Supporting Information for

The synergistic effect of [WZn(VO)₂(ZnW₉O₃₄)₂]¹²⁻ cores and peripheral metal sites in catalytic oxidative cyclization of acetylacetone

Lian-Xu Shi, Xian-Xei Zhang, and Chuan-De Wu* Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China E-mail: cdwu@zju.edu.cn

Experimental Section

All of the chemicals were obtained from commercial sources and were used without further purification, except $K_{12}[WZn(VO)_2(ZnW_9O_{34})_2]\cdot 26H_2O$ (abbreviated as $K_{12}\{V_2Zn_3W_{19}\}$), and $Na_{12}[WZn\{Zn(H_2O)\}_2(ZnW_9O_{34})_2]\cdot 46H_2O$ (abbreviated as $Na_{12}\{Zn_5W_{19}\}$) were synthesized according to the literatures.¹ IR spectra were recorded on KBr pellets with a FTS-40 spectrophotometer. Thermogravimetric analyses (TGA) were carried out under N_2 atmosphere on a NETZSCH STA 409 PC/PG instrument at a heating rate of 10 °C min⁻¹. Powder X-ray diffraction data (PXRD) were recorded on a RIGAKU D/MAX 2550/PC for Cu-Ka ($\lambda = 1.5406$ Å). ¹H NMR spectra were recorded on a 500 MHz spectrometer in CDCl₃ solution and the chemical shifts were reported relative to internal standard TMS (0 ppm).

Single crystal X-ray data collections and structure determinations

The determinations of the unit cells and data collections for the crystals of compounds **1**, **2**, **3**, **I** and **II** were performed on a CrysAlisPro, Oxford Diffraction Ltd. The data of **1**, **2** and **3** were collected using graphite–monochromatic Mo-K α radiation ($\lambda = 0.71073$ Å) at 293 K. The data of **I** and **II** were collected using graphite–monochromatic Cu radiation ($\lambda = 1.54178$ Å) at 293 K. The data sets were corrected by empirical absorption correction.² The structures were solved by direct methods, and refined by full-matrix least-square methods with the SHELX-97 program package.³ All non-hydrogen atoms including solvent molecules were located successfully from Fourier maps and were refined anisotropically.

References:

- 1. C. M. Tourné, G. F. Tourné, F. Zonnevijlle, J. Chem. Soc., Dalton Trans. 1991, 143.
- 2. Oxford Diffraction Ltd. CrysAlisPro, Version 1.171.33.56, 2010.
- 3. G. M. Sheldrick, Program for Structure Refinement, University of Göttingen, Germany, 1997.

Tables:

Compound	1	2	3
Empirical formula	H ₇₄ Mn ₄ O ₁₀₅	H ₁₀₄ Co ₄ K ₂ O ₁₂₁	H ₉₈ K ₂ Ni ₄ O ₁₁₈
Empirical formula	$V_2W_{19}Zn_3$	$V_2W_{19}Zn_3$	$V_2W_{19}Zn_3$
Formula weight	5765.49	6145.89	6090.96
Crystal size /mm ³	$0.38 \times 0.29 \times 0.21$	$0.35 \times 0.21 \times 0.19$	$0.19 \times 0.11 \times 0.09$
Crystal color	Deep brown	Deep red	Deep green
Crystal system	Triclinic	Monoclinic	Monoclinic
Space group	P-1	C2/c	C2/c
a /Å	12.5382(3)	32.2388(9)	32.1482(9)
b / Å	13.9382(4)	14.6184(5)	14.5862(4)
c / Å	16.7244(5)	21.7787(7)	21.7639(6)
$\alpha /^{o}$	84.004(2)	90	90
$\beta /^{o}$	73.969(2)	95.935(2)	96.069(2)
$\gamma /^{\circ}$	63.604(3)	90	90
Volume /Å ³	2515.66(12)	10208.8(6)	10148.3(5)
Z	1	4	4
$\rho_{calcd}/g \text{ cm}^{-3}$	3.806	3.999	3.987
μ/mm^{-1}	23.092	23.020	23.242
F(000)	2556	11040	10936
θ range /°	3.48 to 26.38	3.47 to 26.45	3.15 to 26.37
C	$-15 \le h \le 15$	$-31 \le h \le 39$	$-39 \le h \le 40$
Limiting indices	$-16 \le k \le 17$	$-18 \le k \le 16$	$-16 \le k \le 18$
-	$-20 \le l \le 20$	$-27 \le l \le 23$	$-27 \le l \le 27$
Reflections collected	8157	33261	50152
R(int)	0.0453	0.0564	0.0411
Data / parameters	10260 / 610	10379 / 685	10359 / 658
GOF on F^2	1.332	1.221	1.150
$R_{I}(wR_{2})$ [$I > 2\sigma(I)$]	0.0967 (0.2451)	0.0667 (0.1608)	0.0649 (0.1604)
$R_1(wR_2)$ [all data]	0.1143 (0.2512)	0.0812 (0.1651)	0.0794 (0.1646)
$p = \sum (E - E) / \sum E $	$\mu P = \sum \mu (E^2 - E^2)^2$	$2/\Sigma_{\rm W}(E^2)^{2}$	· · · · ·

 Table S1. Crystal data and structure refinements for 1, 2 and 3.

 $R_{I} = \Sigma(|F_{o}| - |F_{c}|)/\Sigma|F_{o}|, \ wR_{2} = [\Sigma w(F_{o}^{2} - F_{c}^{2})^{2}/\Sigma w(F_{o}^{2})^{2}]^{2}$

Compound	Ι	II			
Empirical formula	$C_8H_{10}O_4$	C ₁₀ H ₁₄ O ₅			
Formula weight	170.16	214.21			
Crystal size /mm	$0.21\times0.18\times0.12$	0.23 imes 0.21 imes 0.11			
Crystal color	Colorless	Colorless			
Crystal system	Monoclinic	Triclinic			
Space group	P2(1)/c	P-1			
a /Å	8.1260(12)	7.4227(4)			
b / Å	13.048(2)	8.4007(6)			
c / Å	8.6210(15)	9.1488(6)			
$\alpha /^{o}$	90	85.546(6)			
β /°	113.676(15)	69.109(6)			
$\gamma /^{\circ}$	90	81.652(5)			
Volume $/Å^3$	837.1(2)	527.12(6)			
Z	4	2			
$\rho_{calcd}/g \text{ cm}^{-3}$	1.350	1.350			
F(000)	360	228			
μ/mm^{-1}	0.928	0.921			
θ range /°	5.95 to 67.15	5.18 to 67.92			
	$-9 \le h \le 9$	$-8 \le h \le 7$			
Limiting indices	$-10 \le k \le 15$	$-10 \le k \le 10$			
	$-6 \le l \le 10$	$-10 \le l \le 10$			
Reflections collected	3545 [R(int) = 0.0408]	3997 [R(int) = 0.0313]			
Data / parameters	1461 / 109	1852 / 136			
GOF on F^2	0.989	1.038			
$R_1(wR_2)$ [$I > 2\sigma(I)$]	0.0482 (0.1211)	0.0592 (0.1770)			
$R_1(wR_2)$ [all data]	0.0726 (0.1342)	0.0767 (0.1930)			
$\overline{R_{l}} = \Sigma(F_{o} - F_{c})/\Sigma F_{o} , \ wR_{2} = [\Sigma w(F_{o}^{2} - F_{c}^{2})^{2}/\Sigma w(F_{o}^{2})^{2}]^{0.5}$					

Table S2. Crystal data and structure refinements for I and II.

Table S3. Bond lengths and bond angles for I.

