<br>0.0002<br>0.0004<br>0.0001<br>0.0065<br>0.0007<br>0.0269<br>0.0008<br>0.0002<br>0.2608<br>0.0002<br>1.5784<br>0.0001<br>0.0000<br>1 Popula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tion Ana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | llysis:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                      |                              |                                  |
| -                                                                                                                                               |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Natural                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Nat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ural Pop                                                                                                                                                                                   | oulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                      |                              |                                  |

|      |    | Naturar |         |         |         |          |
|------|----|---------|---------|---------|---------|----------|
| Atom | No | Charge  | Core    | Valence | Rydberg | Total    |
|      |    |         |         |         |         |          |
| 1    | S  | 1.69542 | 9.99909 | 4.10197 | 0.20351 | 14.30458 |

| 2       | s       |         | 1.        | 69233     | 9           | .999    | 12    | 4.      | 1023    | 34    |         | 0.20623       | 1 14          | .30   | 767 |
|---------|---------|---------|-----------|-----------|-------------|---------|-------|---------|---------|-------|---------|---------------|---------------|-------|-----|
| 3       | 0       |         | -0.       | 89705     | 1           | .999    | 85    | б.      | 8601    | 11    |         | 0.03709       | 98            | .89   | 705 |
| 4       | 0       |         | -0.       | 74612     | 1           | .999    | 86    | б.      | 7041    | 12    |         | 0.04214       | 4 8           | .74   | 612 |
| 5       | 0       |         | -0.       | 87223     | 1           | .999    | 85    | б.      | 8341    | 18    |         | 0.03820       | ) 8           | .87   | 223 |
| 6       | 0       |         | -0.       | 77970     | 1           | .999    | 85    | б.      | 7388    | 82    |         | 0.04103       | 3 8           | .77   | 970 |
| 7       | se      |         | 0.        | 00768     | 27          | .999    | 25    | 5.      | 9298    | 85    |         | 0.06322       | 2 33          | .99   | 232 |
| 8       | se      |         | 0.        | 06673     | 27          | .999    | 26    | 5.      | 8783    | 34    |         | 0.05566       | 5 33          | .93   | 327 |
| 9       | se      |         | 0.        | 08248     | 27          | .999    | 26    | 5.      | 8676    | 61    |         | 0.0506        | 5 33          | .91   | 752 |
| 10      | ag      |         | 0.        | 74998     | 7           | .998    | 93    | 10.     | 2253    | 10    |         | 0.02599       | 9 18          | .25   | 002 |
| 11      | se      |         | Ο.        | 06779     | 27          | .999    | 26    | 5.      | 8774    | 45    |         | 0.05552       | 1 33          | .93   | 221 |
| 12      | se      |         | 0.        | 00720     | 27          | .999    | 25    | 5.      | 9302    | 21    |         | 0.06333       | 3 33          | .99   | 280 |
| 13      | ag      |         | 0.        | 75058     | 7           | .998    | 93    | 10.     | 2245    | 54    |         | 0.02595       | 5 18          | .24   | 942 |
| 14      | se      |         | 0.        | 08246     | 27          | .999    | 26    | 5.      | 8676    | 66    |         | 0.05062       | 2 33          | .91   | 754 |
| 15      | 0       |         | -0.       | 89768     | 1           | .999    | 85    | 6.      | 8608    | 82    |         | 0.03701       | 1 8           | .89   | 768 |
| 16      | 0       |         | -0.       | 87255     | 1           | .999    | 85    | 6.      | 8345    | 54    |         | 0.03816       | 58            | .87   | 255 |
| 17      | s       |         | 1.        | 69537     | 9           | .999    | 09    | 4.      | 1019    | 98    |         | 0.20356       | 5 14          | .30   | 463 |
| 18      | s       |         | 1.        | 69246     | 9           | .999    | 12    | 4.      | 1022    | 22    |         | 0.20620       | 0 14          | .30   | 754 |
| 19      | 0       |         | -0.       | 74569     | 1           | .999    | 86    | 6.      | 7036    | 67    |         | 0.04216       | 5 8           | .74   | 569 |
| 20      | 0       |         | -0.       | 77946     | 1           | .999    | 85    | 6.      | 7385    | 57    |         | 0.04104       | 4 8           | .77   | 946 |
|         |         |         |           |           |             |         |       |         |         |       |         |               |               |       |     |
| * T0    | otal    | *       | 2.        | 00000     | 239         | .988    | 64    | 126.    | 4843    | 10    |         | 1.52725       | 5 368         | .00   | 000 |
| For a   | all     | atoms:  |           |           |             |         |       |         |         |       |         |               |               |       |     |
| Core    |         |         |           |           | 239.98      | 864(    | 9     | 99.9953 | % of    | f     | 240)    |               |               |       |     |
| Vale    | nce     |         |           |           | 126.48      | 410(    | 9     | 98.8157 | % of    | f     | 128)    |               |               |       |     |
| Natu    | ral     | Minimal | Basi      | s         | 366.47      | 275(    | 9     | 99.5850 | % of    | f     | 368)    |               |               |       |     |
| Natu    | ral     | Rydberg | Basi      | s         | 1.52        | 725(    |       | 0.4150  | % of    | f     | 368)    |               |               |       |     |
|         |         |         |           |           |             |         |       |         |         |       |         |               |               |       |     |
| * * * * | * * * * | ******  | * * * * * | * * * * * | * * * * * * | * * * * | * * * | ******  | * * * * | * * * | * * * * | * * * * * * * | * * * * * * * | * * * | * * |
| *       |         |         |           |           |             |         |       |         |         |       |         |               |               |       | *   |
| *       |         | ä       | atomi     | c cha     | rges w      | ith 1   | mu]   | lticent | er d    | cor   | rect    | ions          |               |       | *   |
| *       |         |         |           |           |             |         |       |         |         |       |         |               |               |       | *   |
| * * * * | * * * * | ******  | * * * * * | * * * * * | * * * * * * | * * * * | * * * | ******  | * * * * | * * * | ****    | *****         | * * * * * * * | * * * | * * |
|         |         |         |           | _         |             |         |       |         |         |       |         |               |               |       |     |
|         |         |         |           | _         | atom        |         |       | char    | ge<br>  |       |         |               |               |       |     |
|         |         |         |           |           | 1 s         |         |       | 1.177   | 9       |       |         |               |               |       |     |
|         |         |         |           |           | 2 s         | İ       |       | 1.182   | 4       |       |         |               |               |       |     |
|         |         |         |           |           | 3 о         | i       |       | -0.612  | 0       |       |         |               |               |       |     |
|         |         |         |           |           | 4 o         | i       |       | -0.467  | 6       |       |         |               |               |       |     |
|         |         |         |           |           | 5 o         | İ       |       | -0.591  | 2       |       |         |               |               |       |     |
|         |         |         |           |           | бо          | İ       |       | -0.512  | 2       |       |         |               |               |       |     |
|         |         |         |           |           | 7 s         | еĺ      |       | 0.196   | 3       |       |         |               |               |       |     |
|         |         |         |           |           | 8 s         | e       |       | 0.114   | 4       |       |         |               |               |       |     |
|         |         |         |           |           | 9 s         | e İ     |       | 0.089   | 4       |       |         |               |               |       |     |
|         |         |         |           |           | 10 a        | g       |       | 0.422   | 6       |       |         |               |               |       |     |
|         |         |         |           |           | 11 s        | e       |       | 0.113   | 4       |       |         |               |               |       |     |
|         |         |         |           |           | 12 s        | еĺ      |       | 0.197   | 5       |       |         |               |               |       |     |
|         |         |         |           |           | 12 2        | ~       |       | 0 422   | 0       |       |         |               |               |       |     |

# $\underline{\text{Ag}}_2 \underline{\text{Se}}_6^{\underline{2+}}$ (A)

Second Order Perturbation Theory Analysis of Fock Matrix in NBO Basis

0.4229

-0.6127 -0.5916 1.1782 1.1825

-0.4672

-0.5120 \_ \_ \_ \_

| Threshold for printing:    | 1.00 kcal/mol  |
|----------------------------|----------------|
| (Intermolecular threshold: | 0.05 kcal/mol) |
|                            |                |

-10 ag 10 ag 11 se 12 se 13 ag 14 se

14 se 15 o 16 o 17 s 18 s

19 o

20 o

\_ \_ - -

|   | ( 11000     | 1110100 | JUTUT C |       | .10 ± 0 ° 0 ° 0 ° 110                   | JULT / INO T | /      |   |          |         |          |
|---|-------------|---------|---------|-------|-----------------------------------------|--------------|--------|---|----------|---------|----------|
|   |             |         |         |       |                                         |              |        |   | E(2) E   | (j)-E(i | ) F(i,j) |
|   | Dor         | nor NBO | (i)     |       | Acce                                    | eptor NBO    | (j)    |   | kcal/mol | a.u.    | a.u.     |
| = | =========== | ======  | ======= | ===== | ======================================= |              | ====== |   |          | ======  | ======   |
|   | 1. BD (     | 1)Se    | 1 -Se   | 4     | / 3. BD*(                               | 2)Se         | 1 -Se  | 4 | 1.28     | 0.26    | 0.045    |
|   | 1. BD (     | 1)Se    | 1 -Se   | 4     | /115. LP*(                              | 6)Ag         | 7      |   | 1.72     | 0.64    | 0.030    |
|   | 1. BD (     | 1)Se    | 1 -Se   | 4     | /116. LP*(                              | 7)Ag         | 7      |   | 1.26     | 0.74    | 0.027    |
|   | 1. BD (     | 1)Se    | 1 -Se   | 4     | /122. LP (                              | 6)Ag         | 8      |   | 1.72     | 0.64    | 0.030    |
|   | 1. BD (     | 1)Se    | 1 -Se   | 4     | /123. LP*(                              | 7)Ag         | 8      |   | 1.26     | 0.74    | 0.027    |
|   | 2. BD (     | 2)Se    | 1 -Se   | 4     | /115. LP*(                              | 6)Ag         | 7      |   | 2.96     | 0.45    | 0.033    |
|   | 2. BD (     | 2)Se    | 1 -Se   | 4     | /122. LP (                              | 6)Ag         | 8      |   | 2.96     | 0.45    | 0.033    |
|   | 2. BD (     | 2)Se    | 1 -Se   | 4     | /315. RY*(                              | 11)Ag        | 7      |   | 1.03     | 41.22   | 0.187    |
|   | 2. BD (     | 2)Se    | 1 -Se   | 4     | /356. RY*(                              | 9)Ag         | 8      |   | 1.03     | 41.22   | 0.187    |
|   | 2. BD (     | 2)Se    | 1 -Se   | 4     | /394. BD*(                              | 1)Se         | 2 -Se  | 5 | 1.34     | 0.29    | 0.018    |

| 2          | BD        | ( 2            | )Se   | 1      | -Se      | 4 | /39   | 5. F               | 3D*          | ( 1        | )Se          | 2        | -Aa  | 7      | 2.18  | 0.44  | 0.028 |
|------------|-----------|----------------|-------|--------|----------|---|-------|--------------------|--------------|------------|--------------|----------|------|--------|-------|-------|-------|
| 2          | BD        | ( 2            | 190   | 1      | -90      | 4 | /39   | 5. 1               | з <b>л</b> * | ( <u> </u> | ) 50         | 2        | -90  | 6      | 1 34  | 0.29  | 0 018 |
| 2.         | םם        | ( 2            | 100   | 1      | 50       | 1 | /20   | ο. 1<br>7 τ        | י עכ<br>* תכ | ( 1        | 100          | 2        | 200  | 0      | 2 10  | 0.25  | 0.010 |
| 2.         | עם        |                | ) 0 - | 1      | -36      | 4 | / 39  | /. <u>r</u>        | י עכ         |            | ) Se         | 5        | -Ag  | 0      | 1 50  | 0.44  | 0.028 |
| ۷.         | BD        | ( 2            | )se   | 1      | -se      | 4 | / 39  | 9. E               | BD ^ I       |            | )se          | 5        | -Ag  | 8      | 1.59  | 0.44  | 0.024 |
| 2.         | BD        | ( 2            | )Se   | 1      | -Se      | 4 | /40   | ). E               | BD*          | ( 1        | )Se          | 6        | -Ag  | .7     | 1.59  | 0.44  | 0.024 |
| 3.         | BD*       | (2             | )Se   | 1      | -Se      | 4 | /11   | 5. I               | LP*          | ( 6        | )Ag          | 7        |      |        | 4.70  | 0.39  | 0.040 |
| 3.         | BD*       | ( 2            | )Se   | 1      | -Se      | 4 | /12   | 2. I               | ĽΡ           | ( 6        | )Ag          | 8        |      |        | 4.70  | 0.39  | 0.040 |
| 3.         | BD*       | ( 2            | )Se   | 1      | -Se      | 4 | /12   | 5. F               | RY*          | ( 1        | )Se          | 1        |      |        | 2.85  | 0.84  | 0.046 |
| 3          | BD*       | ,<br>(2        | )Se   | 1      | -Se      | 4 | /21   | 5. F               | γ¥           | 1          | )Se          | 4        |      |        | 2.85  | 0.84  | 0.046 |
| 2.         | אחם*      | ( 2            | 100   | 1      | -20      | 1 | /31   | 5. I               | ov*          | ( 11       | ) 7 0        | 7        |      |        | 1 00  | 41 16 | 0 103 |
| 5.         | БD<br>РР* | ( 2            | 100   | 1      | -56      | - | / 31  | J. 1               | 11 I         | ( <u> </u> | )Ag          | <i>,</i> |      |        | 1 00  | 41 10 | 0.100 |
| 3.         | BD.       | ( 2            | )se   | T      | -se      | 4 | / 35  | 1.C                | ζĭ ^         | 9          | ) Ag         | 8        | _    | -      | 1.00  | 41.10 | 0.193 |
| 3.         | BD*       | ( 2            | )Se   | 1      | -Se      | 4 | /39   | 2. E               | BD*          | ( 1        | )Se          | 1        | -Se  | 5      | 4.72  | 0.23  | 0.031 |
| 3.         | BD*       | (2             | )Se   | 1      | -Se      | 4 | /39   | 4. E               | BD*          | ( 1        | )Se          | 2        | -Se  | 5      | 2.51  | 0.23  | 0.022 |
| 3.         | BD*       | (2             | )Se   | 1      | -Se      | 4 | /39   | 5. E               | BD*          | ( 1        | )Se          | 2        | -Ag  | 7      | 2.95  | 0.38  | 0.031 |
| 3.         | BD*       | ( 2            | )Se   | 1      | -Se      | 4 | /39   | 5. F               | 3D*          | 1          | )Se          | 3        | -Se  | 6      | 2.51  | 0.23  | 0.022 |
| 3          | BD*       | $\dot{i}$ 2    | ) Se  | 1      | -Se      | 4 | /39   | 7 1                | א מא         | 1          | )Se          | 3        | - Aa | 8      | 2 95  | 0 38  | 0 031 |
| 2.         | שם *      | ( 2            | 100   | 1      | 00       | 1 | /20   | , . <u>.</u><br>Эт | שב<br>* תר   | ( <u> </u> | 100          | 1        |      | 6      | 4 70  | 0.00  | 0.031 |
| 5.         | BD.       |                | ) Se  | 1      | -se      | 4 | / 39  | 1.C                | ייענ         |            | )se          | 4        | -se  | 0      | 4.72  | 0.23  | 0.031 |
| 3.         | BD.       | ( 2            | )se   | T      | -se      | 4 | / 39  | 9. Ŀ               | SD ^ I       |            | )se          | 5        | -Ag  | 8      | 4.38  | 0.38  | 0.038 |
| 3.         | BD*       | ( 2            | )Se   | 1      | -Se      | 4 | /40   | ). E               | BD*          | ( 1        | )Se          | 6        | -Ag  | 7      | 4.38  | 0.38  | 0.038 |
| 4.         | BD        | ( 1            | )Se   | 1      | -Se      | 5 | /11   | 5. I               | Ľ₽*          | ( 6        | )Ag          | 7        |      |        | 2.12  | 0.65  | 0.033 |
| 4.         | BD        | ( 1            | )Se   | 1      | -Se      | 5 | /11   | 5. I               | LP*          | (7         | )Ag          | 7        |      |        | 1.30  | 0.74  | 0.028 |
| 4.         | BD        | ( 1            | )Se   | 1      | -Se      | 5 | /12   | 3. I               | .P*          | 7          | ) Aq         | 8        |      |        | 1.59  | 0.74  | 0.031 |
| 4          | BD        | ( 1            | )Se   | 1      | -Se      | 5 | /39   | а.<br>а.           | *תא          | ( 1        | ).Se         | 5        | - Aa | 8      | 1 53  | 0 64  | 0 028 |
| 5          | סס        | ( 1            | 100   | 2      | 50       | 2 | /11   | с т                | D*           | ( <u>-</u> | ) ] ]        | 7        | 119  | 0      | 1 61  | 0.01  | 0.020 |
| 5.         | 50        |                | 100   | 2      | -56      | 2 | /11   | ). I               | _P ·· I      | , ,        | )Ag          |          |      |        | 1.04  | 0.74  | 0.031 |
| 5.         | BD        | ( 1            | )se   | 2      | -se      | 3 | /12   | 3. I               | _₽^ I        | ( /        | ) Ag         | 8        |      | _      | 1.64  | 0.74  | 0.031 |
| 5.         | BD        | ( 1            | )Se   | 2      | -Se      | 3 | /39   | 5. E               | BD*          | ( 1        | )Se          | 2        | -Ag  | 7      | 1.14  | 0.63  | 0.024 |
| 5.         | BD        | ( 1            | )Se   | 2      | -Se      | 3 | /39   | 7. E               | BD*          | ( 1        | )Se          | 3        | -Ag  | 8      | 1.14  | 0.63  | 0.024 |
| б.         | BD        | ( 1            | )Se   | 2      | -Se      | 5 | /11   | 5. I               | Ľ₽*          | (7         | ) Ag         | 7        |      |        | 1.54  | 0.74  | 0.030 |
| 6.         | BD        | ( 1            | )Se   | 2      | -Se      | 5 | /12   | 3. I               | .P*          | (7         | ) Aa         | 8        |      |        | 1.64  | 0.74  | 0.031 |
| 6          | BD        |                | )Se   | 2      | -Se      | 5 | /30   | 5. 1               | 3D*          | ( 1        | )Se          | 2        | -Aa  | 7      | 1.46  | 0.63  | 0.028 |
| 6          | סס        | ( 1            | 100   | 2      | 50       | 5 | /20   | о. т<br>о. т       |              | ( 1        | 100          | 5        | 7.9  | ,<br>0 | 1 1 1 | 0.63  | 0.020 |
| 0.         | עם        | ( <u> </u>     | ) 0 - | 2      | -36      | 5 | / 39  | 2. r               | י עכ         |            | ) Se         | 1        | -Ag  | 0<br>F | 1.14  | 0.03  | 0.024 |
| <u>/</u> · | BD        | ( 1            | )se   | 2      | -Ag      | _ | / 39  | 2. ł               | SD ^ I       |            | )se          | T        | -se  | 5      | 2.82  | 0.28  | 0.025 |
| 7.         | BD        | ( 1            | )Se   | 2      | -Ag      | 7 | /39   | 5. E               | BD*          | ( 1        | )Se          | 3        | -Se  | 6      | 2.95  | 0.29  | 0.026 |
| 7.         | BD        | ( 1            | )Se   | 2      | -Ag      | 7 | /40   | ). E               | 3D*          | ( 1        | )Se          | 6        | -Ag  | 7      | 4.29  | 0.43  | 0.039 |
| 8.         | BD        | ( 1            | )Se   | 3      | -Se      | 6 | /11   | 5. I               | Ľ₽*          | (7         | )Ag          | 7        |      |        | 1.64  | 0.74  | 0.031 |
| 8.         | BD        | ( 1            | )Se   | 3      | -Se      | 6 | /12   | 3. I               | Ŀ₽*          | (7         | ) Aq         | 8        |      |        | 1.54  | 0.74  | 0.030 |
| 8          | BD        | ,<br>( 1       | )Se   | 3      | -Se      | 6 | /39   | 7 1                | א מא         | ,<br>í 1   | )Se          | 3        | - Aa | 8      | 1 46  | 0 63  | 0 028 |
| 8          | BD        | ( 1            | 190   | 2      | -90      | 6 | /40   | ) <b>1</b>         | з <b>л</b> * | ( <u> </u> | 150          | 6        | -2a  | 7      | 1 14  | 0.63  | 0 024 |
| 0.         | סס        | ( 1            | 100   | 2      | 200      | ő | /20   | о. <u>г</u><br>1 т |              | ( 1        | 100          | 2<br>2   | 50   | 5      | 2 05  | 0.05  | 0.021 |
| 2.         |           | ( <u> </u>     | 100   | 2      | ng<br>N- | 0 | (20   | 1. I<br>D T        |              | ( <u>+</u> |              | 4        | 0-   | 6      | 2.25  | 0.20  | 0.020 |
| 9.         | BD        |                | ) Se  | 2      | -Ag      | 0 | / 39  | 1.C                | ייענ         |            | )se          | 4        | -se  | 0      | 2.02  | 0.20  | 0.025 |
| 9.         | BD        | ( 1            | )se   | 3      | -Ag      | 8 | / 39  | 9. E               | SD^          |            | )se          | 5        | -Ag  | 8      | 4.29  | 0.43  | 0.039 |
| 10.        | BD        | ( 1            | )Se   | 4      | -Se      | 6 | /11   | 5. I               | LP*          | (7         | )Ag          | 7        |      |        | 1.59  | 0.74  | 0.031 |
| 10.        | BD        | ( 1            | )Se   | 4      | -Se      | 6 | /12   | 2. I               | ĽΡ           | ( 6        | )Ag          | 8        |      |        | 2.12  | 0.65  | 0.033 |
| 10.        | BD        | ( 1            | )Se   | 4      | -Se      | 6 | /12   | 3. I               | Ŀ₽*          | (7         | ) Aq         | 8        |      |        | 1.30  | 0.74  | 0.028 |
| 10.        | BD        | ( 1            | ).Se  | 4      | -Se      | 6 | /40   | ). F               | 3D*          | 1          | )Se          | 6        | -Aa  | 7      | 1.53  | 0.64  | 0.028 |
| 11         | BD        | ( 1            | 190   | 5      | -20      | Ř | /30   | 1 1                | з <b>л</b> * | ( <u> </u> | 150          | 1        | -90  | 4      | 3 10  | 0.29  | 0 027 |
| 11         | םם        | ( 1            | 100   | 5      | ۸g       | 0 | /20   | г. т<br>с т        | י עכ<br>* תכ | ( 1        | 100          | 2        | 50   | 2      | 2 05  | 0.20  | 0.027 |
| 11.        | 50        |                | 100   | 5      | -Ag      | 0 | / 39  |                    | ייעכ         |            | 150          | 2        | -56  | 2      | 2.90  | 0.29  | 0.020 |
| 11.        | BD        | ( 1            | )se   | 5      | -Ag      | 8 | / 39  | /. Ŀ               | SD ^ I       |            | )se          | 3        | -Ag  | 8      | 4.29  | 0.43  | 0.039 |
| 12.        | BD        | ( 1            | )Se   | 6      | -Ag      | 7 | /39   | 1. E               | BD*          | ( 1        | )Se          | 1        | -Se  | 4      | 3.10  | 0.29  | 0.027 |
| 12.        | BD        | ( 1            | )Se   | 6      | -Ag      | 7 | /39   | 3. E               | BD*          | ( 1        | )Se          | 2        | -Se  | 3      | 2.95  | 0.29  | 0.026 |
| 12.        | BD        | ( 1            | )Se   | 6      | -Ag      | 7 | /39   | 5. E               | 3D*          | ( 1        | )Se          | 2        | -Ag  | 7      | 4.29  | 0.43  | 0.039 |
| 15.        | CR        | ( 3            | )Se   | 1      |          |   | /11   | 5. I               | LP*          | ( 6        | ) Aq         | 7        |      |        | 4.63  | 10.79 | 0.201 |
| 15         | CR        | ( 3            | )Se   | 1      |          |   | /11   | 5. T               | .P*          | . 7        | ) Aa         | 7        |      |        | 1 59  | 10.89 | 0.118 |
| 15         | CP        | ( 3            | 190   | 1      |          |   | /12   |                    | .D*          | ( 7        | ) <u>a</u> a | ß        |      |        | 1 01  | 10 89 | 0 094 |
| 20         | CP        | ( )            | 100   | 2      |          |   | /11   | 5. 1<br>5. 1       |              |            | )<br>) N a   | 7        |      |        | 2 20  | 10.00 | 0.001 |
| 29.        | CR        | ( )            | ) Se  | 2      |          |   | /11   | ). I               | _P ~ !       |            | Ag           | <i>,</i> |      |        | 2.29  | 10.09 | 0.141 |
| 29.        | CR        | ( 3            | )se   | 2      |          |   | /12   | 3. I               | _₽^ I        | ( /        | ) Ag         | 8        |      | _      | 1.25  | 10.89 | 0.104 |
| 29.        | CR        | ( 3            | )Se   | 2      |          |   | /39   | 5. E               | BD*          | ( 1        | )Se          | 2        | -Ag  | .7     | 2.97  | 10.78 | 0.163 |
| 43.        | CR        | ( 3            | )Se   | 3      |          |   | /11   | 5. I               | ∟P*          | (7         | ) Ag         | 7        |      |        | 1.25  | 10.89 | 0.104 |
| 43.        | CR        | ( 3            | )Se   | 3      |          |   | /12   | 3. I               | Ľ₽*          | (7         | ) Ag         | 8        |      |        | 2.29  | 10.89 | 0.141 |
| 43.        | CR        | ( 3            | )Se   | 3      |          |   | /39   | 7. E               | BD*          | ( 1        | )Se          | 3        | -Aq  | 8      | 2.97  | 10.78 | 0.163 |
| 57.        | CR        | (3             | )Se   | 4      |          |   | /11   | 5. I               | .P*          | . 7        | ) Aa         | 7        | 5    |        | 1.01  | 10.89 | 0.094 |
| 57         | CR        | ( 7            | )Se   | 4      |          |   | /12   | 2. T               | P            | 6          | ) Ag         | Ŕ        |      |        | 4.63  | 10.79 | 0.201 |
| 57.        | an        | ( )<br>( )     | 100   | 1      |          |   | /10   | ы.<br>Э. т         | · n * /      | . 7        | )119<br>)7~  | 0        |      |        | 1 50  | 10.00 | 0.110 |
| 57.        | CR        |                | ) Se  | 4      |          |   | /12   | 5. I               | -P"I         |            | ) Ag         | 0        |      |        | 1.09  | 10.09 | 0.110 |
| /1.        | CR        | ( 3            | )se   | 5      |          |   | /11   | 5. I               | _P^          | ( /        | ) Ag         | /        |      |        | 1.01  | 10.89 | 0.094 |
| 71.        | CR        | ( 3            | )Se   | 5      |          |   | /12   | 3. I               | _P*          | ( 7        | )Ag          | 8        |      |        | 2.29  | 10.89 | 0.141 |
| 71.        | CR        | ( 3            | )Se   | 5      |          |   | /39   | 9. E               | BD*          | ( 1        | )Se          | 5        | -Ag  | 8      | 2.97  | 10.78 | 0.163 |
| 85.        | CR        | ( 3            | )Se   | 6      |          |   | /11   | 5. I               | Ľ₽*          | (7         | )Ag          | 7        |      |        | 2.29  | 10.89 | 0.141 |
| 85.        | CR        | ( 3            | )Se   | 6      |          |   | /12   | 3. I               | Ŀ₽*          | (7         | ) Aq         | 8        |      |        | 1.01  | 10.89 | 0.094 |
| 85         | CR        | ( <sup>2</sup> | )Se   | 6      |          |   | /40   | ), F               | 3D*          | ( 1        | )Se          | 6        | -Aa  | 7      | 2.97  | 10.78 | 0.163 |
| 105        | T.D       | , J<br>( 1     | ) 50  | 1      |          |   | , 10  | ζ. τ               | * תצ         | , <u>,</u> | ).Se         | 1        | -50  | 4      | 1.00  | 0 52  | 0 055 |
| 105        |           | 、 ⊥<br>( 1     | 100   | 1      |          |   | / /11 | р. 1<br>5 т        |              |            | ) 7 ~        |          | 20   | -      | 2 21  | 0 01  | 0 070 |
| 105.       | ᅭᄰ        |                | 150   | Ţ      |          |   | / 1 1 | ן.ר<br>-           | <br>         | 0          | , AY         | /        |      |        | 1 04  | 0.91  | 0.078 |
| 105.       | цΡ        | ( I            | ) Se  | 1      |          |   | / 1 1 | 5. I               | ⊐₽^1         | /          | ) Ağ         | /        |      |        | 1.94  | 1.01  | 0.040 |
| 105.       | LР        | ( 1            | )Se   | 1      |          |   | /12   | 3. I               | _P*          | (7         | ) Ag         | 8        |      |        | 1.29  | 1.01  | 0.032 |
| 105.       | LP        | ( 1            | )Se   | 1      |          |   | /39   | 5. E               | BD*          | ( 1        | )Se          | 2        | -Ag  | 7      | 1.89  | 0.90  | 0.037 |
| 105.       | LP        | ( 1            | )Se   | 1      |          |   | /39   | 9. E               | BD*          | ( 1        | )Se          | 5        | -Ag  | 8      | 1.63  | 0.90  | 0.035 |
| 105.       | LP        | ( 1            | )Se   | 1      |          |   | /40   | ). E               | BD*          | ( 1        | )Se          | 6        | -Aq  | 7      | 1.89  | 0.90  | 0.037 |
| 106        | LP        | ( 1            | )Se   | 2      |          |   | /11   | 5. T               | .P*          | ( 7        | ) Aa         | 7        | 2    |        | 2.94  | 1 00  | 0.049 |
| 106        | T.D       | 、 エ<br>( 1     | 100   | 2<br>2 |          |   | / 1 0 | <br>2 т            | *            | , ,        | ) ] ]        | ,<br>Ω   |      |        | 1 60  | 1 00  | 0 036 |
| 100.       |           | ( 1<br>( 1     | 10-   | 2      |          |   | /12   | . 1<br>5 -         | יייב∟        | ( 1        | 149          | 0        | 7 ~  | 7      |       | 1.00  | 0.030 |
| 100.       | ᅶᄰ        |                | 150   | 2      |          |   | / 39  | ייי<br>- ב         | י^עכ<br>דידי |            | ) D          | 4        | -ag  | /      | J. J. | 0.90  | 0.004 |
| 107.       | ЦΡ        | ( 1            | )Se   | 3      |          |   | /11   | 5. I               | - F * I      | /          | ) Ag         | 7        |      |        | 1.60  | 1.00  | 0.036 |
| 107.       | LР        | ( 1            | )Se   | 3      |          |   | /12   | 3. I               | _P*          | (7         | ) Ag         | 8        |      |        | 2.94  | 1.00  | 0.049 |
| 107.       | LP        | ( 1            | )Se   | 3      |          |   | /39   | 7. E               | BD*          | ( 1        | )Se          | 3        | -Ag  | 8      | 5.51  | 0.90  | 0.064 |

