Supporting Information for:

Synthesis and coordination chemistry of N^1 , N^2 , N^3 -trisubstituted benzamidrazones

Mark R. Crimmin,^a Denise A. Colby,^a Jonathan A. Ellman,*^b and Robert G. Bergman*^a

^aDepartment of Chemistry, University of California, Berkeley, California 94720 ^bDepartment of Chemistry, Yale University, New Haven, Connecticut 06520. Tel: 203-432-3647; E-mail: jonathan.ellman@yale.edu

Experimental

General experimental: Unless otherwise indicated, operations were performed under anhydrous conditions and inert atmosphere employing standard Schlenk-line and glovebox techniques. Glassware was dried in an oven at 160 °C overnight or flame-dried prior to use. NMR spectra were acquired using Bruker AV-300, AVQ-400 and AVB-400 spectrometers. Chemical shifts are reported as part per million (ppm, δ) and ¹H and ¹³C chemical shifts are referenced to the corresponding residual protic solvent resonance. Mass spectral data were obtained at the QB3 Mass Spectrometry Facility operated by the College of Chemistry, University of California, Berkeley. Fast atom bombardment mass spectra were recorded on a Micromass ZAB2-EQ magnetic sector instrument. Infrared spectral data were recorded on a Thermo Scientific Nicolet iS10 spectrometer fitted with a Smart OMNI-transmission or Smart iTR device as either KBR discs, neat solids or thin films. Elemental analyses were recorded by the UC Berkeley micro-mass facility. Solvents were dried through a push-still system via passage through alumina. [(cymene)RuCl₂]₂ was purchased from Sigma-Aldrich and used without further purification. $[Cp^*MCl_2]_2$ (M = Rh, Ir) were synthesised by literature methods.¹ NaOAc purchased from Sigma-Aldrich used as received lithium was and and hexamethyldisilazide (LiHMDS) was freshly prepared from *n*-BuLi and hexamethyldisilazane and recrystallised before use. Whilst compounds 1e and 1f are literature known, for completion, detailed characterisation data are provided in the supporting information.²

Representative procedure for synthesis of N^{1} , N^{2} , N^{3} -benzamidrazones: On a Schlenkline, a Schlenk-tube was flame-dried under vacuum and N-methylbenzamide (6.25 g, 46.6 mmol) added under a purge of argon. Dry toluene (30 mL) was added via cannula and solid PCl₅ (9.72 g, 46.6 mmol) was added to the resultant slurry. The reaction mixture was warmed until homogeneous and stirred for 2 h at room temperature, after which the solvent was removed in vacuo. Additional dry toluene (2 x 20 mL) was added and removed under reduced pressure to azetropically distil any remaining POCl₃. N-Methylbenzimidoyl chloride was obtained as a slightly yellow oil and used directly. A toluene solution of the imidoyl chloride in dry toluene (20 mL) was added to a mixture of triethylamine (7.1 g, 69.9 mmol) and 1,1-dimethylhydrazine (2.80 g, 46.6 mmol) in toluene solution (20 mL) in a separate Schlenk-tube. Upon addition, an exothermic reaction was observed (the Schlenk tube became hot) along with the precipitation of a colourless solid from solution. The tube was sealed and after 16-48 h at room temperature the reaction was guenched by dilution with toluene (100 mL) and H_2O (100 mL). The phases were separated and the aqueous layer back-extracted with DCM (100 mL), the combined organics were dried over magnesium sulphate and the solvent removed under vacuum to give the crude product as viscous yellow oil.

1e: Isolation by chromatography on silica gel using a 95:4:1 mixture of dichloromethane:methanol:NH₄OH_(aq) as an elutent gave 1e (1.28 g, 5.06 mmol, 21 %) as a light yellow oil . ¹H NMR (400 MHz, 298 K, C₆D₆) δ 2.56 (s, 2H, -N*Me*₂), 4.04 (d, 2H, *J* = 6.8 Hz, C*H*₂Ph), 6.63 (broad t, 1H, *J* = 6.8 Hz, -N*H*), 7.05-7.07 (m, 2H, Ar*H*), 7.12-7.24 (m, 6H, Ar*H*), 7.66-7.68 (m, 2H, Ar*H*); ¹³C NMR (100 MHz, 298 K, C₆D₆) δ 47.5, 48.5, 127.5, 127.6, 129.1, 129.2, 129.8, 134.9, 141.0, 162.5; Infrared (solid, cm⁻¹) 3305, 2976, 2855, 1599, 1570, 1496; m/z (ESI, +ve) 254 (100 %, [M+H]⁺), 209 (10 %, [M-N(CH₃)₂]⁺); HR-MS (ESI, +ve) calcd. for C₁₆H₂₀N₃ 254.1652 found 254.1646.²