Bond length	(Å)	Bond length	(Å)
O(1)-C(4)	1.329(3)	C(1)-C(7)	1.501(4)
O(1)-C(1)	1.490(3)	C(1)-C(2)	1.524(3)
O(2)-C(1)	1.371(3)	C(2)-C(3)	1.445(3)
C(8)-C(4)	1.474(3)	C(3)-C(4)	1.361(3)
O(4)-C(2)	1.220(3)	C(3)-C(5)	1.474(3)
O(6)-C(5)	1.226(3)	C(5)-C(6)	1.492(4)
Bond angle	(°)	Bond angle	(°)
C(4)-O(1)-C(1)	108.54(16)	C(4)-C(3)-C(2)	107.12(19)
O(2)-C(1)-O(1)	108.3(2)	C(4)-C(3)-C(5)	125.7(2)
O(2)-C(1)-C(7)	115.11(19)	C(2)-C(3)-C(5)	127.1(2)
O(1)-C(1)-C(7)	107.23(19)	O(1)-C(4)-C(3)	114.82(19)
O(2)-C(1)-C(2)	108.9(2)	O(1)-C(4)-C(8)	115.0(2)
O(1)-C(1)-C(2)	102.53(17)	C(3)-C(4)-C(8)	130.1(2)
C(7)-C(1)-C(2)	113.9(2)	O(6)-C(5)-C(3)	120.2(2)
O(4)-C(2)-C(3)	131.1(2)	O(6)-C(5)-C(6)	122.0(2)
O(4)-C(2)-C(1)	122.2(2)	C(3)-C(5)-C(6)	117.8(2)
C(3)-C(2)-C(1)	106.62(19)		

Bond length	(Å)	Bond length	(Å)
O(1)-C(4)	1.354(3)	C(2)-C(3)	1.509(4)
O(1)-C(1)	1.477(3)	C(2)-C(6)	1.544(4)
O(2)-C(1)	1.387(4)	C(3)-C(4)	1.352(4)
O(3)-C(2)	1.416(3)	C(3)-C(8)	1.441(4)
O(4)-C(6)	1.217(4)	C(4)-C(10)	1.485(4)
O(5)-C(8)	1.238(4)	C(6)-C(7)	1.483(4)
C(1)-C(5)	1.512(4)	C(8)-C(9)	1.503(4)
C(1)-C(2)	1.553(4)		
Bond angle	(°)	Bond angle	(°)
C(4)-O(1)-C(1)	108.6(2)	C(4)-C(3)-C(8)	130.6(3)
O(2)-C(1)-O(1)	107.0(2)	C(4)-C(3)-C(2)	108.5(2)
O(2)-C(1)-C(5)	113.1(2)	C(8)-C(3)-C(2)	120.6(2)
O(1)-C(1)-C(5)	107.8(2)	C(3)-C(4)-O(1)	113.5(2)
O(2)-C(1)-C(2)	108.8(2)	C(3)-C(4)-C(10)	132.9(3)
O(1)-C(1)-C(2)	103.4(2)	O(1)-C(4)-C(10)	113.7(2)
C(5)-C(1)-C(2)	115.9(2)	O(4)-C(6)-C(7)	122.2(3)
O(3)-C(2)-C(3)	109.2(2)	O(4)-C(6)-C(2)	116.6(3)
O(3)-C(2)-C(6)	107.8(2)	C(7)-C(6)-C(2)	121.2(2)
C(3)-C(2)-C(6)	115.9(2)	O(5)-C(8)-C(3)	118.4(3)
O(3)-C(2)-C(1)	110.5(2)	O(5)-C(8)-C(9)	119.8(3)
C(3)-C(2)-C(1)	102.0(2)	C(3)-C(8)-C(9)	121.7(3)
C(6)-C(2)-C(1)	111.3(2)		

Table S4. Bond lengths and bond angles for II.

 Table S5. Selected bond lengths for 1.

Bond length	(Å)	Bond length	(Å)	Bond length	(Å)
W(1)-O(33)	1.739(19)	W(5)-O(20)	2.01(3)	$W(10)-O(25)^{i}$	1.93(3)
W(1)-O(28)	1.85(2)	W(5)-O(15)	2.13(2)	W(10)-O(2)	1.97(3)
W(1)-O(22)	1.87(2)	W(6)-O(23)	1.76(2)	W(10)-O(17)	1.99(2)
W(1)-O(13)	1.945(17)	W(6)-O(26)	1.774(19)	$W(10)-O(17)^{i}$	2.012(19)
W(1)-O(8)	1.990(18)	W(6)-O(4)	1.96(2)	$W(10)-O(7)^{i}$	2.05(2)
W(1)-O(14)	2.238(18)	W(6)-O(16)	1.96(2)	W(10)-O(30)	2.14(2)
W(2)-O(37)	1.71(3)	W(6)-O(28)	2.09(2)	Zn(1)-O(10)	1.89(2)
W(2)-O(2)	1.89(3)	W(6)-O(14)	2.11(2)	Zn(1)-O(15)	1.914(19)
W(2)-O(27)	1.905(19)	W(7)-O(9)	1.72(2)	Zn(1)-O(14)	1.943(18)
W(2)-O(18)	1.99(2)	W(7)-O(8)	1.869(17)	Zn(1)-O(17)	1.971(18)
W(2)-O(11)	2.00(2)	W(7)-O(11)	1.93(2)	V(1)-O(36)	1.630(10)
W(2)-O(10)	2.15(2)	W(7)-O(1)	1.96(2)	V(1)-O(5)	2.06(2)
W(3)-O(21)	1.77(3)	W(7)-O(31)	2.00(2)	V(1)-O(26)	2.09(2)
W(3)-O(12)	1.86(3)	W(7)-O(10)	2.213(19)	$V(1)-O(30)^{i}$	2.16(2)
W(3)-O(7)	1.93(2)	W(8)-O(6)	1.72(2)	$V(1)-O(7)^{i}$	2.17(2)
W(3)-O(29)	1.94(2)	W(8)-O(1)	1.89(2)	V(1)-O(17)	2.167(18)

W(3)-O(38)	1.94(2)	W(8)-O(13)	1.895(17)	Mn(1)-O(32) ⁱⁱ	2.11(2)
W(3)-O(15)	2.15(2)	W(8)-O(20)	1.92(3)	Mn(1)-O(33)	2.17(2)
W(4)-O(3)	1.67(3)	W(8)-O(29)	1.94(2)	Mn(1)-O(41)	2.19(4)
W(4)-O(30)	1.87(2)	W(8)-O(15)	2.23(2)	Mn(1)-O(42)	2.19(4)
W(4)-O(38)	1.91(2)	W(9)-O(32)	1.76(2)	Mn(1)-O(43)	2.19(4)
W(4)-O(18)	1.93(2)	W(9)-O(5)	1.78(2)	Mn(2)-O(34)	2.11(3)
W(4)-O(31)	1.95(2)	W(9)-O(27)	1.90(2)	Mn(2)-O(40)	2.13(4)
W(4)-O(10)	2.19(2)	W(9)-O(16)	1.94(2)	Mn(2)-O(23)	2.18(2)
W(5)-O(35)	1.73(3)	W(9)-O(22)	2.07(2)	Mn(2)-O(39)	2.19(3)
W(5)-O(4)	1.88(2)	W(9)-O(14)	2.125(19)	Mn(2)-O(44)	2.19(4)
W(5)-O(25)	1.92(2)	W(5)-O(12)	1.99(2)	Mn(2)-O(19)	2.21(3)

Symmetry transformations used to generate equivalent atoms: i: -x, -y, -z; ii: -x, -y, -z-1.

Bond angle	(°)	Bond angle	(°)
O(33)-W(1)-O(28)	100.6(11)	O(8)-W(7)-O(10)	87.7(8)
O(33)-W(1)-O(22)	99.1(10)	O(11)-W(7)-O(10)	75.4(8)
O(28)-W(1)-O(22)	95.2(10)	O(1)-W(7)-O(10)	88.3(9)
O(33)-W(1)-O(13)	99.1(10)	O(31)-W(7)-O(10)	73.6(8)
O(28)-W(1)-O(13)	89.5(9)	O(6)-W(8)-O(1)	100.1(11)
O(22)-W(1)-O(13)	160.1(9)	O(6)-W(8)-O(13)	102.3(9)
O(33)-W(1)-O(8)	98.8(10)	O(1)-W(8)-O(13)	86.5(9)
O(28)-W(1)-O(8)	159.6(9)	O(6)-W(8)-O(20)	95.8(11)
O(22)-W(1)-O(8)	88.1(10)	O(1)-W(8)-O(20)	164.0(10)
O(13)-W(1)-O(8)	81.1(9)	O(13)-W(8)-O(20)	91.2(10)
O(33)-W(1)-O(14)	171.5(9)	O(6)-W(8)-O(29)	96.7(10)
O(28)-W(1)-O(14)	74.9(9)	O(1)-W(8)-O(29)	87.2(9)
O(22)-W(1)-O(14)	74.4(8)	O(13)-W(8)-O(29)	160.7(9)
O(13)-W(1)-O(14)	88.2(7)	O(20)-W(8)-O(29)	89.9(10)
O(8)-W(1)-O(14)	86.7(8)	O(6)-W(8)-O(15)	165.7(9)
O(37)-W(2)-O(2)	99.6(13)	O(1)-W(8)-O(15)	89.2(9)
O(37)-W(2)-O(27)	102.8(11)	O(13)-W(8)-O(15)	88.9(8)
O(2)-W(2)-O(27)	90.4(10)	O(20)-W(8)-O(15)	74.9(9)
O(37)-W(2)-O(18)	98.1(11)	O(29)-W(8)-O(15)	72.8(8)
O(2)-W(2)-O(18)	85.3(10)	O(32)-W(9)-O(5)	101.9(11)
O(27)-W(2)-O(18)	159.1(10)	O(32)-W(9)-O(27)	100.3(11)
O(37)-W(2)-O(11)	97.7(13)	O(5)-W(9)-O(27)	94.0(11)
O(2)-W(2)-O(11)	162.1(11)	O(32)-W(9)-O(16)	97.4(10)
O(27)-W(2)-O(11)	89.9(10)	O(5)-W(9)-O(16)	90.5(10)
O(18)-W(2)-O(11)	88.0(9)	O(27)-W(9)-O(16)	160.4(9)
O(37)-W(2)-O(10)	169.5(11)	O(32)-W(9)-O(22)	94.3(10)
O(2)-W(2)-O(10)	86.9(9)	O(5)-W(9)-O(22)	162.8(10)
O(27)-W(2)-O(10)	85.3(9)	O(27)-W(9)-O(22)	88.7(10)
O(18)-W(2)-O(10)	74.1(9)	O(16)-W(9)-O(22)	81.7(9)
O(11)-W(2)-O(10)	75.3(9)	O(32)-W(9)-O(14)	165.0(10)