| 108. | LP | ( | 1)Se | 4 | / 3  | 8.         | BD*( | 2)Se | 1 | -Se | 4 | 1.00 | 0.52 | 0.055 |
|------|----|---|------|---|------|------------|------|------|---|-----|---|------|------|-------|
| 108. | LP | ( | 1)Se | 4 | /116 | 5.         | LP*( | 7)Ag | 7 |     |   | 1.29 | 1.01 | 0.032 |
| 108. | LP | ( | 1)Se | 4 | /122 | 2.         | LP ( | 6)Ag | 8 |     |   | 8.31 | 0.91 | 0.078 |
| 108. | LP | ( | 1)Se | 4 | /123 | 3.         | LP*( | 7)Ag | 8 |     |   | 1.94 | 1.01 | 0.040 |
| 108. | LP | ( | 1)Se | 4 | /397 | ′ <b>.</b> | BD*( | 1)Se | 3 | -Ag | 8 | 1.89 | 0.90 | 0.037 |
| 108. | LP | ( | 1)Se | 4 | /399 | ).         | BD*( | 1)Se | 5 | -Ag | 8 | 1.89 | 0.90 | 0.037 |
| 108. | LP | ( | 1)Se | 4 | /400 | ).         | BD*( | 1)Se | б | -Ag | 7 | 1.63 | 0.90 | 0.035 |
| 109. | LP | ( | 1)Se | 5 | /116 | 5.         | LP*( | 7)Ag | 7 |     |   | 1.29 | 1.00 | 0.032 |
| 109. | LP | ( | 1)Se | 5 | /123 | 3.         | LP*( | 7)Ag | 8 |     |   | 2.94 | 1.00 | 0.049 |
| 109. | LP | ( | 1)Se | 5 | /395 | 5.         | BD*( | 1)Se | 2 | -Ag | 7 | 1.62 | 0.90 | 0.034 |
| 109. | LP | ( | 1)Se | 5 | /399 | ).         | BD*( | 1)Se | 5 | -Ag | 8 | 5.51 | 0.90 | 0.064 |
| 110. | LP | ( | 1)Se | 6 | /116 | 5.         | LP*( | 7)Ag | 7 |     |   | 2.94 | 1.00 | 0.049 |
| 110. | LP | ( | 1)Se | 6 | /123 | 3.         | LP*( | 7)Ag | 8 |     |   | 1.29 | 1.00 | 0.032 |
| 110. | LP | ( | 1)Se | 6 | /397 | ′ <b>.</b> | BD*( | 1)Se | 3 | -Ag | 8 | 1.62 | 0.90 | 0.034 |
| 110. | LP | ( | 1)Se | б | /400 | ).         | BD*( | 1)Se | 6 | -Ag | 7 | 5.51 | 0.90 | 0.064 |

Wiberg bond index matrix in the NAO basis:

|   | Atom | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      |
|---|------|--------|--------|--------|--------|--------|--------|--------|--------|
|   |      |        |        |        |        |        |        |        |        |
| 1 | . Se | 0.0000 | 0.0794 | 0.0132 | 1.0037 | 1.0037 | 0.0794 | 0.1661 | 0.0211 |
| 2 | . Se | 0.0794 | 0.0000 | 1.0037 | 0.0132 | 1.0037 | 0.0794 | 0.1661 | 0.0211 |
| 3 | . Se | 0.0132 | 1.0037 | 0.0000 | 0.0794 | 0.0794 | 1.0037 | 0.0211 | 0.1661 |
| 4 | . Se | 1.0037 | 0.0132 | 0.0794 | 0.0000 | 0.0794 | 1.0037 | 0.0211 | 0.1661 |
| 5 | . Se | 1.0037 | 1.0037 | 0.0794 | 0.0794 | 0.0000 | 0.0132 | 0.0211 | 0.1661 |
| 6 | . Se | 0.0794 | 0.0794 | 1.0037 | 1.0037 | 0.0132 | 0.0000 | 0.1661 | 0.0211 |
| 7 | . Ag | 0.1661 | 0.1661 | 0.0211 | 0.0211 | 0.0211 | 0.1661 | 0.0000 | 0.0180 |
| 8 | . Ag | 0.0211 | 0.0211 | 0.1661 | 0.1661 | 0.1661 | 0.0211 | 0.0180 | 0.0000 |
|   |      |        |        |        |        |        |        |        |        |

Summary of Natural Population Analysis:

|                                                                  |                                                                 | Noturol                                                                                         |                                                                                                         | lation                                                                                             |                                                                                                 |                                                                                                                       |
|------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Atom                                                             | No                                                              | Charge                                                                                          | Core                                                                                                    | Valence                                                                                            | Rydberg                                                                                         | Total                                                                                                                 |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                             | se<br>se<br>se<br>se<br>se<br>ag<br>ag<br>otal *                | 0.07063<br>0.07063<br>0.07063<br>0.07063<br>0.07063<br>0.07063<br>0.78812<br>0.78812<br>2.00000 | 27.99931<br>27.99931<br>27.99931<br>27.99931<br>27.99931<br>27.99931<br>7.99937<br>7.99937<br>183.99461 | 5.86922<br>5.86922<br>5.86922<br>5.86922<br>5.86922<br>5.86922<br>10.19313<br>10.19313<br>55.60158 | 0.06084<br>0.06084<br>0.06084<br>0.06084<br>0.06084<br>0.06084<br>0.01939<br>0.01939<br>0.01939 | 33.92937<br>33.92937<br>33.92937<br>33.92937<br>33.92937<br>33.92937<br>18.21188<br>18.21188<br>18.21188<br>240.00000 |
| For a<br>Core<br>Valer<br>Natu:<br>****<br>*<br>*<br>*<br>*<br>* | all atoms:<br>nce<br>ral Minimal<br>ral Rydberg<br>************ | 1<br>Basis 2<br>Basis<br>Atomic char                                                            | 183.99461( 9<br>55.60158( 9<br>239.59619( 9<br>0.40381(<br>                                             | 09.9971% of<br>99.2885% of<br>99.8317% of<br>0.1683% of<br>tricenter co                            | 184)<br>56)<br>240)<br>240)<br>************************************                             | ********<br>*<br>*<br>*                                                                                               |

| atom                                                         | charge                                                                                 |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 1 se<br>2 se<br>3 se<br>4 se<br>5 se<br>6 se<br>7 ag<br>8 ag | 0.1930<br>0.1930<br>0.1930<br>0.1930<br>0.1930<br>0.1930<br>0.1930<br>0.4209<br>0.4209 |

## $\underline{\operatorname{Ag}}_{3}(\operatorname{Se}_{6})_{2}^{\underline{3+}}$ (C)

Second Order Perturbation Theory Analysis of Fock Matrix in NBO Basis

| Threshold for printing:    | 1.00 kcal/mol    |         |           |        |
|----------------------------|------------------|---------|-----------|--------|
| (Intermolecular threshold: | 0.05 kcal/mol)   |         |           |        |
|                            |                  | E(2)    | E(j)-E(i) | F(i,j) |
| Donor NBO (i)              | Acceptor NBO (j) | kcal/mo | l a.u.    | a.u.   |
| 3. BD (    | ( 1)Se 1 -Ag 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /394. RY*( 3   | )Se 6               | 2.05        | 1.28 0.047    |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------|-------------|---------------|
| רום 2      | $(1)$ Se $1 - \lambda \alpha = 13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | /207 DV*/ 6    | 190 6               | 1 04        | 0 99 0 029    |
| J. BD (    | ( 1)SE 1 - Ag 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /55/. RI ( 0   | 130 0               | 1.04        | 0.99 0.029    |
| 3. BD (    | ( I)Se I - Ag I3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /613. RY*( 12  | )Ag 13              | 1.56        | 4.19 0.074    |
| 3. BD (    | ( 1)Se 1 -Ag 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /614. RY*( 13  | )Ag 13              | 2.07        | 42.37 0.271   |
| 3. BD (    | ( 1)Se 1 -Ag 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /737 BD*( 1    | )Se 3-Se            | 9 2.97      | 0.40 0.031    |
| 2 00       | ( 1)0- 1 2- 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (740 DD*( 1    |                     | 10 10 10 10 | 0 51 0 070    |
| 3. BD (    | ( 1)Se 1 - Ag 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | //42.BD*( 1    | )se 6-Ag            | 13 15.14    | 0.51 0.079    |
| 3. BD (    | ( 1)Se 1 -Ag 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /743.BD*( 1    | )Se 7-Se            | 11 2.97     | 0.40 0.031    |
| 12. BD (   | ( 1)Se 6 -Ag 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /244 RY*( 3    | )Se 1               | 2.05        | 1.28 0.047    |
| 12.00      | (1) Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $($                                                                                                                                                                                                                                                              | /247 DV*/ 6    | ) Co 1              | 1 04        | 0.00 0.01     |
| 12. BD (   | ( 1)Se 6-Ag 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | /24/. RI*( 6   | )se i               | 1.04        | 0.99 0.029    |
| 12. BD (   | ( 1)Se 6-Ag 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | /613. RY*( 12  | )Ag 13              | 1.56        | 4.19 0.074    |
| 12. BD (   | ( 1)Se 6 -Ag 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /614 RY*( 13   | ) Ag 13             | 2.07        | 42.37 0.271   |
| 10 00      | (1)Co $(3)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ Co $(1)$ | /722 *** ( 1   | ) Co 1 7 ~          | 10 15 14    | 0 51 0 070    |
| 12. BD (   | ( 1)Se 6-Ag 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | //33. BD"( 1   | )se i-Ag            | 15 15.14    | 0.51 0.079    |
| 12. BD (   | ( 1)Se 6-Ag 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | /739.BD*( 1    | )Se 4-Se            | 10 2.97     | 0.40 0.031    |
| 12. BD (   | ( 1)Se 6 - Ag 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /744.BD*( 1    | )Se 8-Se            | 12 2.97     | 0.40 0.031    |
| 17 OD      | ( 2)00 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (222 10*( 5    | ) N a 12            | 1 10        | 10.00 0.100   |
| 17. CR (   | ( 3)50 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /222. LP"( 0   | Ag 15               | 1.19        | 10.88 0.102   |
| 17. CR (   | ( 3)Se 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /733.BD*( 1    | )Se l-Ag            | 13 1.81     | . 10.80 0.127 |
| 87. CR     | (3)Se 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | /222 LP*( 6    | )Ag 13              | 1.19        | 10.88 0.102   |
| 07 CD      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /7/2 ( 1       | ) So 6 10           | 12 1 01     | 10 90 0 127   |
| 07. CR (   | ( 3)50 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | //42.BD"( 1    | /se 6-Ag            | 1.01        | 10.80 0.127   |
| 195. LP (  | ( 1)Se 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /222. LP*( 6   | )Ag 13              | 2.81        | 0.89 0.045    |
| 195. LP (  | ( 1)Se 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /733.BD*( 1    | )Se 1-Aq            | 13 2.26     | 0.81 0.039    |
| 107 10     | ( 2) 0 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /720           | ) Co 4 Co           | 10 2.05     | 0.20 0.027    |
| 197. LP    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | //39. 60"( 1   |                     | 10 2.05     | 0.30 0.027    |
| 197. LP (  | ( 2)Se 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /744.BD*( 1    | )Se 8-Se            | 12 2.85     | 0.30 0.027    |
| 199. LP (  | ( 2)Se 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /362. RY*( 1   | )Se 5               | 1.67        | 0.75 0.033    |
| 199 T.D    | ( 2) 50 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /482 PV*( 1    | 9 92                | 2 70        | 0 74 0 042    |
| 100 10     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /102. R1 ( 1   |                     | 2.70        | 0.71 0.012    |
| 199. LP (  | (2)Se 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | /732.BD*( 1    | )Se I-Se            | 9 10.31     | 0.20 0.041    |
| 199. LP (  | ( 2)Se 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /740. BD*( 1   | )Se 5-Se            | 11 6.60     | 0.24 0.036    |
| 201 T.D    | (2) 50 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /735 BD*( 1    | 190 2 - 90          | 10 3 59     | 0 29 0 0 29   |
| 201. DF 1  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | //35. BD ( 1   | ) 3C 2 - 3C         | 10 5.55     | 0.29 0.029    |
| 201. LP (  | (2)Se 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | /741.BD*( 1    | )Se 6-Se            | 12 3.49     | 0.25 0.027    |
| 203. LP (  | ( 2)Se 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /737. BD*( 1   | )Se 3-Se            | 9 2.85      | 0.30 0.027    |
| 203 10     | (2) So 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /7/3 */ 1      | 190 7 -90           | 11 2.85     | 0 30 0 0 27   |
| 203. DF (  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | //H3. BD ( I   |                     | 11 2.03     | 0.30 0.027    |
| 204. LP (  | ( I)Se 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /222. LP*( 6   | )Ag 13              | 2.81        | 0.89 0.045    |
| 204. LP (  | ( 1)Se 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /742. BD*( 1   | )Se 6-Aq            | 13 2.26     | 0.81 0.039    |
| 206 T.D    | ( 2) 50 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /730 */ 1      | ) Co 1 - Co         | 0 3 / 0     | 0.25 0.027    |
| 200. DF (  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | //JZ. BD ( 1   | ) 3C I - 3C         | J J.TJ      | 0.25 0.027    |
| 206. LP (  | (2)Se 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | /740.BD*( 1    | )Se 5-Se            | 11 3.59     | 0.29 0.029    |
| 208. LP (  | ( 2)Se 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /272. RY*( 1   | )Se 2               | 1.67        | 0.75 0.033    |
| 208 LP     | (2)Se 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | /572. RY*( 1   | )Se 12              | 2.70        | 0.74 0.042    |
| 2000. 10   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (725 PD*( 1    | ) 0 - 0 0 -         | 10 6.00     | 0.01 0.020    |
| 208. LP (  | ( <u>2)</u> Se 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | //35. BD^( 1   | )se z-se            | 10 0.00     | 0.24 0.036    |
| 208. LP (  | ( 2)Se 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /741. BD*( 1   | )Se 6-Se            | 12 10.31    | . 0.20 0.041  |
| 210. LP    | (2)Se 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | /731. BD*( 1   | )Se 1-Se            | 7 3.49      | 0.25 0.027    |
| 210. EF    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (726 DD*( 1    | ) 0 - 2 0 -         | F 2 F0      | 0.20 0.020    |
| 210. LP (  | ( 2) Se 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | //36. BD*( 1   | )se 3-se            | 5 3.59      | 0.29 0.029    |
| 212. LP (  | ( 2)Se 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /272. RY*( 1   | )Se 2               | 1.67        | 0.75 0.033    |
| 212. LP (  | ( 2)Se 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /332. RY*( 1   | )Se 4               | 2.70        | 0.74 0.042    |
| 212 10     | (2) S = 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /724           |                     | 0 6 6 0     | 0.24 0.026    |
| ZIZ. LP (  | ( 2)50 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | //34. BD"( 1   | /se z-se            | 0 0.00      | 0.24 0.036    |
| 212. LP (  | ( 2)Se 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /738.BD*( 1    | )Se 4-Se            | 6 10.31     | . 0.20 0.041  |
| 214 LP     | ( 2)Se 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /362 RY*( 1    | )Se 5               | 1.67        | 0.75 0.033    |
| 014 TD     | ( 2)80 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (400 DV*( 1    | )0- 7               | 2.07        | 0.75 0.035    |
| 214. LP (  | ( 2)Se II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /422. RI^( 1   | )se /               | 2.70        | 0.74 0.042    |
| 214. LP (  | ( 2)Se 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /731. BD*( 1   | )Se 1-Se            | 7 10.31     | . 0.20 0.041  |
| 214 LP     | ( 2)Se 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /736. BD*( 1   | )Se 3-Se            | 5 6.60      | 0.24 0.036    |
| 216 TD     | (2) $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$                                                                                                                                                                                                                                                               | /72/ 1         |                     | 0 2 50      | 0.20 0.020    |
| 210. LP (  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | //34. BD*( 1   | ) 3 2 - 3 2         | 0 3.39      | 0.29 0.029    |
| 216. LP (  | ( 2)Se 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /738.BD*( 1    | )Se 4-Se            | 6 3.49      | 0.25 0.027    |
| 1. BD (    | ( 1)Se 1-Se 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /232. LP*( 9   | )Ag 14              | 1.24        | 0.68 0.026    |
| 2 0        | ( 1)90 1 -90 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | /222 TD*/ 0    | $\lambda \alpha 14$ | 1 24        | 0.68 0.026    |
| 2. BD (    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /232. DF ( )   | Ag IT               | 1.21        | 0.00 0.020    |
| 6. BD (    | ( I)Se 3-Se 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /229. LP*( 6   | )Ag 14              | 1.44        | 0.49 0.025    |
| 6. BD (    | ( 1)Se 3-Se 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /230. LP*( 7   | )Ag 14              | 1.04        | 0.61 0.023    |
| 6 BD       | ( 1)Se 3-Se 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /232 T.P*( 9   | ) Ag 14             | 1 78        | 0 66 0 031    |
| 7          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (220 ID*( )    | )                   | 1 10        |               |
| 7. BD (    | ( 1)Se 3-Se 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /229. LP*( 6   | )Ag 14              | 1.19        | 0.51 0.024    |
| 7.BD (     | ( 1)Se 3-Se 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /231. LP*( 8   | )Ag 14              | 1.11        | 0.62 0.024    |
| 7. BD (    | ( 1)Se 3-Se 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /232. LP*( 9   | )Ag 14              | 1.37        | 0.68 0.027    |
| 10 חש      | (1) Se 5 - Se 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /229 T.D*/ 6   | ) Ag 14             | 1 44        | 0.49 0.025    |
| 10 55      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /222. LF ( 0   | )                   | 1.77        |               |
| TO' RD (   | ( I)Se 5-Se II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | /23U. LP*( '/  | )AG 14              | 1.04        | U.61 U.023    |
| 10. BD (   | ( 1)Se 5-Se 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | /232. LP*( 9   | )Ag 14              | 1.78        | 0.66 0.031    |
| 13. BD (   | ( 1)Se 7-Se 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | /229. LP*( 6   | )Ag 14              | 1.19        | 0.51 0.024    |
| 12         | (1) $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$                                                                                                                                                                                                                                                               | /221 TD*/ 0    | $\lambda \alpha 14$ |             | 0.62 0.024    |
| T2. RD (   | LISE / SE II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | /ZOI. LP^( 8   | JAY 14              | 1.11        | 0.02 0.024    |
| 13. BD (   | ( 1)Se 7-Se 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | /232. LP*( 9   | )Ag 14              | 1.37        | 0.68 0.027    |
| 45. CR (   | ( 3)Se 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /232. LP*( 9   | )Ag 14              | 1.33        | 10.60 0.106   |
| 73 (10)    | (3) Se 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /229 TD*/ 6    | ) Ag 14             | 2.00        | 10.69 0.105   |
| 73. CR 1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /229. LP"( 0   | /A9 11              | 3.40        | 10.00 0.105   |
| 73. CR (   | ( 3)Se 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /230.LP*( 7    | )Ag 14              | 3.73        | 10.82 0.181   |
| 73. CR (   | ( 3)Se 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /232. LP*( 9   | )Ag 14              | 2.51        | 10.86 0.148   |
| 101 (7)    | ( 3)Se 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /229 T.D*/ 6   | ) Ag 14             | 2 44        | 10.64 0.155   |
| 101 00     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /001 TD1/ 0    | ) h a 1 4           | 2.11        |               |
| TOT. CK (  | ( 3)50 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /∠зі. цР*( 8   | JAG 14              | 2.33        | 10.75 0.142   |
| 101. CR (  | ( 3)Se 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /232. LP*( 9   | )Ag 14              | 1.85        | 10.81 0.127   |
| 129 CR     | ( 3)Se 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /229 T.D*( 6   | ) Ag 14             | 2 44        | 10.64 0 155   |
| 120 00 1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /001 10+/ 0    | ) A a 1 /           | 2.11        |               |
| 129. CR (  | ( 3)58 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /∠зі. цР*( 8   | JAG 14              | 2.33        | 10.75 0.142   |
| 129. CR (  | ( 3)Se 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /232. LP*( 9   | )Ag 14              | 1.85        | 10.81 0.127   |
| 157. CR    | ( 3)Se 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /232. LP*( 9   | )Ag 14              | 1 22        | 10.60 0.106   |
| 195 70     | (1) Se 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /232 1.0*/ 0   | ) Ag 14             | 1 00        | 0.87 0.000    |
| 100 TT     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /232. LP"( 9   | Ing It              | 1.22        | 0.07 0.029    |
| тая. ГЬ (  | (I)Se 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | /229.LP*( 6    | )Ag 14              | 1.67        | 0.75 0.034    |
| 198. LP (  | ( 1)Se 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /232. LP*( 9   | )Ag 14              | 2.11        | 0.92 0.039    |
| 202 T.P    | ( 1)Se 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /229 T.D*( 6   | ) Ag 14             | 7 01        | 0.74 0.069    |
| 202. 11. 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /22/ 11 ( 0    | ) N a 1 1           | 7.01        |               |
| ZUZ. LP (  | ( <u>1</u> )5e 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /Z3U. LP*( /   | JAG 14              | 6.54        | 0.86 0.067    |
| 202. LP (  | ( 1)Se 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /232. LP*( 9   | )Ag 14              | 3.26        | 0.91 0.049    |
| 203. LP (  | ( 2)Se 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /229. LP*( 6   | )Ag 14              | 38.23       | 0.30 0.098    |
|            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , <del>-</del> | -                   |             |               |

