Electronic Supplementary Information

Forward Molecular Design for Highly Efficient OLED Emitters: A Theoretical Analysis of Photophysical Properties of Platinum(II) Complexes with N-Heterocyclic Carbene Ligands

Yong Wu, Shui-Xing Wu, Hai-Bin Li, Yun Geng, Zhong-Min Su*

Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024,

China

Author for correspondence: Prof. Zhong-Min Su. E-mail: zmsu@nenu.edu.cn

Table S1. The optimized S₀ geometric parameters of 5 obtained by different functionals.

		G	ЪА	meta-GGA	Expt.	
	BP86	PBE	mPBE	PW91	TPSS	
Pt-C:1	2.052	2.049	2.052	2.048	2.055	2.024
Pt-C:2	2.052	2.049	2.052	2.048	2.055	2.028
Pt-C:3	2.052	2.049	2.052	2.048	2.055	2.028
Pt-C:4	2.052	2.049	2.052	2.048	2.055	2.025
C:1-Pt-C:4	180.0	180.0	180.0	180.0	180.0	180.0
C: ₂ -Pt-C: ₃	180.0	180.0	180.0	180.0	180.0	180.0
C:1-Pt-C:3	95.6	96.5	96.6	96.5	96.7	95.8
C: ₂ -Pt-C: ₄	96.6	96.5	96.6	96.5	96.7	95.8
$N_1-C_5-N_2$	109.5	109.6	109.6	109.6	109.3	108.7
$N_3-C_6-N_4$	109.5	109.6	109.6	109.6	109.3	108.7

^{*} Email Address: zmsu@nenu.edu.cn

Figure S1. The truncated models, and the frontier molecular orbitals of non-truncated model 7.

6

7

8

Table S2. The optimized S_0 geometrical parameters of 7 and the non-truncated model, together with the experimental values.

	7	non-truncated	Expt.
Pt-C:1	1.996	2.000	1.980
Pt-C:2	1.996	2.000	1.969
Pt-C:3	1.996	2.000	1.978
Pt-C: ₄	1.996	2.000	1.973
C:1-Pt-C:4	180.0	179.5	179.0
C:2-Pt-C:3	180.0	179.5	178.8
C:1-Pt-C:3	90.0	90.0	90.2
C:2-Pt-C:4	90.0	90.0	90.6
$N_1-C_5-N_2$	114.6	110.7	110.9
N ₃ -C ₆ -N ₄	114.6	110.7	110.3
N ₅ -C ₇ -N ₆	114.6	110.7	110.7
N ₇ -C ₈ -N ₈	114.6	110.7	110.9
D _{NHC1-NHC2}	180.0	175.5	178.1
D _{NHC2-NHC3}	180.0	175.4	175.8
D _{NHC3-NHC4}	180.0	175.4	176.0
D _{NHC4-NHC1}	180.0	175.5	178.0

Table S3. The lowest unoccupied molecular orbital (LUMO) compositions (%) in the ground state for tetracarbene

complexes 5-8.

	5	6	7	8
6p _z (Pt)	12.63	10.51	12.72	6.13
p(C: _{NHC})	25.16	31.40	32.67	16.29

Table S4. The topologica	l properties invo	lving platinum	at the BCP of th	he S_0 and T_1 of 1-8 .
--------------------------	-------------------	----------------	------------------	------------------------------------