 Table S6. Selected bond angles for 1.

O(21)-W(3)-O(12)	99.2(10)	O(5)-W(9)-O(14)	89.9(9)
O(21)-W(3)-O(7)	101.7(10)	O(27)-W(9)-O(14)	87.9(9)
O(12)-W(3)-O(7)	90.5(10)	O(16)-W(9)-O(14)	72.9(8)
O(21)-W(3)-O(29)	97.8(11)	O(22)-W(9)-O(14)	73.2(8)
O(12)-W(3)-O(29)	88.7(10)	$O(25)^{i}$ -W(10)-O(2)	96.2(10)
O(7)-W(3)-O(29)	160.4(10)	$O(25)^{i}$ -W(10)-O(17)	166.6(10)
O(21)-W(3)-O(38)	101.6(10)	O(2)-W(10)-O(17)	95.1(9)
O(12)-W(3)-O(38)	159.1(9)	$O(25)^{i}$ -W(10)-O(17)^{i}	93.8(10)
O(7)-W(3)-O(38)	85.8(9)	$O(2)-W(10)-O(17)^{i}$	165.9(8)
O(29)-W(3)-O(38)	87.9(9)	$O(17)-W(10)-O(17)^{i}$	76.5(9)
O(21)-W(3)-O(15)	169.4(10)	$O(25)^{i}-W(10)-O(7)^{i}$	89.5(10)
O(12)-W(3)-O(15)	73.6(9)	$O(2)-W(10)-O(7)^{i}$	96.9(9)
O(7)-W(3)-O(15)	86.3(8)	$O(17)-W(10)-O(7)^{i}$	81.9(8)
O(29)-W(3)-O(15)	74.6(9)	$O(17)^{i}$ -W(10)-O(7) ⁱ	93.1(8)
O(38)-W(3)-O(15)	85.7(9)	$O(25)^{i}$ -W(10)-O(30)	95.7(10)
O(3)-W(4)-O(30)	102.0(12)	O(2)-W(10)-O(30)	88.3(9)
O(3)-W(4)-O(38)	103.6(11)	O(17)-W(10)-O(30)	91.9(9)
O(30)-W(4)-O(38)	87.8(10)	$O(17)^{i}$ -W(10)-O(30)	80.7(8)
O(3)-W(4)-O(18)	95.5(11)	$O(7)^{i}$ -W(10)-O(30)	172.2(10)
O(30)-W(4)-O(18)	88.2(10)	O(10)-Zn(1)-O(15)	108.1(10)
O(38)-W(4)-O(18)	160.9(9)	O(10)-Zn(1)-O(14)	108.3(9)
O(3)-W(4)-O(31)	94.8(11)	O(15)-Zn(1)-O(14)	108.6(9)
O(30)-W(4)-O(31)	163.0(10)	O(10)-Zn(1)-O(17)	111.5(8)
O(38)-W(4)-O(31)	90.7(9)	O(15)-Zn(1)-O(17)	111.5(9)
O(18)-W(4)-O(31)	87.7(10)	O(14)-Zn(1)-O(17)	108.8(8)
O(3)-W(4)-O(10)	165.9(9)	O(36)-V(1)-O(5)	92.6(13)
O(30)-W(4)-O(10)	87.7(9)	O(36)-V(1)-O(26)	94.2(14)
O(38)-W(4)-O(10)	86.7(8)	O(5)-V(1)-O(26)	88.4(10)
O(18)-W(4)-O(10)	74.5(9)	$O(36)-V(1)-O(30)^{i}$	101.1(13)
O(31)-W(4)-O(10)	75.3(8)	$O(5)-V(1)-O(30)^{i}$	166.1(9)
O(35)-W(5)-O(4)	99.7(13)	$O(26)-V(1)-O(30)^{i}$	92.5(10)
O(35)-W(5)-O(25)	103.2(14)	$O(36)-V(1)-O(7)^{i}$	99.6(14)
O(4)-W(5)-O(25)	91.5(10)	$O(5)-V(1)-O(7)^{i}$	93.4(9)
O(35)-W(5)-O(12)	99.4(13)	$O(26)-V(1)-O(7)^{i}$	166.0(9)
O(4)-W(5)-O(12)	160.8(10)	$O(30)^{i}-V(1)-O(7)^{i}$	82.5(9)
O(25)-W(5)-O(12)	85.2(10)	O(36)-V(1)-O(17)	174.6(13)
O(35)-W(5)-O(20)	96.1(13)	O(5)-V(1)-O(17)	89.3(8)
O(4)-W(5)-O(20)	92.0(10)	O(26)-V(1)-O(17)	90.9(9)
O(25)-W(5)-O(20)	159.6(11)	$O(30)^{i}-V(1)-O(17)$	76.9(8)
O(12)-W(5)-O(20)	85.0(10)	$O(7)^{i}-V(1)-O(17)$	75.2(8)
O(35)-W(5)-O(15)	167.7(11)	$O(24)-Mn(1)-O(32)^{ii}$	86.1(10)
O(4)-W(5)-O(15)	89.5(9)	O(24)-Mn(1)-O(33)	176.6(12)
O(25)-W(5)-O(15)	84.5(11)	$O(32)^{ii}-Mn(1)-O(33)$	95.8(9)
O(12)-W(5)-O(15)	71.4(9)	O(24)-Mn(1)-O(41)	92.4(15)
O(20)-W(5)-O(15)	75.4(9)	$O(32)^{ii}-Mn(1)-O(41)$	88.2(15)
O(23)-W(6)-O(26)	103.2(11)	O(33)-Mn(1)-O(41)	84.9(14)
O(23)-W(6)-O(4)	97.7(11)	O(24)-Mn(1)-O(42)	95.1(14)
O(26)-W(6)-O(4)	93.2(11)	$O(32)^{ii}$ -Mn(1)-O(42)	87.8(15)