| 203.     | LP        | ( 2)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5         | /230. LP*           | ( 7)Ag                       | 14 | 7.26  | 0.42  | 0.051 |
|----------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------|------------------------------|----|-------|-------|-------|
| 203.     | LP        | ( 2)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5         | /232. LP*           | ( 9)Aq                       | 14 | 1.52  | 0.47  | 0.025 |
| 203.     | LP        | ( 2)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5         | /647. RY*           | ( 3)Aq                       | 14 | 3.16  | 2.30  | 0.080 |
| 203.     | LP        | ( 2)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5         | /651. RY*           | (7) Ag                       | 14 | 1.30  | 3.33  | 0.061 |
| 203      | T.P       | ( 2)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5         | /653. RY*           | ( 9)Ag                       | 14 | 3.90  | 41.13 | 0.374 |
| 205.     | TD        | ( 1) 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7         | /229 10*            | ( 6) A g                     | 14 | 5.20  | 0 76  | 0.060 |
| 205.     |           | ( 1)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7         | /229. UF<br>/220 IF | ( 0)Ag                       | 11 | 1 62  | 0.70  | 0.000 |
| 205.     |           | ( 1)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7         | /230. LP            | ( /)Ag                       | 14 | 1.02  | 0.88  | 0.034 |
| 205.     | ЦΡ        | ( 1)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7         | /231. LP*           | ( 8)Ag                       | 14 | 4.21  | 0.87  | 0.054 |
| 205.     | ЦΡ        | ( I)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | /         | /232. LP*           | ( 9)Ag                       | 14 | 2.5/  | 0.93  | 0.044 |
| 206.     | LP        | ( 2)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .7        | /229. LP*           | ( 6)Ag                       | 14 | 22.14 | 0.29  | 0.075 |
| 206.     | LP        | ( 2)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7         | /230. LP*           | ( 7)Ag                       | 14 | 1.40  | 0.42  | 0.022 |
| 206.     | LP        | ( 2)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7         | /231. LP*           | ( 8)Ag                       | 14 | 3.64  | 0.41  | 0.035 |
| 206.     | LP        | ( 2)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7         | /232. LP*           | ( 9)Ag                       | 14 | 1.12  | 0.47  | 0.021 |
| 206.     | LP        | ( 2)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7         | /647. RY*           | ( 3)Ag                       | 14 | 1.33  | 2.30  | 0.051 |
| 206.     | LP        | ( 2)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7         | /653. RY*           | ( 9)Ag                       | 14 | 1.76  | 41.13 | 0.249 |
| 209.     | LP        | ( 1)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9         | /229. LP*           | ( 6)Aq                       | 14 | 5.22  | 0.76  | 0.060 |
| 209.     | LP        | ( 1)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9         | /230. LP*           | (7) Ag                       | 14 | 1.62  | 0.88  | 0.034 |
| 209      | T.P       | ( 1)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9         | /231. LP*           | ( 8)Ag                       | 14 | 4.21  | 0.87  | 0.054 |
| 209      | T.P       | ( 1)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9         | /232 T.P*           | ( 9) A a                     | 14 | 2 57  | 0.93  | 0 044 |
| 210      | T.D       | ( 2)50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9         | /202. EF            | ( 6) A g                     | 14 | 22.37 | 0.29  | 0.075 |
| 210.     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9         | /220. 11            | ( 7)Ag                       | 11 | 1 40  | 0.20  | 0.075 |
| 210.     |           | ( 2)50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9         | /230. LP            | ( /)Ag                       | 14 | 1.40  | 0.42  | 0.022 |
| 210.     | ЦР<br>Т П | ( 2)5e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9         | /231. LP"           | ( 0)Ag                       | 14 | 5.04  | 0.41  | 0.035 |
| 210.     | ЦΡ        | ( 2)se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9         | /232. LP*           | ( 9)Ag                       | 14 | 1.12  | 0.4/  | 0.021 |
| 210.     | ЦΡ        | ( 2)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9         | /64/. RY*           | (3)Ag                        | 14 | 1.33  | 2.30  | 0.051 |
| 210.     | LP        | ( 2)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9         | /653. RY*           | ( 9)Ag                       | 14 | 1.76  | 41.13 | 0.249 |
| 213.     | LP        | ( 1)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11        | /229. LP*           | ( 6)Ag                       | 14 | 1.67  | 0.75  | 0.034 |
| 213.     | LP        | ( 1)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11        | /232. LP*           | ( 9)Ag                       | 14 | 2.11  | 0.92  | 0.039 |
| 4.       | BD        | ( 1)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2-Se 8    | /238. LP*           | ( 6)Ag                       | 15 | 1.44  | 0.49  | 0.025 |
| 4.       | BD        | ( 1)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2-Se 8    | /239. LP*           | ( 7)Ag                       | 15 | 1.04  | 0.61  | 0.023 |
| 4.       | BD        | ( 1)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2-Se 8    | /241. LP*           | ( 9)Ag                       | 15 | 1.78  | 0.66  | 0.031 |
| 5.       | BD        | ( 1)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 -Se 10  | /238. LP*           | ( 6)Aq                       | 15 | 1.44  | 0.49  | 0.025 |
| 5.       | BD        | ( 1)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 -Se 10  | /239. LP*           | (7)Aq                        | 15 | 1.04  | 0.61  | 0.023 |
| 5        | BD        | ( 1)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 -Se 10  | /241 LP*            | ( 9)Ag                       | 15 | 1.78  | 0.66  | 0.031 |
| 8        | BD        | ( 1)50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4 - 50 6  | /241 T.D*           | ( 9) A g                     | 15 | 1 24  | 0.68  | 0.031 |
| о.<br>о  | םם<br>חפ  | ( 1)50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4 - 50 10 | /238 10*            | ( 5)Ag                       | 15 | 1 10  | 0.00  | 0.020 |
| <u>و</u> |           | ( 1)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4 So 10   | /230. LF            | ( 0)Ag                       | 15 | 1 11  | 0.51  | 0.024 |
| 9.       | вD        | ( 1)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4 -Se 10  | /240. LP"           | ( o)Ag                       | 15 | 1.11  | 0.62  | 0.024 |
| 9.       | BD        | ( I)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4 -Se 10  | /241. LP*           | ( 9)Ag                       | 15 | 1.3/  | 0.68  | 0.027 |
| 11.      | BD        | ( I)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6-Se 12   | /241. LP*           | ( 9)Ag                       | 15 | 1.24  | 0.68  | 0.026 |
| 14.      | BD        | ( 1)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8 -Se 12  | /238. LP*           | ( 6)Ag                       | 15 | 1.19  | 0.51  | 0.024 |
| 14.      | BD        | ( 1)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8 -Se 12  | /240. LP*           | ( 8)Ag                       | 15 | 1.11  | 0.62  | 0.024 |
| 14.      | BD        | ( 1)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8 -Se 12  | /241. LP*           | ( 9)Ag                       | 15 | 1.37  | 0.68  | 0.027 |
| 31.      | CR        | ( 3)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2         | /238. LP*           | ( 6)Ag                       | 15 | 3.46  | 10.69 | 0.185 |
| 31.      | CR        | ( 3)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2         | /239. LP*           | ( 7)Ag                       | 15 | 3.73  | 10.82 | 0.181 |
| 31.      | CR        | ( 3)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2         | /241. LP*           | ( 9)Aq                       | 15 | 2.51  | 10.86 | 0.148 |
| 59.      | CR        | ( 3)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4         | /238. LP*           | ( 6)Aq                       | 15 | 2.44  | 10.64 | 0.155 |
| 59.      | CR        | ( 3)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4         | /240. LP*           | ( 8)Aq                       | 15 | 2.33  | 10.75 | 0.142 |
| 59       | CR        | ( 3)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4         | /241. LP*           | ( 9)Ag                       | 15 | 1.85  | 10.81 | 0.127 |
| 115      | CR        | ( 3)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8         | /241 T.P*           | ( 9) A a                     | 15 | 1 33  | 10 60 | 0 106 |
| 143      | CR        | ( 3)50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10        | /241 T.D*           | ( 9) A g                     | 15 | 1 33  | 10.60 | 0 106 |
| 171      | CP        | ( 3)50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10        | /238 10*            | ( 5)Ag                       | 15 | 2.44  | 10.00 | 0.155 |
| 171      | CR        | ( 2)50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10        | /230. LF            | ( 0)Ag                       | 15 | 2.11  | 10.04 | 0.142 |
| 171      | CR        | ( 3)30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10        | /240. LP            | ( 0)Ag                       | 10 | 2.33  | 10.75 | 0.142 |
| 100      | CR        | ( 3)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12        | /241. LP*           | ( 9)Ag                       | 15 | 1.85  | 10.81 | 0.12/ |
| 196.     | ЦΡ        | ( 1)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2         | /238. LP*           | ( b)Ag                       | 15 | 7.01  | 0.74  | 0.069 |
| 196.     | ЦΡ        | ( I)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2         | /239. LP*           | ( /)Ag                       | 15 | 6.54  | 0.86  | 0.06/ |
| 196.     | ЦΡ        | ( I)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2         | /241. LP*           | ( 9)Ag                       | 15 | 3.26  | 0.91  | 0.049 |
| 197.     | LP        | ( 2)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2         | /238. LP*           | ( 6)Ag                       | 15 | 38.23 | 0.30  | 0.098 |
| 197.     | LP        | ( 2)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2         | /239. LP*           | ( 7)Ag                       | 15 | 7.26  | 0.42  | 0.051 |
| 197.     | LP        | ( 2)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2         | /241. LP*           | ( 9)Ag                       | 15 | 1.52  | 0.47  | 0.025 |
| 197.     | LP        | ( 2)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2         | /690. RY*           | ( 3)Ag                       | 15 | 3.16  | 2.30  | 0.080 |
| 197.     | LP        | ( 2)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2         | /694. RY*           | ( 7)Ag                       | 15 | 1.30  | 3.33  | 0.061 |
| 197.     | LP        | ( 2)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2         | /696. RY*           | ( 9)Ag                       | 15 | 3.90  | 41.13 | 0.374 |
| 200.     | LP        | ( 1)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4         | /238. LP*           | ( 6)Ag                       | 15 | 5.22  | 0.76  | 0.060 |
| 200.     | LP        | ( 1)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4         | /239. LP*           | ( 7)Aq                       | 15 | 1.62  | 0.88  | 0.034 |
| 200.     | LP        | ( 1)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4         | /240. LP*           | ( 8)Aq                       | 15 | 4.21  | 0.87  | 0.054 |
| 200.     | LP        | ( 1)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4         | /241. LP*           | ( 9)Aq                       | 15 | 2.57  | 0.93  | 0.044 |
| 201.     | LP        | ( 2)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4         | /238. LP*           | ( 6)Ag                       | 15 | 22.14 | 0.29  | 0.075 |
| 201      | T.D       | ( 2)50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4         | /239 T.D*           | ( 7) A g                     | 15 | 1 40  | 0 42  | 0 022 |
| 201      | T.D       | ( 2)00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4         | /240 T.D*           | ( 8)20                       | 15 | 2 64  | 0 41  | 0 025 |
| 201      | T.D       | (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) = (2) | 4         | /241 TD*            | ( <u>9)</u><br>0)<br>10<br>0 | 15 | 1 10  | 0 47  | 0 021 |
| 201.     | T.D       | ( 2)00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4         | /600 DV*            |                              | 15 | 1 22  | 2 20  | 0.021 |
| 201.     | ᅚᅭ        | ( 2)30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -         | /070. KI*           | ( <u>)</u> Ag                | 10 | 1.33  | 4.30  | 0.051 |
| ∠∪⊥.     | цΡ        | ( 2)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4         | /096. RY*           | ( 9)Ag                       | 15 | 1.76  | 41.13 | 0.249 |
| 204.     | цΡ        | ( I)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | a         | /241. LP*           | ( 9)Ag                       | 15 | 1.22  | 0.87  | 0.029 |
| 207.     | LР        | ( 1)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8         | /238. LP*           | 6)Ag                         | 15 | 1.67  | 0.75  | 0.034 |
| 207.     | LP        | ( 1)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8         | /241. LP*           | ( 9)Ag                       | 15 | 2.11  | 0.92  | 0.039 |
| 211.     | LP        | ( 1)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10        | /238. LP*           | ( 6)Ag                       | 15 | 1.67  | 0.75  | 0.034 |
| 211.     | LP        | ( 1)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10        | /241. LP*           | ( 9)Ag                       | 15 | 2.11  | 0.92  | 0.039 |
| 215.     | LP        | ( 1)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12        | /238. LP*           | ( 6)Ag                       | 15 | 5.22  | 0.76  | 0.060 |
| 215.     | LP        | ( 1)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12        | /239. LP*           | ( 7)Ag                       | 15 | 1.62  | 0.88  | 0.034 |
| 215.     | LP        | ( 1)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12        | /240. LP*           | ( 8)Ag                       | 15 | 4.21  | 0.87  | 0.054 |
| 215.     | LP        | ( 1)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12        | /241. LP*           | ( 9)Ag                       | 15 | 2.57  | 0.93  | 0.044 |
| 216.     | LP        | ( 2)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12        | /238. LP*           | ( 6)Ag                       | 15 | 22.14 | 0.29  | 0.075 |
| 216.     | LP        | ( 2)Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12        | /239. LP*           | ( 7)Aq                       | 15 | 1.40  | 0.42  | 0.022 |
|          |           | , -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |                     | . 5                          |    |       |       |       |

| 216. | LP ( | 2)Se | 12 | /240. | LP*( | 8)Ag  | 15 |     |    | : | 3.64 | 0.41  | 0.035 |
|------|------|------|----|-------|------|-------|----|-----|----|---|------|-------|-------|
| 216. | LP ( | 2)Se | 12 | /241. | LP*( | 9)Ag  | 15 |     |    |   | 1.12 | 0.47  | 0.021 |
| 216. | LP ( | 2)Se | 12 | /690. | RY*( | 3)Ag  | 15 |     |    |   | 1.33 | 2.30  | 0.051 |
| 216. | LP ( | 2)Se | 12 | /696. | RY*( | 9)Ag  | 15 |     |    |   | 1.76 | 41.13 | 0.249 |
| 229. | LP*( | 6)Ag | 14 | /370. | RY*( | 9)Se  | 5  |     |    |   | 1.52 | 0.63  | 0.073 |
| 229. | LP*( | 6)Ag | 14 | /733. | BD*( | 1)Se  | 1  | -Ag | 13 |   | 1.92 | 0.11  | 0.031 |
| 229. | LP*( | 6)Ag | 14 | /232. | LP*( | 9)Ag  | 14 |     |    |   | 5.62 | 0.17  | 0.073 |
| 229. | LP*( | 6)Ag | 14 | /647. | RY*( | 3)Ag  | 14 |     |    |   | 4.87 | 2.01  | 0.235 |
| 229. | LP*( | 6)Ag | 14 | /651. | RY*( | 7)Ag  | 14 |     |    |   | 3.52 | 3.03  | 0.246 |
| 229. | LP*( | 6)Ag | 14 | /652. | RY*( | 8)Ag  | 14 |     |    | : | 2.74 | 2.60  | 0.201 |
| 229. | LP*( | 6)Ag | 14 | /653. | RY*( | 9)Ag  | 14 |     |    |   | 6.60 | 40.84 | 1.234 |
| 229. | LP*( | 6)Ag | 14 | /661. | RY*( | 17)Ag | 14 |     |    |   | 1.11 | 1.09  | 0.083 |
| 229. | LP*( | 6)Ag | 14 | /677. | RY*( | 33)Ag | 14 |     |    |   | 1.26 | 1.93  | 0.118 |
| 238. | LP*( | 6)Ag | 15 | /280. | RY*( | 9)Se  | 2  |     |    |   | 1.52 | 0.63  | 0.073 |
| 238. | LP*( | 6)Ag | 15 | /742. | BD*( | 1)Se  | 6  | -Ag | 13 |   | 1.92 | 0.11  | 0.031 |
| 238. | LP*( | 6)Ag | 15 | /241. | LP*( | 9)Ag  | 15 |     |    |   | 5.62 | 0.17  | 0.073 |
| 238. | LP*( | 6)Ag | 15 | /690. | RY*( | 3)Ag  | 15 |     |    |   | 4.87 | 2.01  | 0.235 |
| 238. | LP*( | 6)Ag | 15 | /694. | RY*( | 7)Ag  | 15 |     |    |   | 3.52 | 3.03  | 0.246 |
| 238. | LP*( | 6)Ag | 15 | /695. | RY*( | 8)Ag  | 15 |     |    | - | 2.74 | 2.60  | 0.201 |
| 238. | LP*( | 6)Ag | 15 | /696. | RY*( | 9)Ag  | 15 |     |    |   | 6.60 | 40.84 | 1.234 |
| 238. | LP*( | 6)Ag | 15 | /704. | RY*( | 17)Ag | 15 |     |    |   | 1.11 | 1.09  | 0.083 |
| 238. | LP*( | 6)Ag | 15 | /720. | RY*( | 33)Ag | 15 |     |    |   | 1.26 | 1.93  | 0.118 |

Wiberg bond index matrix in the NAO basis:

| Atom                                                                                                                            | 1                                                                                                                              | 2                                                                                                                                                  | 3                                                                                                                                                         | 4                                                                                                                              | 5                                                                                                                                        | б                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                                                                                                                                                                    | 8                                                                                                                                        | 9                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Se<br>2. Se<br>3. Se<br>4. Se<br>5. Se<br>6. Se<br>7. Se<br>8. Se<br>9. Se<br>10. Se<br>11. Se<br>12. Se<br>13. Ag<br>14. Ag | 0.0000<br>0.0053<br>0.0017<br>0.0100<br>0.0317<br>0.9302<br>0.0019<br>0.9302<br>0.0019<br>0.0953<br>0.0017<br>0.3562<br>0.0229 | 0.0001<br>0.0000<br>0.0699<br>0.0000<br>0.0100<br>0.0100<br>0.0000<br>1.0102<br>0.0000<br>1.0102<br>0.0000<br>0.0699<br>0.0012<br>0.0001<br>0.0237 | $\begin{array}{c} 0.0953\\ 0.0000\\ 0.0001\\ 1.0102\\ 0.0019\\ 0.0140\\ 0.0001\\ 1.0695\\ 0.0002\\ 0.0884\\ 0.0001\\ 0.0170\\ 0.0346\\ 0.0020\end{array}$ | 0.0017<br>0.0699<br>0.0001<br>0.0000<br>0.9302<br>0.0005<br>0.0140<br>0.0001<br>1.0695<br>0.0001<br>0.0745<br>0.0148<br>0.0001 | 0.0100<br>0.0000<br>1.0102<br>0.0000<br>0.0001<br>0.0699<br>0.0000<br>0.0699<br>0.0000<br>1.0102<br>0.0000<br>0.0012<br>0.0000<br>0.0012 | $\begin{array}{c} 0.0317\\ 0.0100\\ 0.0019\\ 0.9302\\ 0.0001\\ 0.0000\\ 0.0017\\ 0.0953\\ 0.0017\\ 0.0953\\ 0.0019\\ 0.9302\\ 0.3562\\ 0.0002\\ 0.3562\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\$ | $\begin{array}{c} 0.9302\\ 0.0000\\ 0.0140\\ 0.005\\ 0.0699\\ 0.0017\\ 0.0000\\ 0.0001\\ 0.0745\\ 0.0001\\ 1.0695\\ 0.0001\\ 0.0148\\ 0.1653\\ 0.0001\\ \end{array}$ | 0.0019<br>1.0102<br>0.0001<br>0.0140<br>0.0000<br>0.0953<br>0.0001<br>0.0000<br>0.0001<br>0.0884<br>0.0002<br>1.0695<br>0.0170<br>0.0000 | $\begin{array}{c} 0.9302\\ 0.0000\\ 1.0695\\ 0.0011\\ 0.0699\\ 0.0017\\ 0.0745\\ 0.0001\\ 0.0000\\ 0.0001\\ 0.0140\\ 0.0005\\ 0.0148\\ 0.1653\\ 0.0001 \end{array}$ |
| Atom                                                                                                                            | 10                                                                                                                             | 11                                                                                                                                                 | 12                                                                                                                                                        | 13                                                                                                                             | 14                                                                                                                                       | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0001                                                                                                                                                               | 0.0340                                                                                                                                   | 0.0001                                                                                                                                                              |
| 1. Se<br>2. Se<br>3. Se<br>4. Se<br>5. Se<br>6. Se                                                                              | 0.0019<br>1.0102<br>0.0002<br>1.0695<br>0.0000<br>0.0953                                                                       | 0.0953<br>0.0000<br>0.0884<br>0.0001<br>1.0102<br>0.0019                                                                                           | 0.0017<br>0.0699<br>0.0001<br>0.0745<br>0.0000<br>0.9302                                                                                                  | 0.3562<br>0.0012<br>0.0170<br>0.0148<br>0.0012<br>0.3562                                                                       | 0.0229<br>0.0001<br>0.0346<br>0.0001<br>0.2387<br>0.0002                                                                                 | 0.0002<br>0.2387<br>0.0000<br>0.1653<br>0.0001<br>0.0229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                      |                                                                                                                                          |                                                                                                                                                                     |

| 7. Se  | 0.0001 | I.0695 | 0.0001 | 0.0148 | 0.1653 | 0.0001 |
|--------|--------|--------|--------|--------|--------|--------|
| 8. Se  | 0.0884 | 0.0002 | 1.0695 | 0.0170 | 0.0000 | 0.0346 |
| 9. Se  | 0.0001 | 0.0140 | 0.0005 | 0.0148 | 0.1653 | 0.0001 |
| 10. Se | 0.0000 | 0.0001 | 0.0140 | 0.0170 | 0.0000 | 0.0346 |
| 11. Se | 0.0001 | 0.0000 | 0.0001 | 0.0170 | 0.0346 | 0.0000 |
| 12. Se | 0.0140 | 0.0001 | 0.0000 | 0.0148 | 0.0001 | 0.1653 |
| 13. Ag | 0.0170 | 0.0170 | 0.0148 | 0.0000 | 0.0031 | 0.0031 |
| 14. Ag | 0.0000 | 0.0346 | 0.0001 | 0.0031 | 0.0000 | 0.0000 |
| 15. Ag | 0.0346 | 0.0000 | 0.1653 | 0.0031 | 0.0000 | 0.0000 |
|        |        |        |        |        |        |        |

