Supporting Information

Ditopic Hydridoborates and Hydridoboranes: Bridging Ligands in Coordination Polymers and Versatile Hydroboration Reagents

Daniel Franz, Michael Bolte, Hans-Wolfram Lerner, and Matthias Wagner*

Content:

X-ray crystal structure analyses of $3,4,5$, and $\left(\mathbf{L i}(\text { thf })_{2}\right)_{2}[6]$

X-ray crystal structure analyses of $3,4,5$, and $\left(\mathbf{L i}(t h f)_{2}\right)_{2}[6]$

Experimental Details. Data were collected on a STOE IPDS II two-circle diffractometer with graphite-monochromated $\operatorname{Mo} K_{\alpha}$ radiation ($\lambda=0.71073 \AA$). An empirical absorption correction was performed for $\mathbf{4}$ using the MULABS ${ }^{[1]}$ option in PLATON ${ }^{[2]}$. The structures were solved by direct methods using the program SHELXS ${ }^{[3]}$ and refined against F^{2} with full-matrix leastsquares techniques using the program SHELXL-97 $7^{[4]}$.

Compound 3 crystallises with two crystallographically independent half-molecules in the asymmetric unit $\left(\mathbf{3}_{\mathrm{A}}, \mathbf{3}_{\mathbf{B}}\right)$. In 5 , three atoms of an n-hexyl chain are disordered over two sites with a site occupation factor of $0.69(1)$ for the major occupied site. The disordered atoms in 5 were refined isotropically. The crystals of 5 degraded upon cooling and had therefore to be measured at 293 K , which, together with the disorder, explains the poor figures of merit.

CCDC reference numbers: 793266 (3), 793267 (4), 793268 (5), and $793269\left(\left(\operatorname{Li}(\mathrm{thf})_{2}\right)_{2}[6]\right)$.
[1] R. H. Blessing, Acta Crystallogr. Sect. A 1995, 51, 33-38. [2] A. L. Spek, J. Appl. Cryst. 2003, 36, 7-13. [3] G. M. Sheldrick, Acta Crystallogr. Sect. A 1990, 46, 467-473. [4] G. M. Sheldrick, SHELXL-97. A Program for the Refinement of Crystal Structures, Universität Göttingen, 1997.

Figure 1S: Molecular structure and numbering scheme of compound $\mathbf{3}_{\mathbf{A}}$. Displacement ellipsoids are drawn at the 50% probability level. Selected bond lengths (\AA), bond angles (deg), and torsion angles (deg): $\mathrm{B}(1)-\mathrm{O}(1) 1.368(2), \mathrm{B}(1)-\mathrm{O}(2) 1.367(2), \mathrm{B}(1)-\mathrm{C}(31) 1.567(2) ; \mathrm{O}(1)-\mathrm{B}(1)-\mathrm{O}(2)$ $113.9(1), \mathrm{O}(1)-\mathrm{B}(1)-\mathrm{C}(31) \quad 122.5(1), \mathrm{O}(2)-\mathrm{B}(1)-\mathrm{C}(31)$ 123.6(1); $\mathrm{O}(2)-\mathrm{B}(1)-\mathrm{C}(31)-\mathrm{C}(32)$ $-16.6(2)$. Note: Compound 3 crystallises with two crystallographically independent halfmolecules in the asymmetric unit $\left(\mathbf{3}_{\mathrm{A}}, \mathbf{3}_{\mathrm{B}}\right)$. Since all key structure parameters of $\mathbf{3}_{\mathrm{A}}$ and $\mathbf{3}_{\mathrm{B}}$ are very similar, only the data of $\mathbf{3}_{\mathrm{A}}$ are given here.

Figure 2S: Molecular structure and numbering scheme of compound 4. Displacement ellipsoids are drawn at the 50% probability level. Selected bond length (\AA), bond angles (deg), and torsion angle (deg): $\operatorname{Br}(1)-\mathrm{C}(1) 1.901(2) ; \operatorname{Br}(1)-\mathrm{C}(1)-\mathrm{C}(2) 117.2(1), \operatorname{Br}(1)-\mathrm{C}(1)-\mathrm{C}(3 \mathrm{~A}) 119.8(1)$, $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(3 \mathrm{~A}) 122.9(2) ; \mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5) 0.1(2)$. Symmetry transformation used to generate equivalent atoms: $\mathrm{A}:-\mathrm{x},-\mathrm{y},-\mathrm{z}+1$.

Figure 3S: Molecular structure and numbering scheme of compound 5. Displacement ellipsoids are drawn at the 50% probability level. Selected bond lengths (\AA), bond angles (deg), and torsion angles (deg): $\mathrm{B}(1)-\mathrm{O}(1) 1.362(3), \mathrm{B}(1)-\mathrm{O}(2) 1.349(4), \mathrm{B}(1)-\mathrm{C}(1) 1.571(4) ; \mathrm{O}(1)-\mathrm{B}(1)-\mathrm{O}(2)$ 112.8(2), $\mathrm{O}(1)-\mathrm{B}(1)-\mathrm{C}(1) 120.4(2), \mathrm{O}(2)-\mathrm{B}(1)-\mathrm{C}(1) 126.8(2) ; \mathrm{O}(1)-\mathrm{B}(1)-\mathrm{C}(1)-\mathrm{C}(2) 8.7(4)$, $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5) 92.8(4)$.