O(23)-W(6)-O(16)	99.2(11)	O(33)-Mn(1)-O(42)	87.7(13)
O(26)-W(6)-O(16)	94.0(10)	O(41)-Mn(1)-O(42)	171.3(17)
O(4)-W(6)-O(16)	159.6(9)	O(24)-Mn(1)-O(43)	94.8(13)
O(23)-W(6)-O(28)	90.6(10)	$O(32)^{ii}-Mn(1)-O(43)$	179.1(13)
O(26)-W(6)-O(28)	166.1(10)	O(33)-Mn(1)-O(43)	83.2(13)
O(4)-W(6)-O(28)	84.3(9)	O(41)-Mn(1)-O(43)	92(2)
O(16)-W(6)-O(28)	84.2(8)	O(42)-Mn(1)-O(43)	92(2)
O(23)-W(6)-O(14)	162.5(9)	O(34)-Mn(2)-O(40)	92.3(14)
O(26)-W(6)-O(14)	93.1(10)	O(34)-Mn(2)-O(23)	175.5(11)
O(4)-W(6)-O(14)	87.5(8)	O(40)-Mn(2)-O(23)	91.0(12)
O(16)-W(6)-O(14)	73.0(8)	O(34)-Mn(2)-O(39)	94.7(13)
O(28)-W(6)-O(14)	73.2(8)	O(40)-Mn(2)-O(39)	90.5(16)
O(9)-W(7)-O(8)	103.2(10)	O(23)-Mn(2)-O(39)	88.2(11)
O(9)-W(7)-O(11)	95.8(10)	O(34)-Mn(2)-O(44)	89.9(13)
O(8)-W(7)-O(11)	91.3(9)	O(40)-Mn(2)-O(44)	90.8(17)
O(9)-W(7)-O(1)	100.4(10)	O(23)-Mn(2)-O(44)	87.1(11)
O(8)-W(7)-O(1)	86.8(9)	O(39)-Mn(2)-O(44)	175.2(14)
O(11)-W(7)-O(1)	163.7(9)	O(34)-Mn(2)-O(19)	90.9(14)
O(9)-W(7)-O(31)	96.0(10)	O(40)-Mn(2)-O(19)	174.4(14)
O(8)-W(7)-O(31)	160.6(8)	O(23)-Mn(2)-O(19)	86.0(11)
O(11)-W(7)-O(31)	89.0(10)	O(39)-Mn(2)-O(19)	84.7(14)
O(1)-W(7)-O(31)	87.5(10)	O(44)-Mn(2)-O(19)	93.8(14)
O(9)-W(7)-O(10)	166.3(10)		

Symmetry transformations used to generate equivalent atoms: i: -x, -y, -z; ii: -x, -y, -z-1.

Bond length	(Å)	Bond length	(Å)	Bond length	(Å)
W(1)-O(33)	1.721(12)	W(6)-O(12)	1.931(12)	Co(1)-O(43)	2.064(16)
W(1)-O(37)	1.912(12)	W(6)-O(29)	1.935(11)	Co(1)-O(31)	2.069(14)
$W(1)-O(27)^{i}$	1.915(11)	W(6)-O(2)	1.979(13)	Co(1)-O(8)	2.075(16)
W(1)-O(35)	1.933(11)	W(6)-O(11)	2.153(13)	Co(1)-O(39)	2.088(19)
W(1)-O(16)	1.968(10)	W(7)-O(15)	1.751(12)	Co(1)-O(38)	2.09(2)
W(1)-O(9)	2.155(12)	W(7)-O(18)	1.811(11)	Co(1)-O(40)	2.127(19)
W(2)-O(25)	1.723(12)	W(7)-O(20)	1.929(13)	Co(2)-O(15)	2.048(12)
W(2)-O(23)	1.851(13)	W(7)-O(28)	1.958(11)	Co(2)-O(4)	2.047(14)
W(2)-O(7)	1.869(12)	W(7)-O(7)	2.085(11)	Co(2)-O(42)	2.071(15)
W(2)-O(32)	1.958(12)	W(7)-O(13)	2.146(12)	Co(2)-O(21)	2.092(16)
W(2)-O(24)	1.960(11)	W(8)-O(3)	1.716(15)	Co(2)-O(41)	2.103(19)
W(2)-O(13)	2.241(11)	W(8)-O(28)	1.873(10)	Co(2)-O(44)	2.127(15)
W(3)-O(31)	1.750(14)	$W(8)-O(17)^{i}$	1.896(12)	V(1)-O(45)	1.662(9)
W(3)-O(10)	1.798(12)	W(8)-O(36)	1.993(12)	V(1)-O(10)	2.008(14)
W(3)-O(30)	1.932(11)	W(8)-O(37)	2.001(12)	V(1)-O(18)	2.011(13)
W(3)-O(20)	1.991(12)	W(8)-O(9)	2.176(12)	V(1)-O(19)	2.098(12)
W(3)-O(23)	2.082(12)	W(9)-O(26)	1.731(12)	V(1)-O(27)	2.105(12)
W(3)-O(13)	2.104(13)	W(9)-O(22)	1.910(11)	V(1)-O(22) ⁱ	2.119(13)

 Table S7. Selected bond lengths for 2.

Supplementary Material (ESI) for Dalton Transactions
This journal is © The Royal Society of Chemistry 2011

W(A) O(1)	1 729(12)	W(0) O(25)	1 019(12)	V(1) O(46)	227(2)
W(4)-O(1)	1./38(13)	W(9)-O(35)	1.918(12)	K(1)-O(40)	2.37(2)
W(4)-O(24)	1.860(11)	W(9)-O(12)	1.938(14)	K(1)-O(48)	2.42(2)
W(4)-O(34)	1.940(12)	W(9)-O(6)	1.975(11)	K(1)-O(26)	2.430(13)
W(4)-O(6)	1.957(12)	W(9)-O(11)	2.140(11)	K(1)-O(50)	2.44(2)
W(4)-O(2)	1.962(14)	W(10)-O(29)	1.901(13)	$K(1)-O(33)^{ii}$	2.475(14)
W(4)-O(11)	2.206(11)	W(10)-O(17)	1.938(14)	K(1)-O(51)	2.50(2)
W(5)-O(14)	1.755(12)	W(10)-O(19)	2.027(13)	K(1)-O(47)	2.537(16)
W(5)-O(32)	1.870(11)	$W(10)-O(19)^{i}$	2.037(12)	K(1)-O(49)	2.60(2)
W(5)-O(34)	1.926(12)	W(10)-O(22)	2.062(12)	$O(17)-W(8)^{i}$	1.896(12)
W(5)-O(36)	1.933(13)	W(10)-O(27)	2.087(13)	O(19)-Zn(2) ⁱ	2.037(12)
W(5)-O(16)	1.962(12)	Zn(1)-O(13)	1.912(11)	O(19)-W(10) ⁱ	2.037(12)
W(5)-O(9)	2.175(11)	Zn(1)-O(9)	1.916(12)	$O(22)-V(1)^{i}$	2.119(13)
W(6)-O(5)	1.718(15)	Zn(1)-O(11)	1.916(12)	$O(27)-W(1)^{i}$	1.915(11)
W(6)-O(30)	1.903(11)	Zn(1)-O(19)	1.923(10)	$O(33)$ - $K(1)^{iii}$	2.475(14)

Symmetry transformations used to generate equivalent atoms: i: -x+1/2, -y+1/2, -z; ii: -x+1/2, y-1/2, -z+1/2; iii: -x+1/2, y+1/2, -z+1/2.

 Table S8. Selected bond angles for 2.

Bond angle	(°)	Bond angle	(°)
O(33)-W(1)-O(37)	98.9(6)	O(3)-W(8)-O(9)	166.7(6)
$O(33)-W(1)-O(27)^{i}$	101.9(6)	O(28)-W(8)-O(9)	88.7(5)
O(37)-W(1)-O(27) ⁱ	90.0(5)	$O(17)^{i}$ -W(8)-O(9)	86.5(5)
O(33)-W(1)-O(35)	99.8(6)	O(36)-W(8)-O(9)	73.8(5)
O(37)-W(1)-O(35)	161.3(5)	O(37)-W(8)-O(9)	73.1(5)
$O(27)^{i}-W(1)-O(35)$	86.2(5)	O(26)-W(9)-O(22)	100.9(6)
O(33)-W(1)-O(16)	95.0(6)	O(26)-W(9)-O(35)	101.9(6)
O(37)-W(1)-O(16)	89.2(5)	O(22)-W(9)-O(35)	88.2(5)
O(27) ⁱ -W(1)-O(16)	163.0(5)	O(26)-W(9)-O(12)	95.4(6)
O(35)-W(1)-O(16)	89.1(5)	O(22)-W(9)-O(12)	88.8(5)
O(33)-W(1)-O(9)	167.9(5)	O(35)-W(9)-O(12)	162.7(5)
O(37)-W(1)-O(9)	75.3(5)	O(26)-W(9)-O(6)	95.1(5)
$O(27)^{i}-W(1)-O(9)$	88.9(5)	O(22)-W(9)-O(6)	163.9(5)
O(35)-W(1)-O(9)	86.4(5)	O(35)-W(9)-O(6)	90.1(5)
O(16)-W(1)-O(9)	74.5(4)	O(12)-W(9)-O(6)	88.1(6)
O(25)-W(2)-O(23)	100.2(6)	O(26)-W(9)-O(11)	165.3(5)
O(25)-W(2)-O(7)	97.1(6)	O(22)-W(9)-O(11)	89.1(5)
O(23)-W(2)-O(7)	97.3(6)	O(35)-W(9)-O(11)	89.0(5)
O(25)-W(2)-O(32)	99.4(6)	O(12)-W(9)-O(11)	73.9(5)
O(23)-W(2)-O(32)	159.5(5)	O(6)-W(9)-O(11)	74.8(5)
O(7)-W(2)-O(32)	86.2(6)	O(29)-W(10)-O(17)	95.9(6)
O(25)-W(2)-O(24)	100.4(6)	O(29)-W(10)-O(19)	93.5(5)
O(23)-W(2)-O(24)	88.2(6)	O(17)-W(10)-O(19)	167.7(5)
O(7)-W(2)-O(24)	160.5(5)	O(29)-W(10)-O(19) ⁱ	166.9(5)
O(32)-W(2)-O(24)	82.4(5)	O(17)-W(10)-O(19) ⁱ	94.4(5)
O(25)-W(2)-O(13)	170.1(6)	O(19)-W(10)-O(19) ⁱ	77.5(5)
O(23)-W(2)-O(13)	74.5(5)	O(29)-W(10)-O(22)	91.3(5)