		(2 1)	- ()	2	2	2	∇^2		$U(\pi)$	$\mathbf{H}(\mathbf{x})$	$C(\pi)$	$C(\lambda)$	V(n)	$\mathbf{V}(\mathbf{x}) = (\mathbf{x})$	ATTONIC
1	C	(5, -1) Pt C:	$\rho(r_c)$	Λ ₁	Λ ₂	Λ ₃	$\frac{v \rho_c}{0.410}$	3	$\frac{\Pi(I_c)}{\Omega(\Omega)}$	$H(r_c)/\rho(r_c)$	$O(I_c)$	$\frac{G(f_c)}{\rho(f_c)}$	$\frac{V(I_c)}{0.222}$	$\frac{V(r_c)/\rho(r_c)}{1.027}$	$\Delta H(r_c)/\rho(r_c)$
1	\mathbf{S}_0	Pt-C.	0.137	-0.145	-0.134	0.089	0.410	0.080	-0.060	-0.439	0.105	1.100	-0.225	-1.027	
		Pt-C.2 Pt Cl	0.157	-0.143	-0.134	0.089	0.410	0.087	-0.000	-0.439	0.105	1.109	-0.225	-1.027	
		Pt-Cl	0.091	-0.077	-0.072	0.485	0.336	0.072	-0.025	-0.271	0.109	1.195	-0.133	-1.466	
	T,	Pt-C:	0.130	-0.138	-0.130	0.405	0.330	0.072	-0.055	-0.418	0.167	1.195	-0.221	-1 699	-4 60%
	1	Pt-C:2	0.130	-0.138	-0.130	0.718	0.450	0.057	-0.055	-0.418	0.167	1.201	-0.221	-1 700	-4 72%
		Pt-Cl	0.071	-0.060	-0.059	0.329	0.210	0.011	-0.016	-0.221	0.068	0.963	-0.084	-1 185	-18 58%
		Pt-Cl ₂	0.071	-0.060	-0.060	0.331	0.211	0.006	-0.016	-0.225	0.069	0.970	-0.085	-1 196	-16.63%
2	S_0	Pt-C:	0.154	-0.172	-0.159	0.813	0.483	0.085	-0.069	-0.447	0.190	1.231	-0.258	-1.678	10.0070
_	0	Pt-C:2	0.154	-0.169	-0.160	1.383	0.484	0.056	-0.068	-0.444	0.189	1.231	-0.258	-1.674	
		Pt-Cl ₁	0.089	-0.078	-0.073	0.481	0.330	0.069	-0.023	-0.262	0.106	1.190	-0.129	-1.453	
		Pt-Cl ₂	0.089	-0.078	-0.074	0.481	0.329	0.048	-0.024	-0.266	0.106	1.191	-0.129	-1.457	
	T_1	Pt-C:	0.127	-0.140	-0.123	0.658	0.395	0.135	-0.048	-0.375	0.147	1.150	-0.194	-1.525	-16.16%
		Pt-C:2	0.145	-0.162	-0.147	0.796	0.487	0.100	-0.061	0.420	0.183	1.258	-0.244	-1.678	-5.26%
		Pt-Cl ₁	0.091	-0.083	-0.080	0.508	0.344	0.035	-0.024	-0.266	0.110	1.211	-0.135	-1.477	1.98%
		Pt-Cl ₂	0.073	-0.064	-0.062	0.330	0.205	0.032	-0.017	-0.234	0.068	0.938	-0.085	-1.172	-12.12%
3	S_0	Pt-C:1	0.136	-0.137	-0.108	0.664	0.419	0.267	-0.054	-0.398	0.159	1.170	-0.213	-1.569	
		Pt-C:2	0.136	-0.138	-0.104	0.661	0.419	0.326	-0.054	-0.398	0.159	1.170	-0.213	-1.567	
		Pt-Cl	0.103	-0.092	-0.088	0.556	0.376	0.043	-0.031	-0.303	0.125	1.217	-0.156	-1.520	
		Pt-N	0.115	-0.113	-0.112	0.761	0.536	0.015	-0.032	-0.279	0.166	1.444	-0.198	-1.723	
	T_1	Pt-C:1	0.135	-0.139	-0.101	0.699	0.460	0.376	-0.054	-0.399	0.169	1.252	-0.222	-1.650	0.16%
		Pt-C:2	0.134	-0.140	-0.107	0.706	0.459	0.310	-0.053	-0.392	0.167	1.247	-0.220	-1.639	-1.43%
		Pt-Cl	0.078	-0.067	-0.051	0.344	0.225	0.311	-0.018	-0.237	0.075	0.964	-0.093	-1.201	-21.35%