Summary of Natural Population Analysis:

|  | Natural | Popula | ation |
|--|---------|--------|-------|
|  |         |        |       |

| Atom | No | Natural<br>Charge | Core     | Valence  | Rydberg | Total    |
|------|----|-------------------|----------|----------|---------|----------|
| 1    | se | -0.04368          | 27.99931 | 5.98525  | 0.05911 | 34.04368 |
| 2    | se | 0.02905           | 27.99931 | 5.90451  | 0.06713 | 33.97095 |
| 3    | se | 0.18591           | 27.99931 | 5.76648  | 0.04831 | 33.81409 |
| 4    | se | 0.03567           | 27.99932 | 5.90741  | 0.05760 | 33.96433 |
| 5    | se | 0.02905           | 27.99931 | 5.90451  | 0.06713 | 33.97095 |
| 6    | se | -0.04368          | 27.99931 | 5.98525  | 0.05911 | 34.04368 |
| 7    | se | 0.03567           | 27.99932 | 5.90741  | 0.05760 | 33.96433 |
| 8    | se | 0.18591           | 27.99931 | 5.76648  | 0.04831 | 33.81409 |
| 9    | se | 0.03567           | 27.99932 | 5.90741  | 0.05760 | 33.96433 |
| 10   | se | 0.18591           | 27.99931 | 5.76648  | 0.04831 | 33.81409 |
| 11   | se | 0.18591           | 27.99931 | 5.76648  | 0.04831 | 33.81409 |
| 12   | se | 0.03567           | 27.99932 | 5.90741  | 0.05760 | 33.96433 |
| 13   | ag | 0.62977           | 7.99858  | 10.36047 | 0.01118 | 18.37023 |
| 14   | ag | 0.75659           | 7.99923  | 10.22338 | 0.02080 | 18.24341 |
| 15   | ag | 0.75659           | 7.99923  | 10.22338 | 0.02080 | 18.24341 |
|      |    |                   |          |          |         |          |

| * Total         | *       | 3.00000             | 359.9887                  | 9 101.2           | 8233              | 0.72888               | 462.00000         |
|-----------------|---------|---------------------|---------------------------|-------------------|-------------------|-----------------------|-------------------|
| For all         | atoms:  |                     |                           |                   |                   |                       |                   |
| Core            |         |                     | 359.98879(                | 99.9969%          | of 360            | ))                    |                   |
| Valence         |         |                     | 101.28233(                | 99.2964%          | of 102            | 2)                    |                   |
| Natural         | Minimal | Basis               | 461.27112(                | 99.8422%          | of 462            | 2)                    |                   |
| Natural         | Rydberg | Basis               | 0.72888(                  | 0.1578%           | of 462            | 2)                    |                   |
| *******         | ******  | * * * * * * * * * * | * * * * * * * * * * * *   | * * * * * * * * * | * * * * * * * * * | * * * * * * * * * * * | ********          |
| *               |         |                     |                           |                   |                   |                       | *                 |
| *               | ć       | atomic cha          | arges with m              | ulticente         | r correc          | ctions                | *                 |
| *               |         |                     |                           |                   |                   |                       | *                 |
| * * * * * * * * | ******  | * * * * * * * * * * | * * * * * * * * * * * * * | * * * * * * * * * | * * * * * * * *   | ********              | * * * * * * * * * |

| atom                                                                                           | charge                                                                                                               |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| atom<br>1 se<br>2 se<br>3 se<br>4 se<br>5 se<br>6 se<br>7 se<br>8 se<br>9 se<br>10 se<br>11 se | 0.1797<br>0.2410<br>0.1597<br>0.1293<br>0.2410<br>0.1797<br>0.1293<br>0.1597<br>0.1293<br>0.1597<br>0.1597<br>0.1597 |  |  |  |  |  |  |
| 12 se<br>13 ag                                                                                 | 0.1293<br>0.2806                                                                                                     |  |  |  |  |  |  |
| 11 se<br>12 se                                                                                 | 0.1597<br>0.1293                                                                                                     |  |  |  |  |  |  |
| 14 ag<br>15 ag                                                                                 | 0.3609                                                                                                               |  |  |  |  |  |  |
|                                                                                                |                                                                                                                      |  |  |  |  |  |  |

## $\underline{\text{Ag}}_2 \underline{\text{Se}}_6^{2+}$ (B)

Second Order Perturbation Theory Analysis of Fock Matrix in NBO Basis

Threshold for printing: 1.00 kcal/mol (Intermolecular threshold: 0.05 kcal/mol)

|      | ( 11 | LCCL | moreo  | urur c |   | .u 0.0 | 5 110 | <i>a</i> ± / mo ± / |         |        |       |          |           |         |
|------|------|------|--------|--------|---|--------|-------|---------------------|---------|--------|-------|----------|-----------|---------|
|      |      |      |        |        |   |        |       |                     | ( - 1 ) |        |       | E(Z)     | S(J)-E(1) | F(1,)   |
|      |      | Don  | or NBO | (1)    |   |        | Accep | tor NBO             | ()      |        |       | KCal/mol | a.u.      | a.u.    |
| ==== | ==== |      |        |        |   |        |       |                     |         | ====== | ===== |          |           | ======= |
| 100. | LP   | (    | 2)Se   | 1      |   | /132.  | RY*(  | 4)Se                | 1       |        |       | 1.19     | 0.82      | 0.029   |
| 100. | LP   | (    | 2)Se   | 1      |   | /398.  | BD*(  | 1)Se                | 2 -Se   | 5      |       | 3.30     | 0.34      | 0.031   |
| 100. | LP   | (    | 2)Se   | 1      |   | /400.  | BD*(  | 1)Se                | 4 -Se   | 6      |       | 3.30     | 0.34      | 0.031   |
| 102. | LP   | (    | 2)Se   | 2      |   | /189.  | RY*(  | 1)Se                | 3       |        |       | 1.66     | 0.75      | 0.033   |
| 102. | LP   | (    | 2)Se   | 2      |   | /249.  | RY*(  | 1)Se                | 5       |        |       | 2.67     | 0.75      | 0.041   |
| 102. | LP   | (    | 2)Se   | 2      |   | /396.  | BD*(  | 1)Se                | 1 -Se   | 5      |       | 9.95     | 0.20      | 0.040   |
| 102. | LP   | (    | 2)Se   | 2      |   | /399.  | BD*(  | 1)Se                | 3 -Se   | 6      |       | 6.63     | 0.24      | 0.036   |
| 104. | LP   | (    | 2)Se   | 3      |   | /398.  | BD*(  | 1)Se                | 2 -Se   | 5      |       | 3.01     | 0.29      | 0.027   |
| 104. | LP   | (    | 2)Se   | 3      |   | /400.  | BD*(  | 1)Se                | 4 -Se   | 6      |       | 3.01     | 0.29      | 0.027   |
| 106. | LP   | (    | 2)Se   | 4      |   | /279.  | RY*(  | 1)Se                | 6       |        |       | 1.01     | 0.88      | 0.028   |
| 106. | LP   | (    | 2)Se   | 4      |   | /396.  | BD*(  | 1)Se                | 1 -Se   | 5      |       | 3.52     | 0.25      | 0.027   |
| 106. | LP   | (    | 2)Se   | 4      |   | /399.  | BD*(  | 1)Se                | 3 -Se   | 6      |       | 3.61     | 0.29      | 0.029   |
| 108. | LP   | (    | 2)Se   | 5      |   | /159.  | RY*(  | 1)Se                | 2       |        |       | 1.01     | 0.88      | 0.028   |
| 108. | LP   | (    | 2)Se   | 5      |   | /395.  | BD*(  | 1)Se                | 1 -Se   | 4      |       | 3.52     | 0.25      | 0.027   |
| 108. | LP   | (    | 2)Se   | 5      |   | /397.  | BD*(  | 1)Se                | 2 -Se   | 3      |       | 3.61     | 0.29      | 0.029   |
| 110. | LP   | (    | 2)Se   | 6      |   | /189.  | RY*(  | 1)Se                | 3       |        |       | 1.66     | 0.75      | 0.033   |
| 110. | LP   | (    | 2)Se   | 6      |   | /219.  | RY*(  | 1)Se                | 4       |        |       | 2.67     | 0.75      | 0.041   |
| 110. | LP   | (    | 2)Se   | 6      |   | /395.  | BD*(  | 1)Se                | 1 -Se   | 4      |       | 9.95     | 0.20      | 0.040   |
| 110. | LP   | (    | 2)Se   | 6      |   | /397.  | BD*(  | 1)Se                | 2 -Se   | 3      |       | 6.62     | 0.24      | 0.036   |
| 9.   | CR   | (    | 3)Se   | 1      |   | /116.  | LP*(  | 6)Ag                | 7       |        |       | 1.27     | 10.63     | 0.108   |
| 9.   | CR   | (    | 3)Se   | 1      |   | /117.  | LP*(  | 7)Ag                | 7       |        |       | 2.02     | 10.77     | 0.132   |
| 99.  | LP   | (    | 1)Se   | 1      |   | /116.  | LP*(  | 6)Ag                | 7       |        |       | 3.53     | 0.76      | 0.048   |
| 99.  | LP   | (    | 1)Se   | 1      |   | /117.  | LP*(  | 7)Ag                | 7       |        |       | 2.69     | 0.90      | 0.044   |
| 100. | LP   | (    | 2)Se   | 1      |   | /116.  | LP*(  | 6)Ag                | 7       |        |       | 42.01    | 0.37      | 0.113   |
| 100. | LP   | (    | 2)Se   | 1      |   | /117.  | LP*(  | 7)Ag                | 7       |        |       | 1.30     | 0.52      | 0.024   |
| 100. | LP   | (    | 2)Se   | 1      |   | /312.  | RY*(  | 4)Ag                | 7       |        |       | 7.03     | 2.08      | 0.114   |
| 100. | LP   | (    | 2)Se   | 1      |   | /314.  | RY*(  | 6)Ag                | 7       |        |       | 4.82     | 3.03      | 0.114   |
| 100. | LP   | (    | 2)Se   | 1      |   | /316.  | RY*(  | 8)Ag                | 7       |        |       | 6.83     | 38.62     | 0.483   |
| 100. | LP   | (    | 2)Se   | 1      |   | /317.  | RY*(  | 9)Ag                | 7       |        |       | 1.90     | 2.82      | 0.069   |
| 100. | LP   | (    | 2)Se   | 1      |   | /318.  | RY*(  | 10)Ag               | 7       |        |       | 1.64     | 2.48      | 0.060   |
| 100. | LP   | (    | 2)Se   | 1      |   | /321.  | RY*(  | 13)Ag               | 7       |        |       | 2.28     | 1.55      | 0.056   |
| 100. | LP   | (    | 2)Se   | 1      |   | /322.  | RY*(  | 14)Ag               | 7       |        |       | 1.33     | 2.79      | 0.057   |
| 1.   | BD   | (    | 1)Se   | 1 -Se  | 4 | /128.  | LP*(  | 9)Ag                | 8       |        |       | 1.17     | 0.69      | 0.025   |
| 2.   | BD   | (    | 1)Se   | 1 -Se  | 5 | /128.  | LP*(  | 9)Ag                | 8       |        |       | 1.17     | 0.69      | 0.025   |
| 3.   | BD   | (    | 1)Se   | 2 -Se  | 3 | /125.  | LP*(  | 6)Ag                | 8       |        |       | 1.46     | 0.49      | 0.026   |
|      |      |      |        |        |   |        |       |                     |         |        |       |          |           |         |

| 3. BI   | D (        |   | 1)5            | Se 2         | 2 -Se  | 3 | /128.  | LP*(          | ( 9)     | ) Ag      | 8   | 1.81  | 0.68  | 0.031 |
|---------|------------|---|----------------|--------------|--------|---|--------|---------------|----------|-----------|-----|-------|-------|-------|
| 4. BI   | D (        | - | 1)5            | Se 2         | 2 -Se  | 5 | /125.  | LP*(          | 6        | ) Aa      | 8   | 1.30  | 0.51  | 0.025 |
| 1 01    |            | - | 1 ) 9          | 20 2         | 220    | 5 | /127   | T.D*/         | r g      | ) 7 a     | 8   | 1 15  | 0 62  | 0 024 |
| 4 DI    |            |   | L ) K<br>1 ) K |              |        | 5 | /12/.  |               |          | /Ag       | 0   | 1.13  | 0.02  | 0.024 |
| 4. BI   | D (        | - | L) 2           | se z         | 2-Se   | 5 | /128.  | ГЬν(          | 9        | ) Ag      | 8   | 1.39  | 0.70  | 0.028 |
| 5.BI    | D (        |   | 1)5            | Se 3         | 3 -Se  | 6 | /125.  | LP*(          | ( 6      | ) Ag      | 8   | 1.46  | 0.49  | 0.026 |
| 5. BI   | D (        | - | 1)5            | Se 3         | 3 -Se  | 6 | /128.  | LP*(          | ( 9      | ) Aq      | 8   | 1.81  | 0.68  | 0.031 |
| 6 BI    | рí         | - | 1)5            | Se 4         | -Se    | 6 | /125   | T.D*(         | 6        | ) A a     | 8   | 1 30  | 0 51  | 0 025 |
| 6 DI    |            |   | 1 ) 6          |              |        | 6 | /107   | TD*/          | ( O      | 119       | 0   | 1 1 5 | 0.51  | 0.023 |
| о. ы    | D (        | - | L ) a          | 58 4         | i -se  | 0 | /12/.  | ББ (          | 0        | Ag        | 0   | 1.15  | 0.02  | 0.024 |
| 6. BI   | D (        | - | L)S            | Se 4         | ł-Se   | 6 | /128.  | LP*(          | ( 9      | ) Ag      | 8   | 1.39  | 0.70  | 0.028 |
| 23. CI  | R (        | 1 | 3)5            | Se 2         | 2      |   | /128.  | LP*(          | ( 9)     | ) Ag      | 8   | 1.32  | 10.62 | 0.106 |
| 37. CI  | R (        | - | 3) 9           | Se 3         | 3      |   | /125   | T.P*(         | 6        | ) A a     | 8   | 3.48  | 10.69 | 0.185 |
| 37 01   | D (        |   | 2 1 9          | 20 3         | 2      |   | /126   | T.D*/         | . 7      | ) 7 a     | 8   | 3 58  | 10 81 | 0 177 |
| 37. CI  |            |   | 2 7 6          |              | )<br>\ |   | /120.  |               |          | /Ag       | 0   | 5.50  | 10.01 | 0.177 |
| 37. CI  | R (        | - | 3)2            | se s         | 5      |   | /128.  | ГЬν(          | 9        | ) Ag      | 8   | 2.59  | 10.88 | 0.150 |
| 51. CI  | R (        | 1 | 3)\$           | Se 4         | ł      |   | /125.  | LP*(          | ( 6)     | )Ag       | 8   | 2.64  | 10.64 | 0.161 |
| 51. CI  | R (        | 1 | 3)5            | Se 4         | ł      |   | /127.  | LP*(          | ( 8)     | ) Aq      | 8   | 2.44  | 10.75 | 0.145 |
| 51 CI   | R (        | - | z j s          | Se 4         | 1      |   | /128   | T.D*(         | 9        | ) A a     | 8   | 1 75  | 10 83 | 0 123 |
| 65 01   |            |   | $\frac{1}{2}$  |              | -      |   | /105   | TD*/          | c c      | 17.0      | 0   | 2.73  | 10 64 | 0 161 |
| 65. CI  | R (        | - | 5)2            |              | -      |   | /125.  | LP"           |          | Ag        | 0   | 2.04  | 10.04 | 0.101 |
| 65. CI  | R (        | _ | 3)5            | Se 5         | >      |   | /127.  | LP*(          | (8,      | ) Ag      | 8   | 2.44  | 10.75 | 0.145 |
| 65. CI  | R (        |   | 3)\$           | Se 5         | 5      |   | /128.  | LP*(          | ( 9)     | ) Ag      | 8   | 1.75  | 10.83 | 0.123 |
| 79. CI  | R (        | 1 | 3)5            | Se 6         | 5      |   | /128.  | LP*(          | ( 9      | ) Aq      | 8   | 1.32  | 10.62 | 0.106 |
|         | ъí         | _ | 1 ) (          | 20 1         |        |   | /125   | T.D*/         | 6        | ) Na      | 8   | 1 21  | 0 74  | 0 020 |
|         | F (        |   | L ) L<br>1 ) L |              | -      |   | /120.  |               | , 0      | /Ag       | 0   | 1.21  | 0.74  | 0.029 |
| 99. LI  | Р (        | - | L) 2           | se I         | _      |   | /128.  | ГЬν(          | 9        | ) Ag      | 8   | 1.34  | 0.92  | 0.031 |
| 101. LI | P (        |   | 1)5            | Se 2         | 2      |   | /125.  | LP*(          | ( 6      | ) Ag      | 8   | 1.77  | 0.75  | 0.035 |
| 101. LI | P (        | 1 | 1)5            | Se 2         | 2      |   | /128.  | LP*(          | ( 9)     | ) Ag      | 8   | 2.13  | 0.94  | 0.040 |
| 103 T.I | P (        | - | 1)5            |              | R      |   | /125   | T.D*(         | 6        | ) A a     | 8   | 7 05  | 0 74  | 0 069 |
| 103. LI | - (<br>- ( |   | 1 ) 6          |              | ,<br>, |   | /106   | TD*/          | , 7      | 119       | 0   | 6.30  | 0.71  | 0.005 |
| 103. 11 | P (        |   | L ) 2          | 58 3         | >      |   | /120.  | LР" (         |          | Ag        | 0   | 0.39  | 0.00  | 0.000 |
| 103. LI | P (        | - | L)S            | Se 3         | 3      |   | /128.  | LP*(          | ( 9      | ) Ag      | 8   | 3.48  | 0.93  | 0.051 |
| 104. LI | P (        | 2 | 2) 5           | Se 3         | 3      |   | /125.  | LP*(          | ( 6)     | ) Ag      | 8   | 36.01 | 0.30  | 0.095 |
| 104. LI | Р (        |   | 2.) 5          | Se 3         | 3      |   | /126.  | LP*(          | ( 7      | ) Aa      | 8   | 6.96  | 0.41  | 0.050 |
| 104 TI  | D (        |   | 2 1 9          | 20 3         | 2      |   | /128   | T.D*/         | r a      | ) 7 a     | 8   | 1 65  | 0 49  | 0 026 |
| 104. 11 | F (        |   | 2 / 5          |              | )<br>\ |   | /120.  |               |          | /Ag       | 0   | 1.05  | 0.49  | 0.020 |
| 104. LI | Р (        | 4 | 2)2            | se s         | 5      |   | /354.  | RY^(          | ( 3      | ) Ag      | 8   | 3.05  | 2.25  | 0.0// |
| 104. LI | P (        | 2 | 2)5            | Se 3         | 3      |   | /359.  | RY*(          | (8)      | ) Ag      | 8   | 3.73  | 41.74 | 0.368 |
| 105. LI | P (        | - | 1)5            | Se 4         | ł      |   | /125.  | LP*(          | ( 6      | ) Aq      | 8   | 5.65  | 0.77  | 0.063 |
| 105 T.I | Ρĺ         | - | 1)5            | Se 4         | 1      |   | /126   | T.D*(         | 7        | ) A a     | 8   | 1 82  | 0 88  | 0 036 |
| 105. LI | - (<br>- ( |   | 1 ) 6          |              | 1      |   | /107   | TD*/          | , ,      | 119       | 0   | 1.02  | 0.00  | 0.050 |
| 105. 11 | P (        |   | L ) 2          | 58 4         | t.     |   | /12/.  | LР" (         |          | Ag        | 0   | 4.42  | 0.07  | 0.055 |
| 105. LI | P (        | - | L)S            | Se 4         | Ł      |   | /128.  | LP*(          | ( 9      | ) Ag      | 8   | 2.47  | 0.95  | 0.043 |
| 106. LI | P (        | 2 | 2) 5           | Se 4         | Ł      |   | /125.  | LP*(          | ( 6)     | ) Ag      | 8   | 22.69 | 0.30  | 0.076 |
| 106. LI | Р (        |   | 2.) 5          | Se 4         | ł      |   | /126.  | LP*(          | ( 7      | ) Aa      | 8   | 1.45  | 0.41  | 0.022 |
| 106 11  | D (        |   | 2 1 9          | 20 /         | 1      |   | /127   | T.D*/         | r g      | ) 7 a     | 8   | 3 71  | 0 41  | 0 036 |
| 100. 11 | - (        |   | 2) L           |              | E .    |   | /12/.  |               |          | /Ag       | 0   | 5.71  | 0.41  | 0.050 |
| 106. LI | Р (        | 4 | 2)2            | se 4         | Ł      |   | /128.  | ГЬ. (         | ( 9      | ) Ag      | 8   | 1.03  | 0.49  | 0.021 |
| 106. LI | P (        | 2 | 2)8            | Se 4         | ł      |   | /354.  | RY*(          | ( 3)     | ) Ag      | 8   | 1.48  | 2.25  | 0.053 |
| 106. LI | P (        |   | 2) 5           | Se 4         | ł      |   | /359.  | RY*(          | ( 8)     | ) Aq      | 8   | 1.88  | 41.74 | 0.259 |
| 107 T.I | Ρĺ         | - | 1)5            |              | 5      |   | /125   | T.D*(         | 6        | ) A a     | 8   | 5 65  | 0 77  | 0 063 |
| 107. 1  | - (<br>- ( |   | 1 ) 6          |              | -      |   | /100   | TD+ /         | , ,      | ) 7       | 0   | 1.00  | 0.,,  | 0.005 |
| 107. Ц  | Р (        | - | L) 2           | se s         | 2      |   | /120.  | LP^(          | /        | ) Ag      | 8   | 1.82  | 0.88  | 0.036 |
| 107. LI | P (        |   | 1)5            | Se 5         | 5      |   | /127.  | LP*(          | (8)      | ) Ag      | 8   | 4.42  | 0.87  | 0.055 |
| 107. LI | P (        | 1 | 1)5            | Se 5         | 5      |   | /128.  | LP*(          | ( 9)     | ) Ag      | 8   | 2.47  | 0.95  | 0.043 |
| 108. LI | Р (        |   | 2.) 5          | Se 5         | 5      |   | /125.  | LP*(          | 6        | ) Aa      | 8   | 22.67 | 0.30  | 0.076 |
| 100 TI  | - 、<br>D ( |   | 2 1 0          |              |        |   | /126   | TD*/          | . 7      | ) 7 a     | 0   | 1 44  | 0 41  | 0 022 |
| 100. 11 | P (        | 4 | 2)2            |              | -      |   | /120.  |               |          | Ag        | 0   | 1.44  | 0.41  | 0.022 |
| T08. TI | Р (        | 4 | 2)2            | se s         | )      |   | /127.  | ГЬ.* (        | ( 8      | ) Ag      | 8   | 3.71  | 0.41  | 0.036 |
| 108. LI | P (        | 2 | 2) 5           | Se 5         | 5      |   | /128.  | LP*(          | (9)      | ) Ag      | 8   | 1.03  | 0.49  | 0.021 |
| 108. LI | P (        | 2 | 2)5            | Se 5         | 5      |   | /354.  | RY*(          | ( 3)     | ) Ag      | 8   | 1.48  | 2.25  | 0.053 |
| 108. TJ | P (        |   | 2.) 9          | Se 5         | 5      |   | /359   | RY*(          | 8        | ) Aa      | 8   | 1.88  | 41.74 | 0.259 |
| 109 1   | . (<br>р / | - | .,.<br>1 \ 0   |              | 5      |   | /125   | T.D*/         |          |           | g   | 1 77  | 0 75  | 0 035 |
| 100     | т. (       |   | エノネ<br>1 、・    |              | -      |   | /100   | ш <u>г" (</u> |          | , 79      | 0   | 1.//  | 0.75  | 0.035 |
| 109. Ц  | Р (        | - | L) 2           | se b         | )      |   | /128.  | ГЬν(          | 9        | ) Ag      | 8   | 2.13  | 0.94  | 0.040 |
| 116. LI | P*(        | 6 | 5)2            | Ag 7         | 7      |   | /132.  | RY*(          | ( 4      | )Se       | 1   | 2.98  | 0.45  | 0.112 |
| 116. LI | P*(        | 6 | 5)2            | Ag 7         | 7      |   | /133.  | RY*(          | ( 5)     | )Se       | 1   | 1.06  | 0.55  | 0.074 |
| 116. TJ | р*(        | e | 5)7            | λα 7         | 7      |   | /117.  | T.P*          | 7        | ) Aa      | 7   | 2.67  | 0.14  | 0.059 |
| 116 11  | - (<br>D*/ |   | 5 ) 7          | -g .<br>\a 7 | 7      |   | /110   | TD*/          | í a      | 170       | . 7 | 1 09  | 0 42  | 0 067 |
| 110. 11 | P ~ (      | , | 5 ) 1          | -19 /        |        |   | /119.  |               |          | Ag        | /   | 1.00  | 0.43  | 0.007 |
| 116. Ll | Р*(        | 6 | 5)]            | ₁g 7         | /      |   | /3⊥2.  | RX*(          | 4        | ) Ag      | 1   | 9.41  | 1.71  | 0.391 |
| 116. LI | P*(        | 6 | 5)1            | Ag 7         | 7      |   | /314.  | RY*(          | ( 6)     | ) Ag      | 7   | 6.16  | 2.66  | 0.394 |
| 116. LI | P*(        | e | 5),7           | Ag 7         | 7      |   | /316.  | RY*(          | ( 8      | ) Aa      | 7   | 7.67  | 38.24 | 1.670 |
| 116 1   | D*/        | , | 5 1 7          | λα 7         | 7      |   | /317   | RV*           | a a      | ) A a     | 7   | 2 4 9 | 2 45  | 0 240 |
| 116 71  | ~ (<br>D*′ |   | - ) F<br>- \ 7 | - <i>3 1</i> | 7      |   | /210   | DV+           | 10       | 1.1.5     | ,   | 2.10  | 0 11  | 0.210 |
| 110. LI | Р^(        | 6 | 5) F           | 4g /         |        |   | / 318. | KY^(          | τU.      | Ag        | /   | 2.16  | 2.11  | 0.208 |
| 116. LI | P*(        | 6 | 5)2            | Ag 7         | /      |   | /321.  | RY*(          | ( 13)    | ) Ag      | 7   | 3.46  | 1.17  | 0.196 |
| 116. LI | P*(        | 6 | 5)1            | Ag 7         | 7      |   | /322.  | RY*(          | ( 14)    | ) Ag      | 7   | 1.78  | 2.42  | 0.202 |
| 125. IJ | P*(        | f | 5)7            | Ad N         | 3      |   | /196.  | RY*           | ( 8      | )Se       | 3   | 1,39  | 0.59  | 0.069 |
| 125 1   | D* (       | 4 | 5 1 7          |              | 2      |   | /116   | T.D*/         | 6        | ) A C     | 7   | A EA  | 0 02  | 0 021 |
| 105 71  | + (<br>ה≁י |   | 5 ) £<br>5 \ 7 | <u>م</u> احب | ,<br>) |   | /100   | TD+ 1         |          | 179       | ,   |       | 0.03  | 0.021 |
| 105 LL  | r" (       | ť | ) ] E          | <u>-</u> y 8 | )<br>\ |   | / 120. | ⊔₽^(          | 9        | Ag        | ø   | 5.65  | 0.19  | 0.0// |
| 125. Ll | Р*(        | 6 | 5)]            | <i>i</i> a 8 | 5      |   | /354.  | RX*(          | 3        | ) Ag      | 8   | 5.22  | 1.95  | 0.243 |
| 125. LI | P*(        | 6 | 5)1            | 4g 8         | 3      |   | /355.  | RY*(          | ( 4)     | ) Ag      | 8   | 1.30  | 0.59  | 0.067 |
| 125. LI | P*(        | e | 5),            | Ag 8         | 3      |   | /359.  | RY*(          | ( 8      | ) Aa      | 8   | 6.70  | 41.44 | 1.271 |
| 125 11  | D*/        | , | 5 1 7          | ۵ م          | R      |   | 1368   | RV*           | 17       | ) A a     | 8   | 2 00  | 2 9 2 | 0 261 |
| LLI     | ~ \        |   | ~ , 1          | 0            |        |   | ,      | I             | <u> </u> | 1 + + - 1 | 0   | 2.99  | 5.74  | 0.201 |