O(7)-W(2)-O(13)	75.6(5)	O(17)-W(10)-O(22)	95.3(5)
O(32)-W(2)-O(13)	86.9(5)	O(19)-W(10)-O(22)	92.4(5)
O(24)-W(2)-O(13)	88.0(5)	$O(19)^{i}$ -W(10)-O(22)	79.8(5)
O(31)-W(3)-O(10)	104.4(6)	O(29)-W(10)-O(27)	94.0(5)
O(31)-W(3)-O(30)	99.7(6)	O(17)-W(10)-O(27)	91.4(5)
O(10)-W(3)-O(30)	94.4(6)	O(19)-W(10)-O(27)	80.0(5)
O(31)-W(3)-O(20)	97.2(6)	O(19) ⁱ -W(10)-O(27)	93.7(5)
O(10)-W(3)-O(20)	90.8(6)	O(22)-W(10)-O(27)	171.0(5)
O(30)-W(3)-O(20)	160.5(5)	O(13)-Zn(1)-O(9)	109.6(5)
O(31)-W(3)-O(23)	92.6(6)	O(13)-Zn(1)-O(11)	107.1(5)
O(10)-W(3)-O(23)	162.7(6)	O(9)-Zn(1)-O(11)	107.0(5)
O(30)-W(3)-O(23)	85.4(5)	O(13)-Zn(1)-O(19)	107.4(5)
O(20)-W(3)-O(23)	84.1(5)	O(9)-Zn(1)-O(19)	113.4(5)
O(31)-W(3)-O(13)	163.8(5)	O(11)-Zn(1)-O(19)	112.1(5)
O(10)-W(3)-O(13)	89.5(6)	O(43)-Co(1)-O(31)	90.9(6)
O(30)-W(3)-O(13)	87.2(5)	O(43)-Co(1)-O(8)	178.3(10)
O(20)-W(3)-O(13)	74.0(5)	O(31)-Co(1)-O(8)	88.5(8)
O(23)-W(3)-O(13)	73.3(5)	O(43)-Co(1)-O(39)	89.9(8)
O(1)-W(4)-O(24)	103.2(6)	O(31)-Co(1)-O(39)	96.0(8)
O(1)-W(4)-O(34)	100.0(6)	O(8)-Co(1)-O(39)	91.7(10)
O(24)-W(4)-O(34)	86.7(6)	O(43)-Co(1)-O(38)	92.3(8)
O(1)-W(4)-O(6)	96.0(6)	O(31)-Co(1)-O(38)	87.6(7)
O(24)-W(4)-O(6)	160.4(5)	O(8)-Co(1)-O(38)	86.1(10)
O(34)-W(4)-O(6)	86.2(6)	O(39)-Co(1)-O(38)	175.7(9)
O(1)-W(4)-O(2)	96.6(6)	O(43)-Co(1)-O(40)	90.6(8)
O(24)-W(4)-O(2)	91.3(6)	O(31)-Co(1)-O(40)	175.6(9)
O(34)-W(4)-O(2)	163.3(5)	O(8)-Co(1)-O(40)	89.8(9)
O(6)-W(4)-O(2)	90.3(6)	O(39)-Co(1)-O(40)	88.1(10)
O(1)-W(4)-O(11)	166.1(6)	O(38)-Co(1)-O(40)	88.1(10)
O(24)-W(4)-O(11)	87.9(5)	O(15)-Co(2)-O(4)	88.1(6)
O(34)-W(4)-O(11)	88.8(5)	O(15)-Co(2)-O(42)	93.3(6)
O(6)-W(4)-O(11)	73.7(5)	O(4)-Co(2)-O(42)	178.6(7)
O(2)-W(4)-O(11)	74.6(5)	O(15)-Co(2)-O(21)	90.8(6)
O(14)-W(5)-O(32)	103.0(6)	O(4)-Co(2)-O(21)	91.4(7)
O(14)-W(5)-O(34)	100.5(6)	O(42)-Co(2)-O(21)	88.8(8)
O(32)-W(5)-O(34)	87.8(6)	O(15)-Co(2)-O(41)	90.7(6)
O(14)-W(5)-O(36)	94.8(6)	O(4)-Co(2)-O(41)	87.3(8)
O(32)-W(5)-O(36)	89.8(5)	O(42)-Co(2)-O(41)	92.5(9)
O(34)-W(5)-O(36)	164.7(5)	O(21)-Co(2)-O(41)	178.0(8)
O(14)-W(5)-O(16)	96.0(5)	O(15)-Co(2)-O(44)	176.7(6)
O(32)-W(5)-O(16)	160.9(5)	O(4)-Co(2)-O(44)	88.9(6)
O(34)-W(5)-O(16)	88.1(5)	O(42)-Co(2)-O(44)	89.7(6)
O(36)-W(5)-O(16)	89.3(5)	O(21)-Co(2)-O(44)	87.9(7)
O(14)-W(5)-O(9)	165.7(6)	O(41)-Co(2)-O(44)	90.6(7)
O(32)-W(5)-O(9)	87.2(5)	O(45)-V(1)-O(10)	95.4(7)
O(34)-W(5)-O(9)	89.9(5)	O(45)-V(1)-O(18)	93.9(7)
O(36)-W(5)-O(9)	74.9(5)	O(10)-V(1)-O(18)	89.2(5)
O(16)-W(5)-O(9)	74.2(4)	O(45)-V(1)-O(19)	173.1(6)