1f: Isolation by chromatography on silica gel gave **1f** as a colourless solid (2.31 g, 9.67 mmol, 48 %) using a 95:4:1 mixture of dichloromethane:methanol:NH₄OH as an elutent. X-ray quality crystals could be isolated by recrystallisation from hexane at - 35 °C. ¹H NMR (400 MHz, 298 K, C₆D₆) δ 2.49 (s, 6H, -N*Me*₂), 6.53 (d, 2H, *J* = 7.2, Ar*H*), 6.69 (dd, 1H, *J* = 7.6 and 7.6 Hz, Ar*H*), 6.85 (dd, 2H, *J* = 7.6 and 8.0 Hz), 6.96-7.01 (m, 3H, Ar*H*), 7.67 (d, 2H, *J* = 8.0 Hz, Ar*H*), 8.01 (broad s, 1H, N*H*); ¹³C NMR (100 MHZ, 298 K, C₆D₆) δ 47.4, 121.2, 122.6, 128.2, 129.3, 129.5, 130.1, 134.6, 142.0, 157.2; Infrared (solid, cm⁻¹) 3311, 3037, 2855, 2820, 1594, 1561, 1496, 1367; m/z (ESI, +ve) 240 (40 %, [M+H]⁺), 195 (100 %, [M-N(CH₃)₂]); HR-MS (ESI, +ve) calcd. for C₁₅H₁₈N₃ 240.1495 found 240.1493.²

Figure S1. Comparison of solid-state and DFT (B3LYP, 6,31G+(d,p)) data for compound 1f, bond lengths listed in Angstroms

References

- 1 J. W. Kang, K. Moseley, and P. M. Maitlis, J. Am. Chem. Soc. 1969, 91, 5970.
- 2 (a) R. F. Smith, D. S. Johnson, C. L. Hyde, T. C. Rosenthal, A. C. Bates, J. Org. Chem., 1971, 36, 1155; (b) R. F. Smith, D. S. Johnson, R. A. Abgott, M. J. Madden,

J. Org. Chem. 1973, **38**, 1344; (c) R. F. Smith, R. R. Soelch, T. P. Feltz, M. J. Martinelli and S. M. Geer, J. Heterocyclic Chem., 1981, **18**, 319.

4.05 4.03 -2.56

C₆D₆, 400 MHz, 298 K

 C_6D_6 , 400 MHz, 298 K

--2.49

~					
4	0 N N 10 00	0 0 6 M N N	<pre>> ></pre>	0 N 10	0044
	44444000	n 4 n n n n	<u>∞</u> . ω	00 0	n n n n
~	NNNNNNN		m m	NNN	
					\sim

CD_2CI_2 , 400 MHz, 298 K

0 8 8 8 7 9 5	0 0 5	- M-10040	ы
\neg	m m O	N 00000 N	$\infty \infty$
ファファファ	ഗഗഗ	ρ	-
	\searrow		\searrow

 CD_2Cl_2 , 400 MHz, 298 K

0 % N 4 M M N N	2	5 0	4
	\sim	66	9
			-
ファファファフ	ъ	5 5	
		\mathbf{n}	

CD_2Cl_2 , 400 MHz, 298 K

N ∩	2100 04 m 21	ΝS	94	S	0 1	044m00	жлбжо <u>н</u> и ж		8025
-	ഗ പം റ തെതത	-	9	6	∞∞		~~~ ~~~~~	S	2012
$\infty \infty$	0000 <i>4</i> 1/	90	ഗവ	4	44	44444		Η	00111
\searrow		\leq	\leq	L					

CDCl₃, 400 MHz, 298 K