Wiberg bond index matrix in the NAO basis:

|   | Atom | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      |
|---|------|--------|--------|--------|--------|--------|--------|--------|--------|
|   |      |        |        |        |        |        |        |        |        |
| 1 | . Se | 0.0000 | 0.0966 | 0.0103 | 0.9316 | 0.9317 | 0.0966 | 0.2996 | 0.0249 |
| 2 | . Se | 0.0966 | 0.0000 | 1.0111 | 0.0140 | 1.0672 | 0.0881 | 0.0194 | 0.0349 |
| 3 | . Se | 0.0103 | 1.0111 | 0.0000 | 0.0704 | 0.0704 | 1.0110 | 0.0017 | 0.2281 |
| 4 | . Se | 0.9316 | 0.0140 | 0.0704 | 0.0000 | 0.0751 | 1.0673 | 0.0135 | 0.1671 |
| 5 | . Se | 0.9317 | 1.0672 | 0.0704 | 0.0751 | 0.0000 | 0.0140 | 0.0135 | 0.1670 |
|   |      |        |        |        |        |        |        |        |        |

| 6<br>7<br>8                          | . Se<br>. Ag<br>. Ag             | e 0.09<br>9 0.29<br>9 0.02 | 966<br>996<br>249 | 0.0881<br>0.0194<br>0.0349                                                            | 1.0110<br>0.0017<br>0.2281                                         | 1.06<br>0.01<br>0.16                                              | 73     0.01       .35     0.01       .71     0.10                            | 140<br>135<br>670                                            | 0.0000<br>0.0194<br>0.0349                           | 0.0194<br>0.0000<br>0.0025                                           | 0.0349<br>0.0025<br>0.0000                                                                   |  |
|--------------------------------------|----------------------------------|----------------------------|-------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|
| Summ                                 | ary                              | of Nat                     | tura              | al Popula                                                                             | tion Ana                                                           | lysis                                                             | :<br>Natural                                                                 | Ρορι                                                         | ulation                                              |                                                                      |                                                                                              |  |
| Atom                                 | No                               |                            |                   | Natural<br>Charge                                                                     | Cor                                                                | `е                                                                | Vale                                                                         | ence                                                         | Ryc                                                  | lberg                                                                | Total                                                                                        |  |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | se<br>se<br>se<br>se<br>ag<br>ag | *                          |                   | -0.07543<br>0.18248<br>0.02339<br>0.04050<br>0.04056<br>0.18248<br>0.85302<br>0.75300 | 27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>7.9<br>7.9 | 99936<br>99930<br>9931<br>99932<br>99930<br>99930<br>9893<br>9923 | 6.00<br>5.70<br>5.91<br>5.90<br>5.90<br>5.70<br>10.1-<br>10.22               | 0941<br>6975<br>1125<br>0152<br>0147<br>6976<br>4128<br>2596 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 06666<br>04846<br>06604<br>05866<br>05865<br>04845<br>00678<br>02181 | 34.07543<br>33.81752<br>33.97661<br>33.95950<br>33.95944<br>33.81752<br>18.14698<br>18.24700 |  |
| For<br>Core<br>Vale<br>Natu<br>Natu  | all<br>nce<br>ral<br>ral         | atoms:<br>Minima<br>Rydber | :<br>al E<br>rg E | Basis<br>Basis                                                                        | 183.9940<br>55.6304<br>239.6244<br>0.3755                          | )8( 9<br>1( 9<br>9( 9<br>51(                                      | 9.9968%<br>9.3400%<br>9.8435%<br>0.1565%                                     | of<br>of<br>of<br>of                                         | 184)<br>56)<br>240)<br>240)                          | ******                                                               | ****                                                                                         |  |
| *<br>*<br>*<br>***                   | ****                             | * * * * * *                | at<br>****        | comic cha                                                                             | rges wit<br>*******                                                | h mul:                                                            | ticente:                                                                     | r co:                                                        | rrectior                                             | 15                                                                   | *<br>*<br>*                                                                                  |  |
|                                      |                                  |                            |                   | -                                                                                     | atom                                                               | <br>                                                              | charge                                                                       | <br>e                                                        |                                                      |                                                                      |                                                                                              |  |
|                                      |                                  |                            |                   | -                                                                                     | 1 se<br>2 se<br>3 se<br>4 se<br>5 se<br>6 se<br>7 ag<br>8 ag       |                                                                   | 0.3577<br>0.1626<br>0.2303<br>0.1456<br>0.1455<br>0.1626<br>0.4420<br>0.3538 |                                                              |                                                      |                                                                      |                                                                                              |  |

| $Ag_2Se_6(SO_2)_2^{2+}$ (1)                           |                                |         |        |      |     |       |
|-------------------------------------------------------|--------------------------------|---------|--------|------|-----|-------|
| Second Order Perturbation The                         | ory Analysis o                 | of Fock | Matrix | in N | 1B0 | Basis |
| Threshold for printing:<br>(Intermolecular threshold: | 1.00 kcal/mol<br>0.05 kcal/mol | L<br>L) |        |      |     |       |

\_ \_ \_ \_ \_\_\_

|           |          |       |        |       |        |        |      |       |   |        | E(2) E   | ¦(j)−E(i) | F(i,j) |
|-----------|----------|-------|--------|-------|--------|--------|------|-------|---|--------|----------|-----------|--------|
| D         | onor NBC | ) (i) |        |       | Accept | or NBO | (j)  |       |   |        | kcal/mol | a.u.      | a.u.   |
| ========  | =======  |       | ====== |       | ====== |        | ==== | ====: |   | ====== |          | =======   |        |
| 120. LP ( | 2)Se     | 1     |        | /167. | RY*(   | 7)Se   | 1    |       |   |        | 1.02     | 1.11      | 0.031  |
| 120. LP ( | 2)Se     | 1     |        | /600. | BD*(   | 1)Se   | 2    | -Se   | 5 |        | 2.65     | 0.31      | 0.026  |
| 120. LP ( | 2)Se     | 1     |        | /602. | BD*(   | 1)Se   | 4    | -Se   | 6 |        | 2.64     | 0.31      | 0.026  |
| 122. LP ( | 2)Se     | 2     |        | /221. | RY*(   | 1)Se   | 3    |       |   |        | 1.17     | 0.81      | 0.029  |
| 122. LP ( | 2)Se     | 2     |        | /281. | RY*(   | 1)Se   | 5    |       |   |        | 1.34     | 0.84      | 0.031  |
| 122. LP ( | 2)Se     | 2     |        | /598. | BD*(   | 1)Se   | 1    | -Se   | 5 |        | 4.33     | 0.26      | 0.031  |
| 122. LP ( | 2)Se     | 2     |        | /601. | BD*(   | 1)Se   | 3    | -Se   | 6 |        | 4.29     | 0.26      | 0.030  |
| 124. LP ( | 2)Se     | 3     |        | /227. | RY*(   | 7)Se   | 3    |       |   |        | 1.07     | 1.12      | 0.032  |
| 124. LP ( | 2)Se     | 3     |        | /600. | BD*(   | 1)Se   | 2    | -Se   | 5 |        | 2.58     | 0.31      | 0.026  |
| 124. LP ( | 2)Se     | 3     |        | /602. | BD*(   | 1)Se   | 4    | -Se   | 6 |        | 2.59     | 0.31      | 0.026  |
| 126. LP ( | 2)Se     | 4     |        | /161. | RY*(   | 1)Se   | 1    |       |   |        | 1.16     | 0.81      | 0.028  |
| 126. LP ( | 2)Se     | 4     |        | /311. | RY*(   | 1)Se   | 6    |       |   |        | 1.36     | 0.84      | 0.031  |
| 126. LP ( | 2)Se     | 4     |        | /598. | BD*(   | 1)Se   | 1    | -Se   | 5 |        | 4.33     | 0.26      | 0.031  |
| 126. LP ( | 2)Se     | 4     |        | /601. | BD*(   | 1)Se   | 3    | -Se   | 6 |        | 4.39     | 0.26      | 0.031  |
| 128. LP ( | 2)Se     | 5     |        | /161. | RY*(   | 1)Se   | 1    |       |   |        | 1.10     | 0.82      | 0.028  |
| 128. LP ( | 2)Se     | 5     |        | /191. | RY*(   | 1)Se   | 2    |       |   |        | 1.32     | 0.85      | 0.031  |
| 128. LP ( | 2)Se     | 5     |        | /597. | BD*(   | 1)Se   | 1    | -Se   | 4 |        | 4.09     | 0.27      | 0.030  |
| 128. LP ( | 2)Se     | 5     |        | /599. | BD*(   | 1)Se   | 2    | -Se   | 3 |        | 4.13     | 0.27      | 0.030  |
| 130. LP ( | 2)Se     | 6     |        | /221. | RY*(   | 1)Se   | 3    |       |   |        | 1.09     | 0.82      | 0.028  |
| 130. LP ( | 2)Se     | 6     |        | /251. | RY*(   | 1)Se   | 4    |       |   |        | 1.30     | 0.85      | 0.031  |
| 130. LP ( | 2)Se     | 6     |        | /597. | BD*(   | 1)Se   | 1    | -Se   | 4 |        | 4.04     | 0.27      | 0.030  |
| 130. LP ( | 2)Se     | 6     |        | /599. | BD*(   | 1)Se   | 2    | -Se   | 3 |        | 4.02     | 0.27      | 0.030  |
| 1. BD (   | 1)Se     | 1 -   | Se 4   | /136. | LP*(   | 6)Ag   | 7    |       |   |        | 1.96     | 0.50      | 0.030  |
| 1. BD (   | 1)Se     | 1 -   | Se 4   | /137. | LP*(   | 7)Ag   | 7    |       |   |        | 2.06     | 0.65      | 0.033  |
| 1. BD (   | 1)Se     | 1 -   | Se 4   | /138. | LP*(   | 8)Aq   | 7    |       |   |        | 1.65     | 0.62      | 0.029  |

| 2. BD              | ( 1)Se       | 1 -Se  | 5      | /136.           | LP*(            | 6)A   | .g 7       | 1.86         | 0.49  | 0.029 |
|--------------------|--------------|--------|--------|-----------------|-----------------|-------|------------|--------------|-------|-------|
| 2. BD              | ( 1)Se       | 1 -Se  | 5      | /137.           | LP*(            | 7) A  | a 7        | 2.10         | 0.65  | 0.034 |
| 2 BD               | ( 1)Se       | 1 -Se  | 5      | /138            | T.D*(           | 8) 4  | a 7        | 1 65         | 0 62  | 0 029 |
| 2.00               | ( 1)50       | 2 50   | 2      | /126            |                 | 6)7   | , g<br>, 7 | 1 12         | 0.02  | 0.022 |
| з. вD<br>Э. рр     | ( 1)50       | 2 - 30 | 2      | /130.           |                 | 0)A   | g /        | 1.12         | 0.50  | 0.023 |
| 3. BD              | ( I)se       | z -se  | 3      | /13/.           | ГЬ↓(            | /)A   | g /        | 2.05         | 0.65  | 0.033 |
| 4. BD              | ( 1)Se       | 2 -Se  | 5      | /136.           | LP*(            | 6)A   | .g 7       | 1.47         | 0.50  | 0.026 |
| 4. BD              | ( 1)Se       | 2 -Se  | 5      | /137.           | LP*(            | 7)A   | .g 7       | 2.17         | 0.65  | 0.034 |
| 4. BD              | ( 1)Se       | 2 -Se  | 5      | /139.           | LP*(            | 9)A   | .g 7       | 1.29         | 0.60  | 0.025 |
| 5. BD              | ( 1)Se       | 3 -Se  | 6      | /136.           | LP*(            | 6)A   | a 7        | 1.16         | 0.49  | 0.023 |
| 5 80               | ( 1) 50      | 3 - 50 | 6      | /137            | T.D*/           | 7)7   | a 7        | 2 00         | 0 65  | 0 033 |
| 5. DD              | ( 1)00       | 1 50   | 6      | /106            | TD* (           | ()A   | ~ 7        | 1.60         | 0.05  | 0.000 |
| 6. BD              | ( 1)50       | 4 -Se  | 0      | /130.           | LP" (           | 0)A   | .g /       | 1.60         | 0.50  | 0.02/ |
| 6. BD              | ( I)Se       | 4 -Se  | 6      | /137.           | ГЬ.* (          | 7)A   | g 7        | 2.09         | 0.65  | 0.034 |
| 6. BD              | ( 1)Se       | 4 -Se  | 6      | /139.           | LP*(            | 9)A   | .g 7       | 1.48         | 0.60  | 0.027 |
| 15. CR             | ( 3)Se       | 1      |        | /136.           | LP*(            | 6)A   | .g 7       | 4.20         | 10.67 | 0.204 |
| 15. CR             | ( 3)Se       | 1      |        | /137.           | LP*(            | 7)A   | .q 7       | 2.77         | 10.82 | 0.158 |
| 15. CR             | ( 3)Se       | 1      |        | /138            | T.P*(           | 8)A   | a 7        | 5,30         | 10.79 | 0.216 |
| 20 CP              | ( 3)50       | 2      |        | /136            | T.D*/           | 6)7   | a 7        | 2 36         | 10 62 | 0 152 |
| 20. CR             |              | 2      |        | /100.           | TD* (           | 0/A   | ~ 7        | 2.50         | 10.02 | 0.152 |
| 29. CR             | ( 3)30       | 4      |        | /13/.           |                 | /)A   | g /        | 3.10         | 10.77 | 0.107 |
| 29. CR             | ( 3)Se       | 2      |        | /139.           | ГЬν(            | 9)A   | g /        | 2.51         | 10.73 | 0.148 |
| 43. CR             | ( 3)Se       | 3      |        | /137.           | LP*(            | 7)A   | .g 7       | 1.17         | 10.83 | 0.103 |
| 57. CR             | ( 3)Se       | 4      |        | /137.           | LP*(            | 7)A   | .g 7       | 1.30         | 10.77 | 0.108 |
| 71. CR             | ( 3)Se       | 5      |        | /137.           | LP*(            | 7)A   | g 7        | 1.33         | 10.78 | 0.109 |
| 85. CR             | ( 3)Se       | 6      |        | /136.           | LP*(            | 6)A   | .a 7       | 2.59         | 10.63 | 0.160 |
| 85 CR              | ( 3)50       | 6      |        | /137            | T.D*(           | 7) 4  | a 7        | 2 95         | 10 78 | 0 163 |
| QE CD              | ( 2)50       | 6      |        | /120            | TD*/            | 0.)7  |            | 2.20         | 10 72 | 0 166 |
| 110 ID             | ( 3)5e       | 0      |        | /139.           |                 | 9)A   | .g /       | 2.70         | 10.73 | 0.155 |
| 119. LP            | ( I)se       | 1      |        | /136.           | ∟₽^(            | 6)A   | g /        | 7.69         | 0.73  | 0.072 |
| 119. LP            | ( I)Se       | T      |        | /137.           | ГЬ.* (          | 7)A   | g 7        | 3.30         | 0.88  | 0.049 |
| 119. LP            | ( 1)Se       | 1      |        | /138.           | LP*(            | 8)A   | .g 7       | 9.62         | 0.85  | 0.081 |
| 120. LP            | ( 2)Se       | 1      |        | /136.           | LP*(            | 6)A   | g 7        | 41.83        | 0.31  | 0.105 |
| 120. LP            | ( 2)Se       | 1      |        | /137.           | LP*(            | 7)A   | .a 7       | 3.23         | 0.46  | 0.035 |
| 120 T.P            | ( 2)Se       | 1      |        | /138            | T.D*(           | 814   | a 7        | 8 64         | 0 43  | 0 056 |
| 120. LD            | ( 2)50       | 1      |        | /345            | DV*/            | 5)7   | a 7        | 1 72         | 2 5 2 | 0.050 |
| 120. DF            | ( 2)30       | 1      |        | /343.           | DV+ (           | J/A   | .g /       | 1.72         | 2.52  | 0.002 |
| 120. LP            | ( Z)Se       | 1      |        | /350.           | RI^(            | IU)A  | g /        | 1.78         | 3.14  | 0.070 |
| 120. LP            | ( 2)Se       | 1      |        | /351.           | RY*(            | 11)A  | .g 7       | 1.39         | 3.69  | 0.067 |
| 120. LP            | ( 2)Se       | 1      |        | /352.           | RY*(            | 12)A  | .g 7       | 2.82         | 4.45  | 0.105 |
| 120. LP            | ( 2)Se       | 1      |        | /353.           | RY*(            | 13)A  | .g 7       | 2.39         | 5.16  | 0.104 |
| 120. LP            | ( 2)Se       | 1      |        | /357.           | RY*(            | 17)A  | .g 7       | 3.59         | 34.19 | 0.327 |
| 121. LP            | ( 1)Se       | 2      |        | /136.           | LP*(            | 6)A   | g 7        | 5.32         | 0.76  | 0.061 |
| 121. LP            | ( 1)Se       | 2      |        | /137.           | LP*(            | 7)A   | g 7        | 4.45         | 0.91  | 0.058 |
| 121. LP            | ( 1)Se       | 2      |        | /138.           | LP*(            | 8)A   | a 7        | 1.57         | 0.88  | 0.033 |
| 121. LP            | ( 1)Se       | 2      |        | /139.           | LP*(            | 9)A   | a 7        | 5.09         | 0.87  | 0.059 |
| 122 T.P            | ( 2)Se       | 2      |        | /136            | T.D*(           | 6) 4  | a 7        | 20 22        | 0 27  | 0 068 |
| 122. LL<br>122. LD | ( 2)50       | 2      |        | /137            | T.D*/           | 7)7   | a 7        | 3 72         | 0.42  | 0.036 |
| 122. DF            | ( 2)30       | 2      |        | /13/.           |                 |       | .g /       | 1 47         | 0.42  | 0.030 |
| 122. LP<br>100. ID |              | 2      |        | /130.           | LР" (           | 0)A   | g /        | 1.4/         | 0.39  | 0.022 |
| 122. LP            | ( Z)Se       | 2      |        | /139.           | ∟₽^(            | 9)A   | g /        | 4.30         | 0.38  | 0.037 |
| 122. LP            | ( 2)Se       | 2      |        | /353.           | RY*(            | 13)A  | .g 7       | 1.23         | 5.11  | 0.074 |
| 122. LP            | ( 2)Se       | 2      |        | /357.           | RY*(            | 17)A  | .g 7       | 1.24         | 34.15 | 0.191 |
| 123. LP            | ( 1)Se       | 3      |        | /137.           | LP*(            | 7)A   | .g 7       | 1.48         | 0.88  | 0.033 |
| 125. LP            | ( 1)Se       | 4      |        | /136.           | LP*(            | 6)A   | .g 7       | 1.34         | 0.76  | 0.030 |
| 125. LP            | ( 1)Se       | 4      |        | /137.           | LP*(            | 7)A   | a 7        | 1.81         | 0.91  | 0.037 |
| 125. LP            | ( 1)Se       | 4      |        | /139            | T.P*(           | 9)A   | a 7        | 1.02         | 0.87  | 0.027 |
| 127 LD             | ( 1) Se      | 5      |        | /136            | T.D*/           | 6)7   | a 7        | 1 25         | 0.76  | 0 029 |
| 127. LP            | ( 1)Se       | 5      |        | /130.           |                 | 0)A   | .g /       | 1.25         | 0.70  | 0.029 |
| 127. LP            | ( 1)50       | 5      |        | /15/.           | LP" (           | /)A   | .g /       | 1.02         | 0.91  | 0.037 |
| 129. LP            | ( I)Se       | 6      |        | /136.           | ГЬ.* (          | 6)A   | .g 7       | 5.64         | 0.76  | 0.062 |
| 129. LP            | ( 1)Se       | 6      |        | /137.           | LP*(            | 7)A   | .g 7       | 4.10         | 0.91  | 0.055 |
| 129. LP            | ( 1)Se       | 6      |        | /138.           | LP*(            | 8)A   | .g 7       | 1.78         | 0.88  | 0.035 |
| 129. LP            | ( 1)Se       | 6      |        | /139.           | LP*(            | 9)A   | .g 7       | 5.41         | 0.86  | 0.061 |
| 130. LP            | ( 2)Se       | 6      |        | /136.           | LP*(            | 6)A   | a 7        | 22.78        | 0.28  | 0.073 |
| 130 T.P            | ( 2)Se       | 6      |        | /137            | T.D*(           | 7) Δ  | a 7        | 3 57         | 0 43  | 0 035 |
| 130 LD             | ( 2)50       | 6      |        | /138            | T.D*/           | 8)7   | a 7        | 1 78         | 0.10  | 0.033 |
| 130. DF            | ( 2)30       | C C    |        | /130.           |                 | 0)A   | .g /       | 1.70         | 0.40  | 0.024 |
| 130. LP            |              | 0      |        | /159.           | LP" (           | 9)A   | .g /       | 4.57         | 0.30  | 0.030 |
| 130. ЦР            | ( 2)Se       | 6      |        | /353.           | RY*(            | )A    | g 7        | 1.49         | 5.12  | 0.081 |
| 130. LP            | ( 2)Se       | 6      |        | /357.           | RY*(            | 17)A  | .g 7       | 1.48         | 34.15 | 0.209 |
| 1. BD              | ( 1)Se       | 1 -Se  | 4      | /145.           | LP*(            | 6)A   | .g 8       | 1.09         | 0.49  | 0.022 |
| 1. BD              | ( 1)Se       | 1 -Se  | 4      | /146.           | LP*(            | 7)A   | g 8        | 2.03         | 0.65  | 0.033 |
| 2. BD              | ( 1)Se       | 1 -Se  | 5      | /145.           | LP*(            | 6)A   | a 8        | 1.13         | 0.49  | 0.023 |
| 2 BD               | ( 1)Se       | 1 -Se  | 5      | /146            | T.D*(           | 7) Δ  | a 8        | 1 96         | 0 65  | 0 032 |
| ידי<br>קים 2       | $(1) c_{0}$  | 2 _ 60 | 2      | /145            | \<br>T.D*/      | ۲, /A | - <u> </u> | 1 06         | 0.40  | 0 030 |
| עם .נ<br>סיס ג     | ( 1)0-       | 2 -26  | с<br>С | /140.           | пъ. (<br>пъ. (  | 0 / A | .y 0       | 1.90         | 0.49  | 0.030 |
| 3. BD              | ( <u>1)5</u> | ∠ -5e  | 5      | / 140.          | пьь. (          | /)A   | y x        | 2.10         | 0.05  | 0.034 |
| 3. BD              | ( L)Se       | ∠ -Se  | 3      | /14/.           | ⊔Р, (           | 8)A   | 'a 8       | 1.64         | 0.62  | 0.029 |
| 4. BD              | ( 1)Se       | 2 -Se  | 5      | /145.           | LP*(            | 6)A   | 'a 8       | 1.57         | 0.50  | 0.027 |
| 4. BD              | ( 1)Se       | 2 -Se  | 5      | /146.           | LP*(            | 7)A   | .g 8       | 2.07         | 0.65  | 0.033 |
| 4. BD              | ( 1)Se       | 2 -Se  | 5      | /148.           | LP*(            | 9)A   | 'a 8       | 1.49         | 0.60  | 0.027 |
| 5. BD              | ( 1)Se       | 3 -Se  | 6      | /145.           | LP*(            | 6)A   | d 8        | 1.86         | 0.49  | 0.029 |
| 5. BD              | ( 1)Se       | 3 -Se  | 6      | /146            | LP*(            | 7) Δ  | a 8        | 2.15         | 0.65  | 0.034 |
| 5. RD              | ( 1)Se       | 3 - 50 | б      | /147            | T.P*/           | 812   | a 8        | 1 63         | 0 62  | 0 028 |
| - כם<br>הים        | ( 1)00       | 4 - 90 | ĥ      | /145            | (<br>T.D*/      | 6 ) A | ., Q       | 1 / 5        | 0 50  | 0.020 |
| - LC<br>- LC       | ( 1)00       | 1 00   | c      | / ±=J.<br>/1//C | T.D.+ (         | 0/A   | -          | 1.40<br>0 10 | 0.50  | 0.020 |
|                    | ( 1)0-       | 1 -50  | c<br>c | /140.           | יאתד (<br>דרא י |       | y o        | 2.18         | 0.05  | 0.034 |
| 0. BD              | ( 1)50       | 4 -Se  | ю      | / 148.          | тът,<br>тът,    | 9)A   | y x        | 1.2/         | 10.00 | 0.025 |
| 15. CR             | ( 3)Se       | 1      |        | /146.           | ⊥Р*(            | /)A   | ng g       | 1.15         | 10.82 | 0.102 |
| 29. CR             | ( 3)Se       | 2      |        | /146.           | ⊔Р, (           | 7)A   | 'a 8       | 1.31         | TO'   | 0.108 |
| 43. CR             | ( 3)Se       | 3      |        | /145.           | LP*(            | 6)A   | .g 8       | 4.24         | 10.68 | 0.205 |