O(5)-W(6)-O(30)	100.6(6)	O(10)-V(1)-O(19)	90.7(5)
O(5)-W(6)-O(12)	99.3(6)	O(18)-V(1)-O(19)	89.4(5)
O(30)-W(6)-O(12)	160.1(6)	O(45)-V(1)-O(27)	98.5(6)
O(5)-W(6)-O(29)	100.2(6)	O(10)-V(1)-O(27)	92.3(6)
O(30)-W(6)-O(29)	90.0(5)	O(18)-V(1)-O(27)	167.3(6)
O(12)-W(6)-O(29)	86.1(5)	O(19)-V(1)-O(27)	78.0(5)
O(5)-W(6)-O(2)	97.7(6)	$O(45)-V(1)-O(22)^{i}$	96.8(6)
O(30)-W(6)-O(2)	89.9(5)	$O(10)-V(1)-O(22)^{i}$	167.8(5)
O(12)-W(6)-O(2)	87.9(5)	$O(18)-V(1)-O(22)^{i}$	91.2(5)
O(29)-W(6)-O(2)	161.9(6)	$O(19)-V(1)-O(22)^{i}$	77.1(5)
O(5)-W(6)-O(11)	170.2(5)	$O(27)-V(1)-O(22)^{i}$	84.7(5)
O(30)-W(6)-O(11)	86.6(5)	O(46)-K(1)-O(48)	141.8(8)
O(12)-W(6)-O(11)	73.7(5)	O(46)-K(1)-O(26)	140.1(7)
O(29)-W(6)-O(11)	86.5(5)	O(48)-K(1)-O(26)	73.2(6)
O(2)-W(6)-O(11)	75.5(5)	O(46)-K(1)-O(50)	75.9(8)
O(15)-W(7)-O(18)	105.2(6)	O(48)-K(1)-O(50)	107.7(8)
O(15)-W(7)-O(20)	96.4(6)	O(26)-K(1)-O(50)	73.8(6)
O(18)-W(7)-O(20)	93.6(6)	O(46)-K(1)-O(33) ⁱⁱ	77.2(7)
O(15)-W(7)-O(28)	99.3(6)	O(48)-K(1)-O(33) ⁱⁱ	77.9(6)
O(18)-W(7)-O(28)	91.5(6)	$O(26)-K(1)-O(33)^{ii}$	141.2(5)
O(20)-W(7)-O(28)	161.7(5)	O(50)-K(1)-O(33) ⁱⁱ	140.8(6)
O(15)-W(7)-O(7)	92.7(5)	O(46)-K(1)-O(51)	75.7(8)
O(18)-W(7)-O(7)	162.0(5)	O(48)-K(1)-O(51)	142.2(7)
O(20)-W(7)-O(7)	85.3(5)	O(26)-K(1)-O(51)	75.2(6)
O(28)-W(7)-O(7)	84.5(5)	O(50)-K(1)-O(51)	82.6(8)
O(15)-W(7)-O(13)	163.8(5)	$O(33)^{ii}-K(1)-O(51)$	117.3(6)
O(18)-W(7)-O(13)	88.7(5)	O(46)-K(1)-O(47)	118.6(7)
O(20)-W(7)-O(13)	74.3(5)	O(48)-K(1)-O(47)	82.4(6)
O(28)-W(7)-O(13)	88.2(5)	O(26)-K(1)-O(47)	75.0(5)
O(7)-W(7)-O(13)	73.7(4)	O(50)-K(1)-O(47)	142.5(7)
O(3)-W(8)-O(28)	102.1(7)	$O(33)^{ii}-K(1)-O(47)$	76.1(5)
$O(3)-W(8)-O(17)^{i}$	101.0(7)	O(51)-K(1)-O(47)	69.7(7)
$O(28)-W(8)-O(17)^{i}$	90.9(6)	O(46)-K(1)-O(49)	77.2(7)
O(3)-W(8)-O(36)	97.8(6)	O(48)-K(1)-O(49)	68.2(7)
O(28)-W(8)-O(36)	91.7(5)	O(26)-K(1)-O(49)	117.0(6)
O(17) ⁱ -W(8)-O(36)	160.0(6)	O(50)-K(1)-O(49)	73.1(7)
O(3)-W(8)-O(37)	96.4(6)	$O(33)^{ii}-K(1)-O(49)$	73.6(6)
O(28)-W(8)-O(37)	161.5(5)	O(51)-K(1)-O(49)	147.1(7)
$O(17)^{i}-W(8)-O(37)$	85.1(5)	O(47)-K(1)-O(49)	141.3(7)
O(36)-W(8)-O(37)	86.2(5)		

Symmetry transformations used to generate equivalent atoms: i: -x+1/2, -y+1/2, -z; ii: -x+1/2, y-1/2, -z+1/2; iii: -x+1/2, y+1/2, -z+1/2.

Bond length	(Å)	Bond length	(Å)	Bond length	(Å)
W(1)-O(33)	1.723(13)	W(6)-O(29)	1.916(12)	Zn(1)-O(11)	1.915(11)
W(1)-O(37)	1.914(12)	W(6)-O(30)	1.924(12)	Zn(1)-O(19)	1.923(11)
W(1)-O(35)	1.916(11)	W(6)-O(12)	1.927(11)	Zn(1)-O(9)	1.925(12)
$W(1)-O(27)^{i}$	1.929(11)	W(6)-O(5)	1.731(15)	Zn(1)-O(13)	1.932(11)
W(1)-O(16)	1.974(12)	W(6)-O(2)	1.987(12)	Ni(1)-O(31)	2.026(13)
W(1)-O(9)	2.161(12)	W(6)-O(11)	2.158(12)	Ni(1)-O(43)	2.034(17)
W(2)-O(25)	1.739(13)	W(7)-O(15)	1.759(12)	Ni(1)-O(8)	2.042(19)
W(2)-O(7)	1.882(12)	W(7)-O(18)	1.819(12)	Ni(1)-O(40)	2.066(18)
W(2)-O(23)	1.882(12)	W(7)-O(28)	1.954(11)	Ni(1)-O(38)	2.071(18)
W(2)-O(24)	1.955(11)	W(7)-O(20)	1.958(12)	Ni(1)-O(39)	2.073(18)
W(2)-O(32)	1.963(12)	W(7)-O(7)	2.080(12)	Ni(2)-O(15)	2.010(12)
W(2)-O(13)	2.212(12)	W(7)-O(13)	2.133(12)	Ni(2)-O(4)	2.023(15)
W(3)-O(31)	1.757(13)	W(8)-O(3)	1.727(14)	Ni(2)-O(42)	2.044(15)
W(3)-O(10)	1.803(12)	W(8)-O(28)	1.876(10)	Ni(2)-O(41)	2.055(16)
W(3)-O(30)	1.927(12)	$W(8)-O(17)^{i}$	1.899(13)	Ni(2)-O(44)	2.074(15)
W(3)-O(20)	1.968(12)	W(8)-O(36)	1.990(11)	Ni(2)-O(21)	2.086(15)
W(3)-O(23)	2.044(12)	W(8)-O(37)	2.000(12)	V(1)-O(45)	1.654(9)
W(3)-O(13)	2.121(12)	W(8)-O(9)	2.170(12)	V(1)-O(18)	1.998(12)
W(4)-O(1)	1.729(15)	W(9)-O(26)	1.719(13)	V(1)-O(10)	2.004(13)
W(4)-O(24)	1.878(11)	W(9)-O(22)	1.902(11)	V(1)-O(19)	2.095(12)
W(4)-O(34)	1.933(11)	W(9)-O(35)	1.926(11)	V(1)-O(27)	2.099(12)
W(4)-O(6)	1.939(13)	W(9)-O(12)	1.938(12)	$V(1)-O(22)^{i}$	2.110(13)
W(4)-O(2)	1.954(12)	W(9)-O(6)	1.978(12)	K(1)-O(46)	2.41(2)
W(4)-O(11)	2.210(11)	W(9)-O(11)	2.136(11)	K(1)-O(48)	2.42(2)
W(5)-O(14)	1.757(12)	W(10)-O(29)	1.909(13)	K(1)-O(26)	2.448(14)
W(5)-O(32)	1.866(11)	W(10)-O(17)	1.936(14)	K(1)-O(50)	2.448(19)
W(5)-O(34)	1.926(12)	W(10)-O(19) ⁱ	2.026(13)	K(1)-O(33) ⁱⁱⁱ	2.457(14)
W(5)-O(36)	1.959(12)	W(10)-O(19)	2.037(13)	K(1)-O(51)	2.50(2)
W(5)-O(16)	1.960(12)	W(10)-O(27)	2.070(12)	K(1)-O(47)	2.529(17)
W(5)-O(9)	2.165(12)	W(10)-O(22)	2.072(11)	K(1)-O(49)	2.592(19)

 Table S9. Selected bond lengths for 3.

Symmetry transformations used to generate equivalent atoms: i: -x+1/2, -y+1/2, -z; ii: -x+1/2, y+1/2, -z; iii: -x+1/2, y+1/2, -z+1/2; iii: -x+1/2, y-1/2, -z+1/2.