Figure 4S: Molecular structure of $\left(\operatorname{Li}(\operatorname{thf})_{2}\right)_{2}[6]$; hydrogen atoms attached to carbon have been omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level. Selected bond lengths (\AA), atom \cdots atom distances (\AA), angles (deg), and dihedral angle $(\operatorname{deg}): ~ B(1)-\mathrm{C}(1)=$ $1.615(2), \mathrm{B}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})=1.618(2), \mathrm{B}(1) \cdots \operatorname{Li}(1) 2.448(1), \mathrm{B}(1) \cdots \operatorname{Li}(2) 2.516(4), \mathrm{B}(1 \mathrm{~A}) \cdots \mathrm{Li}(1)$ 2.492(5), $\quad \mathrm{B}(1 \mathrm{~A}) \cdots \mathrm{Li}(2) \quad 2.443(1), \quad \mathrm{Li}(1) \cdots \mathrm{Li}(2) \quad 3.135(4) ; \quad \mathrm{B}(1) \cdots \mathrm{Li}(1) \cdots \mathrm{B}(1 \mathrm{~A}) \quad 101.5(1)$, $\mathrm{B}(1) \cdots \operatorname{Li}(2) \cdots \mathrm{B}(1 \mathrm{~A}) \quad 101.0(1), \quad \operatorname{Li}(1) \cdots \mathrm{B}(1) \cdots \operatorname{Li}(2) \quad 78.3(1), \quad \operatorname{Li}(1) \cdots \mathrm{B}(1 \mathrm{~A}) \cdots \operatorname{Li}(2) \quad 78.9(1) ;$ $\mathrm{C}(1) \mathrm{C}(2) \mathrm{C}(3) / / \mathrm{C}(1 \mathrm{~A}) \mathrm{C}(2 \mathrm{~A}) \mathrm{C}(3 \mathrm{~A}) 7.0$.

Table 1S: Crystallographic Data for 3 and 4.

	3	4
formula	$\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{~B}_{2} \mathrm{O}_{4}$	$\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{Br}_{2}$
fw	330.02	404.22
colour, shape	colourless, block	colourless, plate
temp (K)	173(2)	173(2)
cryst. syst.	triclinic	triclinic
space group	$P \overline{1}$	$P \overline{1}$
$a(\AA)$	8.3824(8)	6.6943(6)
$b(\AA)$	9.8427(9)	7.8948(8)
$c(\AA)$	12.8041(12)	9.8024(9)
α (deg)	102.329(7)	109.190(7)
β (deg)	96.038(8)	99.292(7)
$\gamma(\mathrm{deg})$	110.013(7)	108.450(7)
$V\left(\AA^{3}\right)$	951.26(15)	443.27(7)
Z	2	1
$D_{\text {calcd. }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.152	1.514
$F(000)$	356	206
$\mu\left(\mathrm{mm}^{-1}\right)$	0.077	4.563
cryst. size (mm)	$0.25 \times 0.24 \times 0.22$	$0.25 \times 0.25 \times 0.13$
reflections collected	14687	7617
indep. reflns ($R_{\text {int }}$)	3545 (0.0378)	1798 (0.0594)
data/restraints/params	3545 /0/218	1798/0/92
GOOF on F^{2}	1.024	1.077
$R 1$, wR2 ($I>2 \sigma(I)$)	0.0385, 0.0928	0.0243, 0.0592
$R 1, \mathrm{w} R 2$ (all data)	0.0494, 0.0973	0.0257, 0.0597
Largest diff peak and hole $\left(\mathrm{e}^{-3}\right)$	0.234 and -0.156	0.383 and -0.545

Table 2S: Crystallographic Data for 5 and $\left(\operatorname{Li}(\mathrm{thf})_{2}\right)_{2}[\mathbf{6}]$.

	5	$\left(\mathrm{Li}(\mathrm{thf})_{2}\right)_{2}[\mathbf{6}]$
formula	$\mathrm{C}_{30} \mathrm{H}_{52} \mathrm{~B}_{2} \mathrm{O}_{4}$	$\mathrm{C}_{34} \mathrm{H}_{66} \mathrm{~B}_{2} \mathrm{Li}_{2} \mathrm{O}_{4}$
fo	498.34	574.37
colour, shape	colourless, block	colourless, needle
temp (K)	293(2)	173(2)
cryst. syst.	triclinic	triclinic
space group	$P \overline{1}$	$P \overline{1}$
$a(\AA)$	7.6693(9)	9.2666(10)
$b(\AA)$	9.4074(10)	14.2673(15)
$c(\AA)$	11.9721(13)	15.9830(19)
α (deg)	76.715(8)	67.763(8)
β (deg)	86.255(9)	76.707(9)
$\gamma(\mathrm{deg})$	73.941(8)	75.464(9)
$V\left(\AA^{3}\right)$	807.84(16)	1871.7(4)
Z	1	2
$D_{\text {calcd. }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.024	1.019
$F(000)$	274	636
$\mu\left(\mathrm{mm}^{-1}\right)$	0.064	0.062
cryst. size (mm)	$0.51 \times 0.48 \times 0.39$	$0.32 \times 0.14 \times 0.13$
reflections collected	13355	11646
indep. reflns ($R_{\text {int }}$)	2851 (0.0754)	6579 (0.0788)
data/restraints/params	2851/0/163	6579/0/381
GOOF on F^{2}	1.112	0.829
$R 1$, wR2 ($I>2 \sigma(I)$)	0.0841, 0.2535	0.0572, 0.0961
$R 1$, wR2 (all data)	0.1003, 0.2677	0.1275, 0.1117
Largest diff peak and hole $\left(\mathrm{e}^{-3}\right)$	0.368 and -0.284	0.233 and -0.196