| 43.  | CR          | ( 3)       | )Se          | 3        |    | /146.     | LP*(                | 7)A                                                   | g        | 8      | 2.8          | 5 10.83            | 0.161 |
|------|-------------|------------|--------------|----------|----|-----------|---------------------|-------------------------------------------------------|----------|--------|--------------|--------------------|-------|
| 43.  | CR          | ( 3)       | )Se          | 3        |    | /147.     | LP*(                | 8)A                                                   | a        | 8      | 5.3          | 1 10.80            | 0.216 |
| 57   | CR          | ( 3)       | ) Se         | 4        |    | /145      | T.D*(               | 6) 4                                                  | a        | 8      | 2 3          | 2 10 62            | 0 151 |
| 57.  | CP          | ( )        | 100          | 1        |    | /145.     | TD* (               | 7)7                                                   | .9<br>.7 | 0      | 2.5          | 1 10.02            | 0.151 |
| 57.  | CR          | ( )        | ) Se         | 4        |    | /140.     |                     | /)A                                                   | g        | 0      | 3.1.<br>2.4  | 1 10.77            | 0.107 |
| 5/.  | CR          | ( 3,       | )se          | 4        |    | /148.     | ∟₽^(                | 9)A                                                   | .g       | 8      | 2.4          | 4 10.73            | 0.145 |
| 71.  | CR          | ( 3)       | )Se          | 5        |    | /145.     | LP*(                | 6)A                                                   | g        | 8      | 2.5          | 2 10.62            | 0.157 |
| 71.  | CR          | (3)        | )Se          | 5        |    | /146.     | LP*(                | 7)A                                                   | g        | 8      | 2.9          | 0 10.78            | 0.161 |
| 71.  | CR          | ( 3)       | )Se          | 5        |    | /148.     | LP*(                | 9)A                                                   | g        | 8      | 2.7          | 7 10.73            | 0.155 |
| 85.  | CR          | ( 3)       | )Se          | 6        |    | /146.     | LP*(                | 7)A                                                   | g        | 8      | 1.3          | 6 10.78            | 0.111 |
| 119  | T.P         | ( 1        | ) Se         | 1        |    | /146      | T.D*(               | 7) 4                                                  | a        | 8      | 1 4          | 5 0.88             | 0 032 |
| 101  |             | ( <u> </u> | 100          | 2        |    | /146.     | TD* (               | 6)7                                                   | .9<br>.7 | 0      | 1 2          | 2 0.00             | 0.032 |
| 101  | LP          |            | 150          | 4        |    | /145.     |                     | 0)A                                                   | g        | 0      | 1.3.         | 3 0.70             | 0.030 |
| 121. | ΓЬ          | ( 1)       | )Se          | 2        |    | /146.     | ∟Р*(                | 7)A                                                   | g        | 8      | 1.8          | 2 0.91             | 0.037 |
| 121. | LP          | ( 1)       | )Se          | 2        |    | /148.     | LP*(                | 9)A                                                   | g        | 8      | 1.03         | 2 0.87             | 0.027 |
| 123. | LP          | ( 1)       | )Se          | 3        |    | /145.     | LP*(                | 6)A                                                   | g        | 8      | 7.7          | 2 0.73             | 0.072 |
| 123. | LP          | ( 1)       | )Se          | 3        |    | /146.     | LP*(                | 7)A                                                   | q        | 8      | 3.3          | 9 0.88             | 0.050 |
| 123. | LP          | ( 1)       | )Se          | 3        |    | /147.     | LP*(                | 8)A                                                   | a        | 8      | 9.6          | 2 0.85             | 0.081 |
| 124  | т D         | ( )        | 150          | 2        |    | /1/5      | TD*/                | 6)7                                                   |          | 0      | 12 61        | E 0.00             | 0 106 |
| 104  |             | ( 2)       | ) De         | 2        |    | /140      | TD+ (               | 0/A                                                   | 9        | 0      | 72.0.        | J 0.JI             | 0.100 |
| 124. | ЦΡ          |            | )se          | 5        |    | /140.     | LP" (               | /)A                                                   | g        | 0      | 5.5          | 4 0.40             | 0.030 |
| 124. | ΓЬ          | ( 2)       | )Se          | 3        |    | /147.     | ∟Р*(                | 8)A                                                   | g        | 8      | 8.6          | 5 0.44             | 0.057 |
| 124. | LP          | (2)        | )Se          | 3        |    | /388.     | RY*(                | 5)A                                                   | g        | 8      | 1.74         | 4 2.48             | 0.061 |
| 124. | LP          | ( 2)       | )Se          | 3        |    | /392.     | RY*(                | 9)A                                                   | g        | 8      | 1.6          | 8 2.96             | 0.066 |
| 124. | LP          | ( 2)       | )Se          | 3        |    | /394.     | RY*(                | 11)A                                                  | q        | 8      | 1.43         | 1 3.71             | 0.068 |
| 124. | LP          | ( 2)       | )Se          | 3        |    | /395.     | RY*(                | 12)A                                                  | a        | 8      | 2.8          | 9 4.39             | 0.105 |
| 124  | T.D         | ( 2        | ) 50         | 3        |    | /396      | DV*(                | 13) Δ                                                 | a        | 8      | 2 6          | 0 5 3 5            | 0 110 |
| 104  |             | ( 2)       |              | 2        |    | / 3 5 0 . | DV*/                | 17)7                                                  | .9       | 0      | 2.0          | 1 22 00            | 0.110 |
| 124. | ЦΡ          |            | )se          | 5        |    | /400.     | RI" (               | L/JA                                                  | g        | 0      | 5.7.         | 1 33.99            | 0.332 |
| 125. | ЦΡ          | ( <u> </u> | )se          | 4        |    | /145.     | ГЬν(                | 6)A                                                   | .g       | 8      | 5.20         | 6 0.76             | 0.060 |
| 125. | LР          | ( 1)       | )Se          | 4        |    | /146.     | LP*(                | 7)A                                                   | g        | 8      | 4.4          | / 0.91             | 0.058 |
| 125. | LP          | ( 1)       | )Se          | 4        |    | /147.     | LP*(                | 8)A                                                   | .g       | 8      | 1.6          | 7 0.88             | 0.034 |
| 125. | LP          | ( 1)       | )Se          | 4        |    | /148.     | LP*(                | 9)A                                                   | g        | 8      | 4.9          | 5 0.87             | 0.058 |
| 126  | T.P         | (2)        | )Se          | 4        |    | /145      | T.P*(               | 6)A                                                   | a        | 8      | 19.8         | 8 0.27             | 0.068 |
| 126  | T.D         | ( 2)       | ) 50         | 4        |    | /146      | T.D*(               | 7) ۵                                                  | a<br>a   | 8      | 3 7          | 0 0 42             | 0 036 |
| 106  |             | ( 2)       |              | 1        |    | /147      | TD* (               |                                                       | .9<br>~  | 0      | 1 5.7        | 4 0.12             | 0.000 |
| 120. | ЦΡ          |            | )se          | 4        |    | /14/.     | LP" (               | 0)A                                                   | .g       | 0      | 1.5          | 4 0.39             | 0.023 |
| 126. | ΓЬ          | ( 2)       | )Se          | 4        |    | /148.     | ∟Р*(                | 9)A                                                   | g        | 8      | 4.14         | 4 0.38             | 0.036 |
| 126. | LP          | (2)        | )Se          | 4        |    | /396.     | RY*(                | 13)A                                                  | g        | 8      | 1.2          | 6 5.30             | 0.076 |
| 126. | LP          | ( 2)       | )Se          | 4        |    | /400.     | RY*(                | 17)A                                                  | g        | 8      | 1.2          | 1 33.95            | 0.188 |
| 127. | LP          | ( 1)       | )Se          | 5        |    | /145.     | LP*(                | 6)A                                                   | g        | 8      | 5.5          | 5 0.76             | 0.062 |
| 127  | T.P         | ( 1        | )Se          | 5        |    | /146      | T.P*(               | 7)A                                                   | a        | 8      | 4.04         | 4 0.91             | 0.055 |
| 127  | T.D         | ( 1)       | ) 50         | 5        |    | /147      | T.D*(               | 8) 2                                                  | a<br>a   | 8      | 1 7          | 4 0.88             | 0 035 |
| 107  |             | ( <u> </u> | 100          | 5        |    | /1/0      |                     |                                                       | .9<br>.7 | 0      | <b>I</b> ./* | 2 0.00             | 0.055 |
| 127. | ЦΡ          | ( <u> </u> | )se          | 5        |    | /140.     | LP" (               | 9)A                                                   | .g       | 0      | 5.4          | 5 0.00             | 0.061 |
| 128. | ΓЪ          | (2)        | )Se          | 5        |    | /145.     | ∟Р*(                | 6)A                                                   | g        | 8      | 22.0         | 6 0.27             | 0.072 |
| 128. | LP          | (2)        | )Se          | 5        |    | /146.     | LP*(                | 7)A                                                   | .g       | 8      | 3.4          | 7 0.42             | 0.035 |
| 128. | LP          | (2)        | )Se          | 5        |    | /147.     | LP*(                | 8)A                                                   | g        | 8      | 1.7          | 1 0.39             | 0.024 |
| 128. | LP          | ( 2)       | )Se          | 5        |    | /148.     | LP*(                | 9)A                                                   | g        | 8      | 4.5          | 3 0.38             | 0.038 |
| 128. | LP          | ( 2)       | )Se          | 5        |    | /396.     | RY*(                | 13)A                                                  | a        | 8      | 1.4          | 4 5.31             | 0.081 |
| 128  | T.P         | (2)        | )Se          | 5        |    | /400      | RY*(                | 17)A                                                  | a        | 8      | 1.4          | 1 33.95            | 0.203 |
| 120. | TD          | ( 1)       | ) Co         | 6        |    | /145      | T.D*/               | 6)7                                                   | a<br>a   | 8      | 1 21         | 5 0 76             | 0 020 |
| 120  |             | ( <u> </u> | ) C c        | 6        |    | /145.     |                     | 0/A                                                   | g        | 0      | 1.2.         | 5 0.70<br>6 0.01   | 0.029 |
| 129. | LP          |            | )se          | 0        |    | /140.     | LР" (               | /)A                                                   | g        | 0      | 1.0          | 0.91               | 0.037 |
| 136. | ΓЬ <b>*</b> | ( 6)       | ) Ag         | 7        |    | /165.     | RY*(                | 5)5                                                   | e        | 1      | 1.60         | 0 0.60             | 0.074 |
| 136. | LP*         | (6)        | ) Ag         | 7        |    | /167.     | RY*(                | 7)S                                                   | e        | 1      | 1.68         | 8 0.80             | 0.088 |
| 136. | LP*         | ( 6)       | ) Ag         | 7        |    | /137.     | LP*(                | 7)A                                                   | g        | 7      | 2.1          | 7 0.15             | 0.037 |
| 136. | LP*         | ( 6)       | ) Ag         | 7        |    | /345.     | RY*(                | 5)A                                                   | g        | 7      | 3.14         | 4 2.21             | 0.199 |
| 136. | LP*         | ( 6)       | ) Aq         | 7        |    | /350.     | RY*(                | 10)A                                                  | a        | 7      | 3.3          | 9 2.82             | 0.233 |
| 136  | T.P*        | 6          | ) Aa         | 7        |    | /351      | RY*(                | 11)A                                                  | a        | 7      | 2.3          | 5 3.38             | 0.212 |
| 136  | T.D*        | 6          | ) <b>A</b> a | 7        |    | /352      | DV*(                | 12) Δ                                                 | a<br>a   | 7      | 4 5          | 0 4 1 3            | 0 325 |
| 126  |             |            | ) A g        | 7        |    | /252.     | DV*/                | 12)7                                                  | .9<br>.7 | 7      | -1.J         | 6 1.13             | 0.323 |
| 130. | LP          |            | /Ag          | /        |    | /353.     | RI" (               | 15/A                                                  | g        | 7      | 5.00         | 0 4.04             | 0.374 |
| 136. | LР^         | ( 6,       | ) Ag         | /        |    | /355.     | RY^(                | 15)A                                                  | .g       | 1      | 1.6          | 9 2.46             | 0.154 |
| 136. | LP*         | (6)        | ) Ag         | 1        |    | /357.     | кү*(                | 17)A                                                  | g        | /      | 5.20         | o 33.88            | 1.007 |
| 136. | LP*         | ( 6)       | ) Ag         | 7        |    | /146.     | LP*(                | 7)A                                                   | .g       | 8      | 3.0          | 6 0.15             | 0.044 |
| 136. | LP*         | ( 6)       | ) Ag         | 7        |    | /486.     | RY*(                | 1)                                                    | 0 1      | 1      | 1.1          | 7 0.96             | 0.079 |
| 145. | LP*         | ( 6        | ) Aq         | 8        |    | /225.     | RY*(                | 5)S                                                   | е        | 3      | 1.64         | 4 0.60             | 0.075 |
| 145  | LP*         | ( 6        | ) Aa         | 8        |    | /227      | RY*(                | 7).5                                                  | е        | 3      | 1.7          | 3 0.80             | 0.089 |
| 145  | T.D*        | 6          | ) <b>A</b> a | 8        |    | /137      | T.D*(               | 7) ۵                                                  | a        | 7      | 3 0          | 2 0 1 5            | 0 044 |
| 1/5  | тр*         |            | ) 7~         | 8        |    | /1//      | TD* (               | , , <u>,</u><br>, , , , , , , , , , , , , , , , , , , | -3<br>-7 | 8      | 0.0.<br>0 1  | 2 0.15             |       |
| 145. | ЦР"<br>ТР"  |            | Ag           | 0        |    | /140.     | LP" (               | /)A                                                   | g        | 0      | 2.1.         | 5 0.15             | 0.037 |
| 145. | ЦΡ^         | ( 6,       | ) Ag         | 8        |    | /388.     | RY^(                | 5)A                                                   | .g       | 8      | 3.0          | / 2.1/             | 0.195 |
| 145. | ⊥Р*         | (6)        | ) Ag         | ъ<br>В   |    | /392.     | кү*(                | 9)A                                                   | g        | ö      | 3.1          | 2 2.64             | 0.216 |
| 145. | LP*         | ( 6)       | ) Ag         | 8        |    | /394.     | RY*(                | 11)A                                                  | g        | 8      | 2.3          | 5 3.39             | 0.213 |
| 145. | LP*         | ( 6)       | ) Ag         | 8        |    | /395.     | RY*(                | 12)A                                                  | g        | 8      | 4.3          | 9 4.08             | 0.319 |
| 145. | LP*         | ( 6        | ) Aq         | 8        |    | /396.     | RY*(                | 13)A                                                  | g        | 8      | 5.24         | 4 5.03             | 0.387 |
| 145  | LP*         | ( 6        | ) Aa         | 8        |    | /398      | RY*(                | 15)A                                                  | a        | 8      | 1.30         | 0 2.39             | 0.133 |
| 145  | T.D*        | ( 6)       | ,5<br>λα     | 8        |    | /400      | RV*/                | 1717                                                  | a        | 8      | 5 2          | 7 77 69            | 1 004 |
| 1/5  | тр*         |            | ) 7~         | 8        |    | /100.     | DV*/                | / / A<br>/ / A                                        | -3<br>-7 | 8      | 1 01         | , 55.00<br>g 7 = 7 | 0 100 |
| 145. | тъ,         |            | , AY         | 0        |    | / 403.    | LI.(                | ∠∪)A                                                  | 9 -      | 0      | 1.00         |                    | 0.126 |
| ±45. | ⊥Р*         | ( 6)       | ) Ag         | ð<br>1 o |    | /512.     | кĭ*(                | ⊥)<br>:                                               | υI       | 2      | 1.1          | / U.96             | 0.079 |
| 9.   | ВD          | ( 1)       | ) S          | TO - O   | 11 | /137.     | LP*(                | 7)A                                                   | g        | 7      | 1.9          | ь 1.07             | 0.042 |
| 107. | CR          | ( 2)       | ) S          | 10       |    | /137.     | LP*(                | 7)A                                                   | g        | 7      | 3.6          | 6 9.41             | 0.170 |
| 111. | CR          | ( 1)       | ) ()         | 11       |    | /137.     | LP*(                | 7)A                                                   | g        | 7      | 2.1          | 9 19.17            | 0.187 |
| 149. | LP          | ( 1        | ) ()         | 9        |    | /137.     | LP*(                | 7)A                                                   | g        | 7      | 2.1          | 5 0.95             | 0.041 |
| 151  | L'b         | ( 1        | ) S          | 10       |    | /137      | LP*(                | 7) Δ                                                  | a        | 7      | 8.2          | 7 0.75             | 0.071 |
| 152  | T.D         | · _ /      | $) \cap$     | 11       |    | /126      | (<br>T,D*/          | <br>                                                  | с<br>а   | 7      | 6 E          | 3 N 20.75          | 0 060 |
| 150  | т Г<br>Т Г  | ( 1)       | , 0          | 11       |    | /100.     | - ше » (<br>т р * / | 0 /A                                                  | 3        | ,<br>7 | 11 0         |                    | 0.009 |
| 152. | цР          | ( <u> </u> |              | 11       |    | /120      | тът,<br>тът,        | /)A                                                   | 9        | 7      | 1.80         | 0 0.95             | 0.096 |
| 152. | цΡ          |            | , 0          | 11       |    | /138.     | ть                  | 8)A                                                   | 9        | /      | 1.9          | L U.92             | 0.038 |
| 153. | LР          | (2)        | ) ()         | ΤT       |    | /136.     | ⊥Р*(                | 6)A                                                   | g        | /      | 8.5          | / 0.34             | 0.050 |
| 153. | LP          | ( 2)       | ) ()         | 11       |    | /137.     | LP*(                | 7)A                                                   | g        | 7      | 4.3          | 8 0.49             | 0.042 |
|      |             |            |              |          |    |           |                     |                                                       |          |        |              |                    |       |