Bond angle	(°)	Bond angle	(°)
O(33)-W(1)-O(37)	98.9(6)	O(36)-W(8)-O(9)	73.9(4)
O(33)-W(1)-O(35)	100.2(6)	O(37)-W(8)-O(9)	73.0(5)
O(37)-W(1)-O(35)	160.8(5)	O(26)-W(9)-O(22)	101.5(6)
$O(33)-W(1)-O(27)^{i}$	101.8(6)	O(26)-W(9)-O(35)	101.9(6)
$O(37)-W(1)-O(27)^{i}$	89.4(5)	O(22)-W(9)-O(35)	88.5(5)
$O(35)-W(1)-O(27)^{i}$	86.9(5)	O(26)-W(9)-O(12)	96.1(6)
O(33)-W(1)-O(16)	95.3(6)	O(22)-W(9)-O(12)	88.8(5)
O(37)-W(1)-O(16)	90.0(5)	O(35)-W(9)-O(12)	162.0(5)
O(35)-W(1)-O(16)	88.0(5)	O(3)-W(8)-O(9)	166.2(6)
$O(27)^{i}$ -W(1)-O(16)	162.8(5)	O(28)-W(8)-O(9)	88.4(5)
O(33)-W(1)-O(9)	167.6(6)	$O(17)^{i}$ -W(8)-O(9)	87.3(5)
O(37)-W(1)-O(9)	74.9(5)	O(26)-W(9)-O(6)	95.2(6)
O(35)-W(1)-O(9)	86.2(5)	O(22)-W(9)-O(6)	163.2(5)
$O(27)^{i}-W(1)-O(9)$	89.0(5)	O(35)-W(9)-O(6)	89.1(5)
O(16)-W(1)-O(9)	74.2(5)	O(12)-W(9)-O(6)	88.3(5)
O(25)-W(2)-O(7)	97.3(6)	O(26)-W(9)-O(11)	165.5(6)
O(25)-W(2)-O(23)	100.8(6)	O(22)-W(9)-O(11)	89.0(5)
O(7)-W(2)-O(23)	95.8(5)	O(35)-W(9)-O(11)	88.2(5)
O(25)-W(2)-O(24)	99.9(6)	O(12)-W(9)-O(11)	73.9(5)
O(7)-W(2)-O(24)	161.4(5)	O(6)-W(9)-O(11)	74.3(5)
O(23)-W(2)-O(24)	87.8(5)	O(29)-W(10)-O(17)	95.4(6)
O(25)-W(2)-O(32)	99.4(6)	O(29)-W(10)-O(19) ⁱ	166.4(5)
O(7)-W(2)-O(32)	87.7(5)	O(17)-W(10)-O(19) ⁱ	95.1(5)
O(23)-W(2)-O(32)	158.9(5)	O(29)-W(10)-O(19)	93.5(5)
O(24)-W(2)-O(32)	82.6(5)	O(17)-W(10)-O(19)	168.0(5)
O(25)-W(2)-O(13)	169.9(5)	$O(19)^{i}$ -W(10)-O(19)	77.4(5)
O(7)-W(2)-O(13)	75.0(5)	O(29)-W(10)-O(27)	94.7(5)
O(23)-W(2)-O(13)	74.0(5)	O(17)-W(10)-O(27)	91.6(5)
O(24)-W(2)-O(13)	88.6(5)	$O(19)^{i}$ -W(10)-O(27)	93.5(5)
O(32)-W(2)-O(13)	86.9(5)	O(19)-W(10)-O(27)	79.7(4)
O(31)-W(3)-O(10)	104.6(6)	O(29)-W(10)-O(22)	90.6(5)
O(31)-W(3)-O(30)	100.0(6)	O(17)-W(10)-O(22)	95.8(5)
O(10)-W(3)-O(30)	94.2(6)	$O(19)^{i}$ -W(10)-O(22)	79.8(5)
O(31)-W(3)-O(20)	95.3(6)	O(19)-W(10)-O(22)	92.1(5)
O(10)-W(3)-O(20)	91.4(5)	O(27)-W(10)-O(22)	170.4(5)
O(30)-W(3)-O(20)	161.8(5)	O(11)-Zn(1)-O(19)	112.5(5)
O(31)-W(3)-O(23)	92.3(6)	O(11)-Zn(1)-O(9)	107.0(5)
O(10)-W(3)-O(23)	162.9(5)	O(19)-Zn(1)-O(9)	113.5(5)
O(30)-W(3)-O(23)	85.4(5)	O(11)-Zn(1)-O(13)	107.6(5)
O(20)-W(3)-O(23)	84.1(5)	O(19)-Zn(1)-O(13)	108.0(5)
O(31)-W(3)-O(13)	162.5(6)	O(9)-Zn(1)-O(13)	108.1(5)
O(10)-W(3)-O(13)	89.9(5)	O(31)-Ni(1)-O(43)	91.3(6)
O(30)-W(3)-O(13)	88.5(5)	O(31)-Ni(1)-O(8)	87.1(8)
O(20)-W(3)-O(13)	74.2(5)	O(43)-Ni(1)-O(8)	178.3(9)
() (-) -()			

Table S10.Selected bond angles for 3.

O(23)-W(3)-O(13)	73.0(5)	O(31)-Ni(1)-O(40)	176.9(8)
O(1)-W(4)-O(24)	102.9(6)	O(43)-Ni(1)-O(40)	91.1(8)
O(1)-W(4)-O(34)	100.0(7)	O(8)-Ni(1)-O(40)	90.6(9)
O(24)-W(4)-O(34)	86.5(6)	O(31)-Ni(1)-O(38)	88.4(7)
O(1)-W(4)-O(6)	96.6(6)	O(43)-Ni(1)-O(38)	93.2(8)
O(24)-W(4)-O(6)	160.0(5)	O(8)-Ni(1)-O(38)	87.1(10)
O(34)-W(4)-O(6)	85.9(6)	O(40)-Ni(1)-O(38)	89.4(9)
O(1)-W(4)-O(2)	97.0(6)	O(31)-Ni(1)-O(39)	93.1(7)
O(24)-W(4)-O(2)	91.0(5)	O(43)-Ni(1)-O(39)	89.1(8)
O(34)-W(4)-O(2)	162.9(5)	O(8)-Ni(1)-O(39)	90.6(10)
O(6)-W(4)-O(2)	90.9(5)	O(40)-Ni(1)-O(39)	89.0(10)
O(1)-W(4)-O(11)	166.7(6)	O(38)-Ni(1)-O(39)	177.1(8)
O(24)-W(4)-O(11)	87.9(5)	O(15)-Ni(2)-O(4)	88.1(6)
O(34)-W(4)-O(11)	88.3(5)	O(15)-Ni(2)-O(42)	91.8(6)
O(6)-W(4)-O(11)	73.4(4)	O(4)-Ni(2)-O(42)	178.7(8)
O(2)-W(4)-O(11)	74.8(5)	O(15)-Ni(2)-O(41)	90.4(6)
O(14)-W(5)-O(32)	103.0(6)	O(4)-Ni(2)-O(41)	88.8(8)
O(14)-W(5)-O(34)	100.4(6)	O(42)-Ni(2)-O(41)	92.5(8)
O(32)-W(5)-O(34)	87.4(6)	O(15)-Ni(2)-O(44)	177.0(6)
O(14)-W(5)-O(36)	95.3(6)	O(4)-Ni(2)-O(44)	89.2(6)
O(32)-W(5)-O(36)	89.8(5)	O(42)-Ni(2)-O(44)	90.9(6)
O(34)-W(5)-O(36)	164.3(5)	O(41)-Ni(2)-O(44)	90.8(7)
O(14)-W(5)-O(16)	96.0(5)	O(15)-Ni(2)-O(21)	90.5(6)
O(32)-W(5)-O(16)	161.0(5)	O(4)-Ni(2)-O(21)	89.0(7)
O(34)-W(5)-O(16)	87.9(5)	O(42)-Ni(2)-O(21)	89.7(8)
O(36)-W(5)-O(16)	89.8(5)	O(41)-Ni(2)-O(21)	177.6(8)
O(14)-W(5)-O(9)	165.8(5)	O(44)-Ni(2)-O(21)	88.2(7)
O(32)-W(5)-O(9)	87.2(5)	O(45)-V(1)-O(18)	93.7(6)
O(34)-W(5)-O(9)	89.8(5)	O(45)-V(1)-O(10)	95.5(6)
O(36)-W(5)-O(9)	74.6(5)	O(18)-V(1)-O(10)	89.2(5)
O(16)-W(5)-O(9)	74.4(5)	O(45)-V(1)-O(19)	173.2(6)
O(5)-W(6)-O(29)	100.4(7)	O(18)-V(1)-O(19)	89.9(5)
O(5)-W(6)-O(30)	99.8(6)	O(10)-V(1)-O(19)	90.3(5)
O(29)-W(6)-O(30)	90.2(6)	O(45)-V(1)-O(27)	98.5(6)
O(5)-W(6)-O(12)	99.5(6)	O(18)-V(1)-O(27)	167.6(5)
O(29)-W(6)-O(12)	86.0(5)	O(10)-V(1)-O(27)	91.9(5)
O(30)-W(6)-O(12)	160.7(5)	O(19)-V(1)-O(27)	77.8(5)
O(5)-W(6)-O(2)	97.7(6)	$O(45)-V(1)-O(22)^{i}$	96.7(6)
O(29)-W(6)-O(2)	161.6(5)	$O(18)-V(1)-O(22)^{i}$	91.8(5)
O(30)-W(6)-O(2)	89.7(6)	$O(10)-V(1)-O(22)^{i}$	167.7(5)
O(12)-W(6)-O(2)	88.0(5)	$O(19)-V(1)-O(22)^{i}$	77.4(5)
O(5)-W(6)-O(11)	170.2(6)	$O(27)-V(1)-O(22)^{i}$	84.5(5)
O(29)-W(6)-O(11)	86.3(5)	O(46)-K(1)-O(48)	141.5(7)
O(30)-W(6)-O(11)	87.3(5)	O(46)-K(1)-O(26)	140.3(6)
O(12)-W(6)-O(11)	73.7(5)	O(48)-K(1)-O(26)	72.8(5)
O(2)-W(6)-O(11)	75.3(5)	O(46)-K(1)-O(50)	75.9(7)
O(15)-W(7)-O(18)	104.5(6)	O(48)-K(1)-O(50)	107.3(7)
O(15)-W(7)-O(28)	99.5(6)	O(26)-K(1)-O(50)	73.4(6)