| 7.1    | BD (          | 1)        | 0 | 9 – S  | 10         | /603.    | BD*(     | 1) 0   | 9 – S     | 10 | 1.65  | 0.35  | 0.023 |
|--------|---------------|-----------|---|--------|------------|----------|----------|--------|-----------|----|-------|-------|-------|
| 8.1    | BD (          | 2)        | 0 | 9 – S  | 10         | /605.    | BD*(     | 1) S   | 10 - 0    | 11 | 1.48  | 1.32  | 0.041 |
| 9 1    | BD (          | 1)        | g | 10 - 0 | 11         | /604     | (        | 2) 0   | 9 _ 9     | 10 | 1 39  | 1 34  | 0 039 |
| 105 0  | 00 (<br>00 (  | 1)        | 0 | 10 0   | <b>T</b> T | / 00 4.  | DD (     | 2) 0   | 10        | 10 | 1 27  | 10 02 | 0.035 |
| 105.0  |               | 1)        | 0 | 9      |            | /400.    | RI"(     | 3) 3   | 10        |    | 1.27  | 19.92 | 0.143 |
| 105.0  | CR (          | 1)<br>    | 0 | 9      |            | /450.    | RI^(     | 4) S   | 10        |    | 1.02  | 20.63 | 0.130 |
| 110. 0 | CR (          | 5)        | S | 10     |            | /603.    | BD* (    | 1) 0   | 9 – S     | 10 | 1.29  | 5.98  | 0.085 |
| 149.1  | LP (          | 1)        | 0 | 9      |            | /456.    | RY*(     | 4) S   | 10        |    | 4.30  | 2.45  | 0.092 |
| 150. 1 | LP (          | 2)        | 0 | 9      |            | /453.    | RY*(     | 1) S   | 10        |    | 20.83 | 1.00  | 0.132 |
| 150. 1 | LP (          | 2)        | 0 | 9      |            | /605.    | BD*(     | 1) S   | 10 - O    | 11 | 25.54 | 0.65  | 0.117 |
| 152.1  | LP (          | 1)        | 0 | 11     |            | /455.    | RY*(     | 3) S   | 10        |    | 1.10  | 1.74  | 0.039 |
| 152 1  | т.р (         | 1)        | 0 | 11     |            | /457     | RY*(     | 5) 5   | 10        |    | 2 85  | 2 35  | 0 074 |
| 152.1  |               | 1)        | 0 | 11     |            | / 10 / 1 | DD*/     | 2) 0   | 10<br>0 C | 10 | 2.05  | 1 21  | 0.0/5 |
| 152.1  | це (<br>тр (  | 1)        | 0 | 11     |            | /004.    |          | 2) 0   | 10        | 10 | 2.05  | 1.21  | 0.045 |
| 155. 1 | ЦР (<br>      | 2)        | 0 | 11     |            | /455.    | RI"(     | 1) 5   | 10        |    | 10.22 | 1.05  | 0.094 |
| 153.1  | ГЬ (          | 2)        | 0 | 11     |            | /455.    | RY*(     | 3) S   | 10        |    | 3.50  | 1.28  | 0.061 |
| 153.1  | LP (          | 2)        | 0 | 11     |            | /604.    | BD* (    | 2) 0   | 9 – S     | 10 | 15.89 | 0.75  | 0.099 |
| 154. 1 | LP (          | 3)        | 0 | 11     |            | /454.    | RY*(     | 2) S   | 10        |    | 15.12 | 1.04  | 0.122 |
| 154. 1 | LP (          | 3)        | 0 | 11     |            | /459.    | RY*(     | 7) S   | 10        |    | 3.54  | 0.90  | 0.055 |
| 154. 1 | LP (          | 3)        | 0 | 11     |            | /603.    | BD*(     | 1) 0   | 9 – S     | 10 | 59.16 | 0.26  | 0.113 |
| 603.1  | BD* (         | 1)        | 0 | 9 – S  | 10         | /440.    | RY*(     | 14) 0  | 9         |    | 1.27  | 1.59  | 0.103 |
| 603 1  | вD* (         | 1)        | 0 | 9 - S  | 10         | /454     | RY*(     | 2) S   | 10        |    | 8.40  | 0.78  | 0.171 |
| 603 1  | ) *תם         | 1)        | 0 | 9 _ C  | 10         | /159     | DV*(     | 7) 9   | 10        |    | 4 26  | 0.63  | 0 110 |
| 605. I | ) עם<br>אמת ( | 1)        | ç | 10 0   | 11         | / 100.   | DV*/     | 1) 0   | 10        |    | 1.20  | 0.05  | 0.119 |
| 605.1  | BD (          | 1)        | 5 | 10 - 0 | 11         | /455.    | RI"(     | 1) 5   | 10        |    | 14.55 | 0.35  | 0.200 |
| 605.1  | BD • (        | 1)        | S | 10 - 0 | 11         | /455.    | RY^(     | 3) S   | 10        |    | 10.08 | 0.58  | 0.252 |
| 605.1  | BD* (         | Τ)        | S | 10 - 0 | ΤT         | /489.    | RY*(     | 4) 0   | ΤT        |    | 1.08  | 1.27  | 0.138 |
| 605. I | BD*(          | 1)        | S | 10 - 0 | 11         | /604.    | BD* (    | 2) 0   | 9 – S     | 10 | 7.58  | 0.04  | 0.053 |
| 10. I  | BD (          | 1)        | 0 | 12 – S | 13         | /146.    | LP*(     | 7)Ag   | 8         |    | 1.94  | 1.07  | 0.042 |
| 112. ( | CR (          | 1)        | 0 | 12     |            | /146.    | LP*(     | 7)Ag   | 8         |    | 2.17  | 19.17 | 0.187 |
| 114. ( | CR (          | 2)        | S | 13     |            | /146.    | LP*(     | 7) Ag  | 8         |    | 3.68  | 9.41  | 0.170 |
| 155.1  | LP (          | 1)        | 0 | 12     |            | /145.    | LP*(     | 6) Aq  | 8         |    | 6.59  | 0.80  | 0.069 |
| 155 1  | т.р (         | 1)        | 0 | 12     |            | /146     | T.D*(    | 7) Ag  | 8         |    | 11 75 | 0 95  | 0 095 |
| 155 1  |               | 1)        | 0 | 12     |            | /147     | T.D*/    | 8) A g | 8         |    | 1 93  | 0.93  | 0 038 |
| 156 1  | ығ (<br>тр (  | 1)<br>2)  | 0 | 10     |            | /145     |          | 6)Ag   | 0         |    | 1.95  | 0.92  | 0.050 |
| 150. 1 | ЦР (<br>ТР (  | 2)        | 0 | 12     |            | /145.    | LР"(     | 0)Ag   | 0         |    | 0.09  | 0.34  | 0.050 |
| 156. 1 | БΡ (          | 2)        | 0 | 12     |            | /146.    | ∟Р^(     | /)Ag   | 8         |    | 4.36  | 0.49  | 0.042 |
| 158.1  | LP (          | 1)        | S | 13     |            | /146.    | LP*(     | 7)Ag   | 8         |    | 8.29  | 0.75  | 0.072 |
| 159.1  | LP (          | 1)        | 0 | 14     |            | /146.    | LP*(     | 7)Ag   | 8         |    | 2.18  | 0.95  | 0.041 |
| 10. I  | BD (          | 1)        | 0 | 12 – S | 13         | /608.    | BD* (    | 2) S   | 13 - 0    | 14 | 1.39  | 1.34  | 0.039 |
| 11. I  | BD (          | 1)        | S | 13 - 0 | 14         | /607.    | BD* (    | 1) S   | 13 - 0    | 14 | 1.65  | 0.35  | 0.023 |
| 12. H  | BD (          | 2)        | S | 13 - 0 | 14         | /606.    | BD*(     | 1) 0   | 12 – S    | 13 | 1.48  | 1.32  | 0.041 |
| 117. ( | CR (          | 5)        | S | 13     |            | /607.    | BD*(     | 1) S   | 13 - 0    | 14 | 1.29  | 5.98  | 0.085 |
| 118. ( | CR (          | 1)        | 0 | 14     |            | /540     | RY*(     | 3) 5   | 13        |    | 1.27  | 19.92 | 0.143 |
| 118 (  | CR (          | 1)        | 0 | 14     |            | /541     | RV*(     | 4) S   | 13        |    | 1 02  | 20 63 | 0 130 |
| 155 1  |               | 1)        | 0 | 12     |            | /540     | DV*/     | 3) 9   | 13        |    | 1 10  | 1 74  | 0.130 |
| 155.1  | ығ (<br>тр (  | 1)        | 0 | 10     |            | / 540.   | DV*/     | 5) 5   | 10        |    | 2.10  | 1.71  | 0.039 |
| 155. 1 | ЦР (<br>ТР (  | 1)        | 0 | 12     |            | / 542.   | RI"(     | 5) 5   | 13        | 14 | 2.65  | 2.35  | 0.074 |
| 155. 1 | БΡ (          | 1)        | 0 | 12     |            | /608.    | BD*(     | 2) S   | 13 - 0    | 14 | 2.05  | 1.21  | 0.045 |
| 156.1  | LP (          | 2)        | 0 | 12     |            | /538.    | RY*(     | 1) S   | 13        |    | 10.22 | 1.05  | 0.094 |
| 156.1  | LP (          | 2)        | 0 | 12     |            | /540.    | RY*(     | 3) S   | 13        |    | 3.49  | 1.28  | 0.061 |
| 156. 1 | LP (          | 2)        | 0 | 12     |            | /608.    | BD* (    | 2) S   | 13 - 0    | 14 | 15.88 | 0.75  | 0.099 |
| 157.1  | LP (          | 3)        | 0 | 12     |            | /539.    | RY*(     | 2) S   | 13        |    | 15.11 | 1.04  | 0.122 |
| 157.1  | LP (          | 3)        | 0 | 12     |            | /544.    | RY*(     | 7) S   | 13        |    | 3.52  | 0.90  | 0.055 |
| 157.1  | LP (          | 3)        | 0 | 12     |            | /607.    | BD*(     | 1) S   | 13 - 0    | 14 | 59.18 | 0.26  | 0.113 |
| 159 1  | т.р (         | 1)        | 0 | 14     |            | /541     | RY*(     | 4) S   | 13        |    | 4 30  | 2 45  | 0 092 |
| 160 1  | (<br>T.D (    | 2)        | 0 | 14     |            | /520     | PV*/     | 1) 9   | 13        |    | 20 81 | 1 00  | 0 132 |
| 160 1  | שב (<br>דה /  | 2)        | 0 | 11     |            | / 550.   | DD*/     | 1) 0   | 10 0      | 12 | 20.01 | 1.00  | 0.132 |
| 100. I | י ≁ תם        | ∠)<br>1 \ | 0 | 10 C   | 1 2        | /000.    | י +ינם ( | 1) O   | 10 - D    | 13 | 43.54 | 1 07  | 0.127 |
| 000.1  | вр., (        | 1)<br>1   | 0 | 12 - S | 13         | /515.    | KI^(     | 4) U   | 12        |    | 1.07  | 1.2/  | 0.137 |
| 606. I | RD * (        | 1)        | 0 | 12 - S | ТЗ         | /538.    | КҮ*(     | I) S   | 13        |    | 14.52 | 0.35  | 0.208 |
| 606. I | BD* (         | 1)        | 0 | 12 - S | 13         | /540.    | RY*(     | 3) S   | 13        |    | 10.07 | 0.58  | 0.252 |
| 606. I | BD*(          | 1)        | 0 | 12 – S | 13         | /608.    | BD* (    | 2) S   | 13 - 0    | 14 | 7.60  | 0.04  | 0.053 |
| 607. I | BD*(          | 1)        | S | 13 - 0 | 14         | /539.    | RY*(     | 2) S   | 13        |    | 8.41  | 0.78  | 0.171 |
| 607.1  | BD*(          | 1)        | S | 13 - 0 | 14         | /544.    | RY*(     | 7) S   | 13        |    | 4.25  | 0.63  | 0.119 |
| 607. I | BD* (         | 1)        | S | 13 - 0 | 14         | /584.    | RY*(     | 14) O  | 14        |    | 1.28  | 1.60  | 0.103 |

Wiberg bond index matrix in the NAO basis:

|     | Atom   | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      |
|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|     |        |        |        |        |        |        |        |        |        |        |
| 1.  | Se     | 0.0000 | 0.0799 | 0.0138 | 0.9972 | 0.9943 | 0.0787 | 0.2310 | 0.0166 | 0.0005 |
| 2.  | Se     | 0.0799 | 0.0000 | 0.9964 | 0.0138 | 1.0177 | 0.0852 | 0.1545 | 0.0233 | 0.0003 |
| 3.  | Se     | 0.0138 | 0.9964 | 0.0000 | 0.0799 | 0.0788 | 0.9932 | 0.0168 | 0.2340 | 0.0001 |
| 4.  | Se     | 0.9972 | 0.0138 | 0.0799 | 0.0000 | 0.0853 | 1.0176 | 0.0233 | 0.1533 | 0.0001 |
| 5.  | Se     | 0.9943 | 1.0177 | 0.0788 | 0.0853 | 0.0000 | 0.0138 | 0.0226 | 0.1612 | 0.0001 |
| 6.  | Se     | 0.0787 | 0.0852 | 0.9932 | 1.0176 | 0.0138 | 0.0000 | 0.1641 | 0.0226 | 0.0004 |
| 7.  | Ag     | 0.2310 | 0.1545 | 0.0168 | 0.0233 | 0.0226 | 0.1641 | 0.0000 | 0.0166 | 0.0339 |
| 8.  | Ag     | 0.0166 | 0.0233 | 0.2340 | 0.1533 | 0.1612 | 0.0226 | 0.0166 | 0.0000 | 0.0001 |
| 9.  | 0      | 0.0005 | 0.0003 | 0.0001 | 0.0001 | 0.0001 | 0.0004 | 0.0339 | 0.0001 | 0.0000 |
| 10. | S      | 0.0009 | 0.0008 | 0.0002 | 0.0003 | 0.0002 | 0.0011 | 0.0634 | 0.0001 | 1.6487 |
| 11. | 0      | 0.0041 | 0.0020 | 0.0004 | 0.0005 | 0.0005 | 0.0022 | 0.1446 | 0.0003 | 0.2539 |
| 12. | 0      | 0.0004 | 0.0006 | 0.0043 | 0.0019 | 0.0021 | 0.0005 | 0.0003 | 0.1447 | 0.0000 |
| 13. | S      | 0.0002 | 0.0003 | 0.0010 | 0.0008 | 0.0011 | 0.0002 | 0.0001 | 0.0636 | 0.0000 |
| 14. | 0      | 0.0001 | 0.0001 | 0.0005 | 0.0003 | 0.0004 | 0.0001 | 0.0001 | 0.0341 | 0.0000 |
|     | Atom   | 10     | 11     | 12     | 13     | 14     |        |        |        |        |
|     | ACOIII | 10     |        | 12     | 10     | 11     |        |        |        |        |
|     |        |        |        |        |        |        |        |        |        |        |

| 1.  | Se | 0.0009 | 0.0041 | 0.0004 | 0.0002 | 0.0001 |
|-----|----|--------|--------|--------|--------|--------|
| 2.  | Se | 0.0008 | 0.0020 | 0.0006 | 0.0003 | 0.0001 |
| 3.  | Se | 0.0002 | 0.0004 | 0.0043 | 0.0010 | 0.0005 |
| 4.  | Se | 0.0003 | 0.0005 | 0.0019 | 0.0008 | 0.0003 |
| 5.  | Se | 0.0002 | 0.0005 | 0.0021 | 0.0011 | 0.0004 |
| 6.  | Se | 0.0011 | 0.0022 | 0.0005 | 0.0002 | 0.0001 |
| 7.  | Ag | 0.0634 | 0.1446 | 0.0003 | 0.0001 | 0.0001 |
| 8.  | Ag | 0.0001 | 0.0003 | 0.1447 | 0.0636 | 0.0341 |
| 9.  | 0  | 1.6487 | 0.2539 | 0.0000 | 0.0000 | 0.0000 |
| 10. | S  | 0.0000 | 1.3557 | 0.0000 | 0.0000 | 0.0000 |
| 11. | 0  | 1.3557 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 12. | 0  | 0.0000 | 0.0000 | 0.0000 | 1.3560 | 0.2537 |
| 13. | S  | 0.0000 | 0.0000 | 1.3560 | 0.0000 | 1.6478 |
| 14. | 0  | 0.0000 | 0.0000 | 0.2537 | 1.6478 | 0.0000 |

Summary of Natural Population Analysis: Natural Population

|           |                         | Natural             |                           |                           |                           |           |
|-----------|-------------------------|---------------------|---------------------------|---------------------------|---------------------------|-----------|
| Atom      | No                      | Charge              | Core                      | Valence                   | Rydberg                   | Total     |
| 1         | se                      | 0.04647             | 27.99929                  | 5.89205                   | 0.06220                   | 33.95353  |
| 2         | se                      | 0.07719             | 27.99929                  | 5.86814                   | 0.05538                   | 33.92281  |
| 3         | se                      | 0.04549             | 27.99929                  | 5.89279                   | 0.06243                   | 33.95451  |
| 4         | se                      | 0.07776             | 27.99929                  | 5.86771                   | 0.05524                   | 33.92224  |
| 5         | se                      | 0.07137             | 27.99929                  | 5.87349                   | 0.05585                   | 33.92863  |
| 6         | se                      | 0.07041             | 27.99929                  | 5.87420                   | 0.05610                   | 33.92959  |
| 7         | aq                      | 0.74182             | 7.99900                   | 10.23793                  | 0.02125                   | 18.25818  |
| 8         | ag                      | 0.74164             | 7.99899                   | 10.23822                  | 0.02115                   | 18.25836  |
| 9         | 0                       | -0.72742            | 1.99985                   | 6.68461                   | 0.04295                   | 8.72742   |
| 10        | S                       | 1.71003             | 9.99911                   | 4.09014                   | 0.20071                   | 14.28997  |
| 11        | 0                       | -0.91885            | 1.99985                   | 6.88306                   | 0.03594                   | 8.91885   |
| 12        | 0                       | -0.91871            | 1.99985                   | 6.88291                   | 0.03596                   | 8.91871   |
| 13        | S                       | 1.71012             | 9.99911                   | 4.09011                   | 0.20066                   | 14.28988  |
| 14        | 0                       | -0.72732            | 1.99985                   | 6.68451                   | 0.04296                   | 8.72732   |
| * To      | otal *                  | 2.00000             | 211.99136                 | 91.05987                  | 0.94878                   | 304.00000 |
| For a     | all atoms:              |                     |                           |                           |                           |           |
| Core      |                         |                     | 211.99136(                | 99.9959% of               | 212)                      |           |
| Vale      | nce                     |                     | 91.05987(                 | 98.9781% of               | 92)                       |           |
| Natu      | ral Minimal             | Basis               | 303.05122(                | 99.6879% of               | 304)                      |           |
| Natu      | ral Rydberg             | Basis               | 0.94878(                  | 0.3121% of                | 304)                      |           |
| * * * * * | * * * * * * * * * * * * | * * * * * * * * * * | * * * * * * * * * * * * * | * * * * * * * * * * * * * | * * * * * * * * * * * * * | *****     |
| *         |                         |                     |                           |                           |                           | *         |
| *         | ä                       | atomic cha          | rges with mu              | lticenter com             | rrections                 | *         |
| *         |                         |                     | 5                         |                           |                           | *         |
| * * * * * | * * * * * * * * * * *   | * * * * * * * * * * | * * * * * * * * * * * *   | * * * * * * * * * * * *   | * * * * * * * * * * * * * | *****     |
|           |                         |                     |                           |                           |                           |           |
|           |                         | -                   | atom                      | charge                    |                           |           |
|           |                         | -                   |                           |                           |                           |           |

| atom | charge  |
|------|---------|
| 1 se | 0.2028  |
| 2 se | 0.1157  |
| 3 se | 0.2061  |
| 4 se | 0.1145  |
| 5 se | 0.1189  |
| 6 se | 0.1210  |
| 7 ag | 0.4318  |
| 8 ag | 0.4315  |
| 9 o  | -0.4364 |
| 10 s | 1.1883  |
| 11 o | -0.6236 |
| 12 o | -0.6228 |
| 13 s | 1.1882  |
| 14 o | -0.4361 |
|      |         |

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2011 S4.4 Selenium, Silver and Oxygen distances and angles :Calculated structures on different levels.

|                   | Se6_bp_svp (d3d)     | Se6_pbe0_tzvpp (d3d)     | Se6_mp2_tzvpp (d3d) | Ag2Se6_1 (BP/SV(P)) A | Ag2Se6_1 (PBE0/TZVPP) A   | Ag2Se6_1 ((ri)MP2/tzvpp) A |                            |
|-------------------|----------------------|--------------------------|---------------------|-----------------------|---------------------------|----------------------------|----------------------------|
| Se-Se(Å)          | 2.381                | 2.336                    | 2.32                | 2.408                 | 2.356                     | 2.342                      |                            |
| (in the Se6 ring) |                      |                          |                     |                       |                           |                            |                            |
|                   |                      |                          |                     |                       |                           |                            |                            |
| Se-Se(ave., Å)    | 2.381                | 2.336                    | 2.32                | 2.408                 | 2.356                     | 2.342                      |                            |
| Se-Se-Se(o)       | 101.74               | 101.42                   | 100.86              |                       |                           |                            |                            |
|                   |                      |                          |                     |                       |                           |                            |                            |
|                   |                      |                          |                     |                       |                           |                            |                            |
| Se-Se-Se(ave., o) | 101.74               | 101.42                   | 100.86              | 101.66                | 101.54                    | 101.14                     |                            |
| Se-Se-Se(ave., o) | 75.2                 | 75.71                    | 76.58               | 75.33                 | 75.52                     | 76.15                      |                            |
| d(Ag1-Se) [Å]     |                      |                          |                     | 2.933                 | 2.903                     | 2.840                      |                            |
|                   |                      |                          |                     |                       |                           |                            |                            |
|                   |                      |                          |                     |                       |                           |                            |                            |
| d(Ag2-Se) [Å]     |                      |                          |                     |                       |                           |                            |                            |
| d(Ag1-O) [Å]      |                      |                          |                     |                       |                           |                            |                            |
|                   |                      |                          |                     |                       |                           |                            |                            |
|                   | Ag2Se6_2 bp-svp<br>B | Ag2Se6_2 pbe0/tzvpp<br>B | Ag3Se6_2 bp/svp C   | Ag3Se6_2 pbe0/tzvpp C | Ag2Se6(SO2)2 pbe0/tzvpp D | Ag2Se6(SO2)2 mp2/tzvpp D   | Ag2Se6(SO2)4<br>pbe0/tzvpp |
| Se-Se(Å)          | 2.354 (2x)           | 2.325 (2x)               | 2.355 (2x)          | 2.326 (2x)            | 2.343 (2x)                | 2.334 (2x)                 | 2.333 (2x)                 |
| (in the Se6 ring) | 2.408 (2x)           | 2.353 (2x)               | 2.409 (2x)          | 2.354 (2x)            | 2.353 (2x)                | 2.337 (2x)                 | 2.348 (2x)                 |
|                   | 2.477 (2x)           | 2.393 (2x)               | 2.475 (2x)          | 2.392 (2x)            | 2.354 (2x)                | 2.339 (2x)                 | 2.358 (2x)                 |
| Se-Se(ave., Å)    | 2.413                | 2.357                    | 2.413               | 2.357                 | 2.350                     | 2.337                      | 2.347                      |
| Se-Se-Se(o)       | 98.318               | 99.443 (x2)              | 97.69               | 102.91                | 100.89                    | 100.85                     | 100.56                     |
|                   | 100.188              | 99.617 (x2)              | 100.41              | 99.16                 | 100.63                    | 100.82                     | 101.49                     |
|                   | 101.202              | 100.668 (x2)             | 101.26              | 100.73                | 101.79                    | 100.71                     | 100.89                     |
| Se-Se-Se(ave., o) | 99.90                | 99.91                    | 99.78               | 100.93                | 101.10                    | 100.79                     | 100.98                     |
| Se-Se-Se(ave., o) | 76.23                | 76.10                    | 76.04               | 76.01                 | 76.07                     | 76.67                      | 76.40                      |
| d(Ag1-Se) [Å]     | 2.812                | 2.756                    | 2.793 (2x)          | 2.744 (2x)            | 2.782 (2x)                | 2.769 (2x)                 | 2.737 (2x)                 |
|                   | 2.940 (2x)           | 2.929 (2x)               | 2.953 (4x)          | 2.946 (4x)            | 3.009 (2x)                | 2.867 (2x)                 | 3.046 (2x)                 |
|                   |                      |                          |                     |                       | 3.045 (2x)                | 2.918 (2x)                 | 3.295 (2x)                 |
| d(Ag2-Se) [Å]     | 2.568                | 2.575                    | 2.590 (2x)          | 2.581                 |                           |                            |                            |
| d(Ag1-O) [Å]      |                      |                          |                     |                       | 2.258 (2x)                | 2.224 (2x)                 | 2.358 (2x)                 |
|                   |                      |                          |                     |                       |                           |                            | 2.489 (2x)                 |



## S5.1 NMR experimental details 1

**Solution NMR** <sup>19</sup>F-NMR (<sup>77</sup>Se-NMR) [<sup>121</sup>Sb-NMR] spectra were obtained using a 10 mm broad-band probe operating at 376.284 (76.391) [95.717] MHz, <sup>1</sup>H- and <sup>13</sup>C-NMR spectra at 399.947 and 100.578 MHz respectively. <sup>19</sup>F-NMR (<sup>1</sup>H-NMR) spectra were recorded over a shift range of + -240 to +25 ppm (0 to +12 ppm), line-broadening was not applied, typically 32 to 64 transients were accumulated with an acquisition time of 0.60 (3.737) s and a pulse width of 5 (22.3)  $\mu$ s. For each <sup>77</sup>Se-NMR sample two spectra were recorded over a shift range of -50 to + 1250 and +1000 to +2100 ppm, line-broadening parameters, used in the exponential multiplication of the free induction decays, were 0 to 40 Hz, further acquisition parameters were as follows: acquisition time, 0.20 s; measuring time in all cases 20 to 60 min or 4000 to 10000 transients. <sup>121</sup>Sb-NMR (<sup>13</sup>C-NMR) spectra were recorded over a shift range of -500 to + 500 ppm (0 to +240 ppm), about 1000 to 3000 (40000 to 60000) transients were acquired for each sample with an acquisition time of 0.20 (1.199) s and a pulse width of 20 (12)  $\mu$ s; line-broadening parameters were 0 to 20 (0) Hz. All NMR-samples were run unlocked, chemical shifts with a positive sign are correlated with shifts to high frequencies (downfield) of the reference compound.

## S5.2 Additional Solid State NMR spectra of (AgI<sub>2</sub>)<sub>n</sub> nSbF<sub>6</sub>



Figure 5.2.1:  $^{109}$ Ag{ $^{19}$ F} MAS NMR of (AgI<sub>2</sub>)<sub>n</sub> nSbF<sub>6</sub> obtained with PRESTO-III.

The solid-state <sup>19</sup>F NMR spectra are sensitive to the dynamics of SbF<sub>6</sub><sup>-</sup> and AsF<sub>6</sub><sup>-</sup> anions on the NMR time scale. In liquid-state <sup>19</sup>F NMR multiplets caused by J-couplings between <sup>19</sup>F and <sup>75</sup>As (I = 3/2, 100%), <sup>121</sup>Sb (5/2, 57%) or <sup>123</sup>Sb (7/2, 43%) are well known.<sup>42</sup> In the solid state NMR, usually only broad lines are observed owing to anisotropic <sup>19</sup>F NMR interactions like the magnetic dipole-dipole coupling and the anisotropic chemical shift and the isotropic chemical shift dispersion.<sup>43, 44</sup> The well resolved multiplets in Figure 18 give evidence of fast rotational motion, fast enough too cancel out homonuclear dipolar interactions between <sup>19</sup>F nuclei. This is evident by comparing experimental spectra with simulated spectra (not shown) taking into account all direct dipolar interactions within a XF<sub>6</sub> (X = As, Sb) octahedron. We conclude that the rotational motion of XF<sub>6</sub> anions is thermally activated for all samples investigated in this study. Isotropic chemical shift values agree well with those reported in liquid-state NMR. Note that fast and free rotational motion implies that only a single <sup>19</sup>F resonance per octahedron is expected. Clearly the two quartets in the <sup>19</sup>F NMR spectrum of AgAsF<sub>6</sub> give evidence of two crystallographically inequivalent AsF<sub>6</sub> units, which does not agree with the reported description.<sup>45</sup>

Electronic Supplementary Information for Dalton Transactions This journal is  $\ensuremath{\mathbb{C}}$  The Royal Society of Chemistry 2011

Similar observations were made for the solid state <sup>19</sup>F-environments in the related salts  $Ag(C_2H_4)_3^+[A]^ Ag(P_4S_3)_3^+[A]^-$  with only one sharp <sup>19</sup>F MAS-NMR resonance for each anion due to dynamics.<sup>46, 47</sup> Temperature dependent NMR combined with single-crystal X-ray diffraction should be able to lift this contradiction but go beyond the scope of this contribution.



**Figure 5.2.2:** <sup>19</sup>F MAS NMR spectra of  $(AgI_2)_n nSbF_6$  (bottom),  $(AgI_2)_n nAsF_6$  (middle) and  $AgAsF_6$  (top) at 16, 12 and 16 kHz rotor spinning frequency, respectively; peaks marked by asterisks are rotational sidebands.

## S6 Syntheses of Ag[Sb(OTeF<sub>5</sub>)<sub>6</sub>]

a) With  $CH_2Cl_2$  solvent  $Ag[Sb(OTeF_5)_6]$  was initially synthesized according to the literature procedure. However, due to the extreme sensitivity of this compound, the glass vessels were flame dried with  $SF_4$ for at least one hour and flame dry the vessels after the  $SF_4$  treatment. Freshly prepared  $AgOTeF_5$ (13.14 g, 37.94 mmol) was weighed into a two bulb-frit plate vessel and exposed over night to a dynamic vacuum to remove all traces of  $CH_2Cl_2$ . A stock solution of  $SbCl_5$  in F-114 (5.57 ml, 1.326 M, 7.39 mmol) was transferred By a direct connection into the second bulb and approximately 10 ml of F-114 added. This F-114-SbCl\_5 solution was then poured onto the solid  $AgOTeF_5$  A reaction immediately started with warming to about  $40^{\circ}C$  with a change in the appearance of the precipitate. About 10 ml of Electronic Supplementary Information for Dalton Transactions This journal is  $\ensuremath{\mathbb{C}}$  The Royal Society of Chemistry 2011

CH<sub>2</sub>Cl<sub>2</sub> were added after stirring the suspension over night and a brownish clear solution was given on filtration. The insoluble material was washed six times when all volatiles were removed in vacuo and the remaining solid beige residue was exposed to a dynamic vacuum overnight. The flask was cut open and the soluble material grounded for 5 minutes and transferred into a one bulb vessel (10.60 g vs. 10.50 g expected) and exposed to a dynamic vacuum for 96 hours, during which there was a weight loss of 0.638 g. A NMR-sample of this previously all soluble material (0.30 g) was prepared in SO<sub>2</sub> (approx. 4 g) and revealed the presence of some insoluble beige material. The solution <sup>19</sup>F-NMR spectrum showed only lines attributable to the Sb( $OTeF_5$ )<sup>6</sup> anion, however, in the 1H-NMR spectrum one line at  $^{1}$ H = 5.12 ppm was observed (= CH<sub>2</sub>Cl<sub>2</sub>). An IR-spectrum of this material did not show the presence of CH<sub>2</sub>Cl<sub>2</sub>. The solid material (9.299 g) was then exposed for another 130 hours to a dynamic vacuum during which a constant weight loss of 4.6 mg/hour was observed. The grease of the trap of the vacuum line turned black during this time suggesting the evolution of a reactive volatile species. The remaining 8.701 g of beige solid were dissolved in 12.46 g of SO<sub>2</sub> and filtered into a second bulb leaving 0.694 g of a solid, insoluble beige residue. This insoluble material did not dissolve in CH<sub>2</sub>Cl<sub>2</sub> with ultrasonic enhancement (NMR) and its FT-Raman spectrum showed the presence of small amounts of SbCl<sub>6</sub> {possibly from SbCl<sub>5</sub> + AgCl  $\rightarrow$  Ag[SbCl<sub>6</sub>], RA(cm<sup>-1</sup>): 330(v1, 100), 281(v2, 22), 196(v5, 31) cm-1(int%) assignments from[33] and a teflate containing substance{ possibly Ag[(O)Sb(OTeF5)4], RA(cm<sup>-1</sup>): 716(18), 703(16), 666(100), 448(10), 411(5), 395(88), 308(11), 241(14), 164(21), 142(26), 122(19), 105(sh) cm-1(int%)}. A MS only showed fragments attributable to SbCl<sub>5</sub>(from Ag[SbCl<sub>6</sub>]). The soluble material was exposed 6 hours to a dynamic vacuum until a (small) constant weight-loss was achieved. The nature of this soluble material was monitored by <sup>19</sup>F-and <sup>121</sup>Sb-NMR spectroscopy (SO<sub>2</sub> solution) showing the exclusive presence of lines attributable to the Sb(OTeF<sub>5</sub>)<sub>6</sub> anion  $[\delta^{19}F = -40.6]$ ppm,  ${}^{1}J({}^{19}F, {}^{125}Te) = 3563$  Hz;  $\delta {}^{121}Sb = -12.6$  ppm;  ${}^{2}J({}^{121}Sb, {}^{125}Te) = 763$  Hz], however in the  ${}^{1}H$  - NMR still one line attributable to  $CH_2Cl_2$  was observed at  $\delta^{1}H = 5.12$  ppm.

b) With SO<sub>2</sub> solvent A stock solution of SbCl<sub>5</sub> in F-114 (5.75 ml, 1.326 M, 7.62 mmol) was transferred by a direct connection into one bulb of a two bulb frit plate vessel and additional 42.61 g F-114 were condensed onto it. This solution was poured onto the solid AgOTeF<sub>5</sub> (13.56 g, 39.15 mmol) in a second bulb and vigorously shaken for about 15 min after which the solution was left stirring over night. Addition of 6.76 g of SO<sub>2</sub> led to a slimy, paint like mixture. Filtration resulted in two separate liquid phases: a brownish SO<sub>2</sub> and colourless F-114 phase. The insolubles were extracted 6 times after which all solubles had been transferred into the second bulb. All volatiles were removed in vacuo and the resulting solid was exposed for 24 hours to a dynamic vacuum after which 0.78 g of a volatile material was lost (compared to the initial weight). 5.83 g SO<sub>2</sub> were condensed onto the solubles and filtered into a separate bulb (15.55 g solution transferred) leaving 5.70 g of a insoluble material [calc. AgCl: 4.64 g) and extracting 9.72 g soluble material (Ag[Sb(OTeF<sub>5</sub>)<sub>6</sub>], yield: 90 %). An <sup>19</sup>F-NMR

spectrum of the soluble material in SO<sub>2</sub> / SO<sub>2</sub>ClF mixture (4 g, 1:3 by weights) confirms the exclusive presence of lines attributable to the Sb(OTeF<sub>5</sub>)<sub>6</sub><sup>-</sup> anion but the <sup>1</sup>H - NMR spectrum still showed the presence of one line at  $\delta^{1}H = 4.66$  ppm.

## S7 Attempted syntheses of $[Se_x][Sb(OTeF_5)_6](x = 6, 8)$

Grey selenium (99.0 %, 0.131 g, 1.653 mmol) and 0.961 g Ag[Sb(OTeF<sub>5</sub>)<sub>6</sub>] (0.579 mmol) were weighed into a 10 mm (o.d.) thick walled NMR tube, 4 g of SO<sub>2</sub> (5.5 cm height) was added and sonicated one hour at ambient temperature giving a greenish yellowish solution. NMR spectra at 0 °C, -30 and -70 °C showed two resonances at  $\delta^{77}$ Se = 1100±7 and 766±5 ppm [Se<sub>10</sub><sup>2+</sup>] as well as those attributable to the Se<sub>8</sub><sup>2+</sup> dication in about 10% of the total intensity (only at -70 °C,  $\delta^{77}$ Se = 1058, 1077, 1205, 1533, 1978 ppm). A preparation using an excess of Se [0.190 g Se (2.409 mmol) and 0.525 g Ag[Sb(OTeF<sub>5</sub>)<sub>6</sub>] (0.316 mmol) in approx. 4 g of SO<sub>2</sub>] gave a similar product (<sup>77</sup>Se-NMR) and unreacted selenium. In another preparation, a stock solution of Ag[Sb(OTeF<sub>5</sub>)<sub>6</sub>] in SO<sub>2</sub> (1.6 ml, 0.395 M, 0.632 mmol) was poured onto grey selenium (0.174 g, 2.204 mmol) in a 10 mm NMR tube through a suitable adapter. [A graded cylinder fitted with a J. Young valve and a direct connection (7 mm diameter) suitable to attach a 10 mm NMR tube. The connection includes a Rotoflo valve with a 1/4" which is used to flame dry the evacuated direct connection prior to use. To ensure complete transfer of the stock solution, small amounts of the solvent were condensed three times into the cylinder and poured back to the reaction vessel.] About 3-4 g of SO<sub>2</sub> were added to reach the optimum height for NMR measurements (5.5 cm). This mixture was exposed to ultrasonic for one hour at ambient temperature giving a clear, intensely yellow-orange solution over a small amount of black precipitate. NMR spectra at -30 °C showed the presence of similar resonances at  $\delta^{77}$ Se = 774 and 1071 ppm (as well as unassigned lines at  $\delta^{77}$ Se = 879 and 994 ppm). The yellow solution was decanted into a two bulb vessel fitted by a J. Young NMR valve by the direct connection of the NMR-tube and the vessel. 0.061 g of a blackish material [99% Se, FT-Raman] remained in the tube (together with a little yellow solid on the glass walls). Yellow-orange crystals were obtained from the yellow orange SO<sub>2</sub> solution by the application of a temperature gradient ( $\Delta T = 10 - 20$  °C) at an outside temperature of 5 °C.[One bulb of the vessel was placed in a small Dewar vessel which was filled by about 20% with liquid N<sub>2</sub> so that the bottom of the bulb and the surface of the liquid N<sub>2</sub> were separated by approximately 3 to 4 cm.] On removal of the dewar, the block like crystals dissolved very readily, presumably in small amounts of SO<sub>2</sub>. Therefore all volatiles were removed in vacuo (1.5 h), while the crystals were cooled to ca. -20 to -30 °C, giving 1.19 g {0.361 mmol, 96 % based on Ag[Sb(OTeF<sub>5</sub>)<sub>6</sub>]} crystalline material (slightly sticky). 0.5004 g (0.1296 mmol) of the yellow material were loaded in a 10 mm (o.d.) NMR tube and 3.9761 g of SO<sub>2</sub> condensed onto the sample giving a yellow solution. 0.5218 g (12.7104 mmol) of CH<sub>3</sub>CN were then condensed onto the frozen (77 K) solution. Upon warming a red precipitate over a clear, colourless solution was immediately formed. The acetonitrile methyl groups show only one signal in the proton NMR spectrum (r.t. and -70 °C). The red material darkened considerably over several weeks and was separated from the clear solution by filtration into a specially designed apparatus. After carefully washing the insoluble material about six times with SO<sub>2</sub>, all volatiles were removed in vacuo and the solid material was shown to be elemental selenium (FT-Raman).



S8 Powder Spectra of the greyish remains in the synthesis of **2** which are confirmed to be grey selenium.

C:Dokumente und EinstellungenihaseloffiEigene Datelen/Dokt - Flie: SH tobi messeva.raw - Type: 2Th/Th looked - Start: 4.000 \*- End: 39.990 \*- Step: 0. 010 \*- Step time: 1. s - Temp.: 25 °C (Room) - Tim e Started: 0 s - 2-Theta:
Operations: Smooth 0.149 | Background 2.570,1.000 | Import
B06-0362 (I) - Selenium, syn - Se - Y: 50.00 % - d x by: 1. - WL: 0.7093 - Hexagonal - a 4.35620 - c 4.95360 - alpha 90.000 - beta 90.000 - gamma 120.000 - Primitive - P3121 (152) - 3 - 81.7522 -

S9  $^{77}$ Se-spectra of **2** after 27000 scans (5s delay, 0.85s acquisition time) in SO<sub>2</sub> solution in J. Young 5 mm NMR tube.



# S10 Power XRD r.t. (Cu).



## References

- 1. B. Kesanli, J. Fettinger and B. Eichhorn, Angew. Chem., Int. Ed., 2001, 40, 2300-2302.
- 2. R. Minkwitz, H. Borrmann and J. Nowicki, Z. Naturforsch., B: Chem. Sci., 1991, 46, 629-634.
- 3. P. Bakshi, P. D. Boyle, T. S. Cameron, J. Passmore, G. Schatte and G. W. Sutherland, *Inorg. Chem.*, 1994, **33**, 3849-3851.
- 4. S. Brownridge, T. S. Cameron, J. Passmore, G. Schatte and T. C. Way, *J. Chem. Soc., Dalton Trans.*, 1996, 2553-2570.
- 5. A. Decken, C. Knapp, G. B. Nikiforov, J. Passmore, J. M. Rautiainen, X. Wang and X. Zeng, *Chem. Eur. J.*, 2009, **15**, 6504-6517.
- 6. D. M. Van Seggen, P. K. Hurlburt, O. P. Anderson and S. H. Strauss, *J. Am. Chem. Soc.*, 1992, **114**, 10995-10997.
- 7. R. E. Bachman and D. F. Andretta, *Inorg. Chem.*, 1998, **37**, 5657-5663.
- 8. A. F. Wells, *Structural Inorganic Chemistry*, 5 edn., Clarendon Press, Oxford, 1984.
- 9. B.-K. Teo and J. C. Calabrese, J. Am. Chem. Soc., 1975, 97, 1256-1257.
- 10. H. P. A. Mercier, J. C. P. Sanders and G. J. Schrobilgen, *J. Am. Chem. Soc.*, 1994, **116**, 2921-2937.
- 11. C. Knapp and C. Schulz, Chem. Comm., 2009, 4991-4993.
- 12. C. H. Holder and M. Fink, J. Chem. Phys., 1981, 75, 5323-5325.
- 13. I. D. Brown, *The Chemical Bond in Inorganic Chemistry (The Bond Valence Model)*, Oxford University Press, Oxford, 2002.
- 14. I. Krossing, Chem. Eur. J., 2001, 7, 490-502.
- 15. Some residual electron density can be found close to the Se<sub>6</sub>-ring (density max 2.261/min. 1.355). It is possible to refine an alternative Se8-complex with a occupation of less than 5% in the cation, but there are invariancies in the angles and distances compared to Se<sub>8</sub> (see supplemental). The influence on the all overall quality of the refinement is small e.g. (R1 = 0.1038, wR2 = 0.2654), but more NPDs occur in the anion, leading to an inacceptable data /parameter ratio. Therefore we decided to omit this Se<sub>8</sub>-fragment in the final refinement.
- 16. M. Gonsior, I. Krossing, L. Müller, I. Raabe, M. Jansen and L. Van Wüllen, *Chem. Eur. J.*, 2002, **8**, 4475-4492.
- 17. Y. Miyamoto, Jpn. J. Appl. Phys., 1980, 19, 1813-1819.
- 18. M. Wachhold and M. G. Kanatzidis, J. Am. Chem. Soc., 1999, 121, 4189-4195.
- 19. W. S. Sheldrick and M. Wachhold, Chem. Commun., 1996, 607-608.
- 20. B. W. Eichhorn, S. P. Mattamana, D. R. Gardner and J. C. Fettinger, *J. Am. Chem. Soc.*, 1998, **120**, 9708-9709.
- 21. H. G. von Schnering, J. Wolf, D. Weber, R. Ramirez and T. Meyer, *Angew. Chem.*, 1986, **98**, 372-373.
- 22. G. A. Marking and M. G. Kanatzidis, Chem. Mater., 1995, 7, 1915-1921.
- 23. Y.-B. Dong, X. Zhao, B. Tang, H.-Y. Wang, R.-Q. Huang, M. D. Smith and H.-C. zur Loye, *Chem. Commun.*, 2004, 220-221.
- 24. A. Lavalette, G. A. Lawrance, N. W. Alcock and M. J. Hannon, *Eur. J. Inorg. Chem.*, 2004, 3981-3983.
- 25. B. Neumueller, F. Weller, F. Schmock and K. Dehnicke, *Z. Anorg. Allg. Chem.*, 2005, **631**, 1767-1772.
- 26. M. M. Olmstead, K. Maitra and A. L. Balch, Angew. Chem., Int. Ed., 1999, 38, 231-233.
- 27. E. V. Anokhina, C. S. Day, M. W. Essig and A. Lachgar, *Angew. Chem., Int. Ed.*, 2000, **39**, 1047-1049.
- 28. G. B. Gardner, D. Venkataraman, J. S. Moore and S. Lee, *Nature*, 1995, **374**, 792-795.
- 29. Q.-M. Wang and T. C. W. Mak, J. Am. Chem. Soc., 2000, 122, 7608-7609.
- 30. K. Neininger, H. W. Rotter and G. Thiele, Z. Anorg. Allg. Chem., 1996, 622, 1814-1818.
- 31. A. Bacchi, W. Baratta, F. Calderazzo, F. Marchetti and G. Pelizzi, *Inorg. Chem.*, 2002, **41**, 3894-3900.

- 32. A. Bacchi, W. Baratta, F. Calderazzo, F. Marchetti and G. Pelizzi, *Angew. Chem.*, 1994, **106**, 206-207 (See also Angew Chem, Int Ed Engl, 1994, 1933(1992), 1193-1995).
- 33. F. A. Cotton, E. V. Dikarev and M. A. Petrukhina, Angew. Chem., Int. Ed., 2001, 40, 1521-1523.
- 34. H. M. Haendler and P. M. Carkner, J. Solid State Chem., 1979, 29, 35-39.
- 35. W. A. S. Nandana, J. Passmore and P. S. White, J. Chem. Soc., Chem. Commun., 1983, 526-528.
- 36. W. A. S. Nandana, J. Passmore, P. S. White and C. M. Wong, *Inorg. Chem.*, 1989, **28**, 3320-3328.
- 37. R. Faggiani, R. J. Gillespie and J. W. Kolis, J. Chem. Soc., Chem. Commun., 1987, 592-593.
- 38. T. S. Cameron, I. Krossing and J. Passmore, *Inorg. Chem.*, 2001, 40, 4488-4490.
- 39. R. D. Shannon, Acta Crystallogr., Sect. A, 1976, A32, 751-767.
- 40. H. D. B. Jenkins, J. Passmore and L. Glasser, *Inorg. Chem.*, 1999, **38**, 3609-3620.
- 41. U. P. R. M. Preiss, J. M. Slattery and I. Krossing, Ind. Eng. Chem. Res., 2009, 48, 2290-2296.
- 42. S. Berger, S. Braun and H.-O. Kalinowski, *NMR-Spektroskopie von Nichtmetallen 19F-NMR-Spektroskopie*, Georg Thieme Verlag, Stuttgart, 1994.
- 43. A. M. Panich, H. M. Vieth, P. K. Ummat and W. R. Datars, *Physica B Condensed Matter*, 2003, **327**, 102-107.
- 44. B. E. Scruggs and K. K. Gleason, *Macromolecules*, 1992, 25, 1864-1869.
- 45. R. Hagiwara, K. Kitashita, Y. Ito and O. Tamada, Solid State Sci., 2000, 2, 237-241.
- 46. I. Raabe, S. Antonijevic and I. Krossing, *Chem. Eur. J.*, 2007, **13**, 7510-7522.
- 47. A. Reisinger, N. Trapp, C. Knapp, D. Himmel, F. Breher, H. Rüegger and I. Krossing, *Chem. Eur. J.*, 2009, **15**, 9505-9520, S9505/9501-S9505/9569.