O(18)-W(7)-O(28)	92.3(5)	O(46)-K(1)-O(33) ⁱⁱⁱ	77.0(6)
O(15)-W(7)-O(20)	96.8(6)	O(48)-K(1)-O(33) ⁱⁱⁱ	78.2(6)
O(18)-W(7)-O(20)	93.1(5)	O(26)-K(1)-O(33) ⁱⁱⁱ	141.5(5)
O(28)-W(7)-O(20)	160.9(5)	O(50)-K(1)-O(33) ⁱⁱⁱ	140.7(6)
O(15)-W(7)-O(7)	92.9(5)	O(46)-K(1)-O(51)	75.5(7)
O(18)-W(7)-O(7)	162.6(5)	O(48)-K(1)-O(51)	142.7(6)
O(28)-W(7)-O(7)	85.3(5)	O(26)-K(1)-O(51)	76.0(6)
O(20)-W(7)-O(7)	84.1(5)	O(50)-K(1)-O(51)	82.4(7)
O(15)-W(7)-O(13)	163.7(5)	$O(33)^{iii}$ -K(1)-O(51)	117.4(6)
O(18)-W(7)-O(13)	89.7(5)	O(46)-K(1)-O(47)	119.9(7)
O(28)-W(7)-O(13)	87.6(5)	O(48)-K(1)-O(47)	81.7(6)
O(20)-W(7)-O(13)	74.1(5)	O(26)-K(1)-O(47)	74.7(5)
O(7)-W(7)-O(13)	73.0(5)	O(50)-K(1)-O(47)	142.3(7)
O(3)-W(8)-O(28)	102.3(6)	$O(33)^{iii}$ -K(1)-O(47)	76.6(5)
$O(3)-W(8)-O(17)^{i}$	101.1(7)	O(51)-K(1)-O(47)	70.7(7)
O(28)-W(8)-O(17) ⁱ	91.5(6)	O(46)-K(1)-O(49)	76.2(7)
O(3)-W(8)-O(36)	96.7(6)	O(48)-K(1)-O(49)	69.0(6)
O(28)-W(8)-O(36)	91.7(5)	O(26)-K(1)-O(49)	116.4(6)
O(17) ⁱ -W(8)-O(36)	160.8(5)	O(50)-K(1)-O(49)	72.1(7)
O(3)-W(8)-O(37)	96.7(6)	$O(33)^{iii}$ -K(1)-O(49)	74.1(5)
O(28)-W(8)-O(37)	161.0(5)	O(51)-K(1)-O(49)	145.7(7)
$O(17)^{i}$ -W(8)-O(37)	84.1(5)	O(47)-K(1)-O(49)	141.9(6)
O(36)-W(8)-O(37)	86.7(5)		

Symmetry transformations used to generate equivalent atoms: i: -x+1/2, -y+1/2, -z; ii: -x+1/2, y+1/2, -z+1/2; iii: -x+1/2, y-1/2, -z+1/2.

Entry	Catalyst	\mathbf{I}^{b}	\mathbf{H}^{b}
1	MnCl ₂ ·4H ₂ O	0	0
2	CoCl ₂ ·6H ₂ O	0	0
3	NiCl ₂ ·6H ₂ O	0	0
4	$Na_{12}\{Zn_5W_{19}\}$	0	0
5	$K_{12}{V_2Zn_3W_{19}}$	46	0
6	$K_{12}{V_2Zn_3W_{19}} + MnCl_2$	44.8	$0^{\rm c}$
7	$K_{12}{V_2Zn_3W_{19}} + CoCl_2$	40.3	$0^{\rm c}$
8	$K_{12}{V_2Zn_3W_{19}} + NiCl_2$	46.6	0^{c}

Table S11. Oxidative cyclization of acetylacetone catalyzed by various catalysts.^a

^{*a*}Catalyst (0.01 mmol), acetylacetone (0.5 mmol) and H_2O_2 (1.0 mmol) were stirred in acetonitrile (0.8 mL) at 60 °C for 12 h. ^bIsolated yield (%). ^cThe addictives are 0.04 mmol.

			н
Entry	Catalyst	Yield(%) ^b	Yield(%) ^c
1	-	0	0
2	$\{V_2Zn_3W_{19}\}$	10	100
3	1	20	100
4	2	10	80
5	3	10	80
6	MnCl ₂	100	_ ^d
7	CoCl ₂	0	0^{d}
8	NiCl ₂	0	0^{d}
9	${Zn_5W_{19}}$	0	0

Table S12.	Catalytic	transformation	from II to 1	I catalyzed b	y various catalysts. ^a
	2			2	2

^{*a*}Catalyst (0.01 mmol) and **II** (0.5 mmol) were stirred in acetonitrile (0.8 mL) at 60 °C for 12 h. ^{*b*}Without H_2O_2 under insert N_2 atmosphere. ^{*c*}In the presence of H_2O_2 (0.5 mmol). ^{*d*}Catalyst loading: 0.04 mmol.

Figures:

Fig. S1. ORTEP representations of the structures for **I** (a) and **II** (b). The ellipsoids are shown at 30% probability.

Fig. S2. Ball-and-stick and polyhedral representations of the polyoxoanion $[WZn(VO)_2(ZnW_9O_{34})_2]^{12-}$ (O, red ball; V, gray ball; {ZnO₄}, lavender tetrahedron).

Fig. S3. A view of the polyoxoanion $\{[Mn_4(H_2O)_{18}][WZn(VO)_2(ZnW_9O_{34})_2]\}^{4-}$ in **1** (Orange balls represent manganese atoms).

Fig. S4. The infinite 1D polymeric anion of Mn^{2+} ions (pale blue octahedra) linking up $[WZn(VO)_2(ZnW_9O_{34})_2]^{12-}$.

Fig. S5. The 3D supramolecular framework of 1 as viewed down the *b* axis.

Fig. S6. Packing diagram of **1** as viewed down the *c* axis (the dashed lines represent hydrogen bonds).

Fig. S7. A view of the coordination mode of $[WZn(VO)_2(ZnW_9O_{34})_2]^{12}$ in **2** (Light green balls represent potassium atoms; Violet balls represent cobalt atoms).

Fig. S8. A view of the lamellar network of the polyanion $[WZn(VO)_2(ZnW_9O_{34})_2]^{12}$ linked by potassium ions in **2**.

Fig. S9. Side view of the lamellar network in 2 as viewed down b axis (Violet octahedra represent cobalt ions).

Fig. S10. The 3D supramolecular network of 2 as viewed down the *a* axis.

Fig. S11. The 3D supramolecular network of 2 as viewed down the *b* axis.

Fig. S12. The 3D supramolecular network of 2 as viewed down the *c* axis.

Fig. S13. Polyhedral and ball-and-stick representations of the polyoxoanion $[WZn(VO)_2(ZnW_9O_{34})_2]^{12-}$ coordinated by potassium and cobalt cations in compound 3 (Light green balls represent potassium atoms; Lime octahedra represent nickel ions).

Fig. S14. A view of the lamellar network of $[{Ni(H_2O)_5}_4][WZn(VO)_2(ZnW_9O_{34})_2]$ linked by K⁺ cations in **3**.

Fig. S15. IR spectrum of compound 1.

Fig. S16. IR spectrum of compound 2.

Fig. S17. IR spectrum of compound 3.

Fig. S18. TGA results of 1.

Fig. S19. TGA results of 2.

Fig. S20. TGA results of 3.

Fig. S21. Powder X-ray diffraction patterns for compound 1.

Fig. S22. Powder X-ray diffraction patterns for compound 2.

Fig. S23. Powder X-ray diffraction patterns for compound 3.