	_	Pt-N	0.084	-0.078	-0.074	0.472	0.320	0.060	-0.019	-0.222	0.099	1.177	-0.117	-1.399	-20.68%
4	S_0	Pt-C:1	0.139	-0.159	-0.148	0.744	0.437	0.072	-0.057	-0.408	0.166	1.195	-0.223	-1.603	
		Pt-C:2	0.139	-0.153	-0.139	0.728	0.436	0.103	-0.057	-0.410	0.166	1.195	-0.223	-1.605	
		Pt-Cl	0.103	-0.096	-0.084	0.591	0.411	0.140	-0.031	-0.302	0.134	1.295	-0.165	-1.597	
	T	Pt-N	0.141	-0.152	-0.148	0.938	0.639	0.028	-0.049	-0.345	0.208	1.481	-0.257	-1.826	12(0)
	\mathbf{I}_1	Pt-C:	0.144	-0.184	-0.159	0.742	0.399	0.159	-0.061	-0.426	0.161	1.121	-0.222	-1.54/	4.36%
		Pt-C:2	0.144	-0.1/1	-0.100	0.737	0.400	0.028	-0.061	-0.425	0.101	1.120	-0.222	-1.546	3.5/%
		Pt-CI	0.107	-0.098	-0.088	0.598	0.412	0.115	-0.034	-0.314	0.137	1.278	-0.1/0	-1.592	4.25%
-	c	Pt-N	0.128	-0.149	-0.138	0.813	0.526	0.074	-0.042	-0.326	0.173	1.352	-0.215	-1.6/8	-3.33%
5	\mathbf{S}_0	Pt-C:	0.132	-0.142	-0.133	0.000	0.390	0.071	-0.055	-0.414	0.152	1.157	-0.207	-1.5/1	
		Pt-C.2	0.132	-0.138	-0.134	0.679	0.408	0.033	-0.050	-0.383	0.152	1.157	-0.203	-1.540	
		Pt-C.3	0.132	-0.138	-0.134	0.079	0.408	0.033	-0.050	-0.383	0.152	1.157	-0.203	-1.540	
	Т	Pt-C.4	0.132	-0.142	-0.133	0.000	0.390	0.071	-0.055	-0.414	0.152	1.157	-0.207	-1.571	1 830/
	11	Pt-C:	0.139	-0.150	-0.149	0.702	0.397	0.049	-0.000	-0.433	0.159	1.151	-0.220	-1.551	4.69%
		Pt-C:2	0.138	-0.150	-0.149	0.714	0.415	0.009	-0.050	-0.401	0.159	1.150	-0.215	-1.551	4.09%
		Pt-C:	0.139	-0.156	-0 149	0.701	0.397	0.009	-0.060	-0.435	0.159	1.150	-0.220	-1 586	4.83%
6	S	Pt-C:	0.131	-0.142	-0.131	0.679	0.397	0.049	-0.051	-0.387	0.153	1.151	-0.203	-1 548	4.0570
U	50	Pt-C:	0.131	-0.138	-0.137	0.683	0.409	0.001	-0.050	-0.383	0.152	1.162	-0.203	-1 544	
		$Pt-C_2$	0.132	-0 139	-0.137	0.690	0.414	0.012	-0.051	-0.385	0.152	1 168	-0.205	-1 553	
		Pt-C:4	0.132	-0.142	-0.131	0.685	0.412	0.086	-0.051	-0.388	0.154	1.167	-0.205	-1.555	
	T_1	Pt-C:	0.132	-0.145	-0.131	0.691	0.414	0.103	-0.051	-0.390	0.155	1.178	-0.206	-1.568	0.86%
		Pt-C:2	0.117	-0.136	-0.124	0.565	0.305	0.095	-0.041	-0.354	0.118	1.009	-0.159	-1.364	-7.31%
		Pt-C:3	0.122	-0.140	-0.088	0.550	0.322	0.598	-0.044	-0.362	0.125	1.025	-0.169	-1.387	-5.83%
		Pt-C:₄	0.118	-0.123	-0.118	0.632	0.392	0.045	-0.042	-0.351	0.139	1.179	-0.181	-1.530	-9.43%
7	S_0	Pt-C:	0.148	-0.162	-0.111	0.736	0.463	0.451	-0.065	-0.437	0.180	1.221	-0.245	-1.659	
		Pt-C:2	0.148	-0.161	-0.113	0.738	0.464	0.433	-0.064	-0.436	0.180	1.221	-0.245	-1.657	
		Pt-C:3	0.148	-0.161	-0.114	0.738	0.464	0.417	-0.065	-0.437	0.180	1.221	-0.245	-1.659	
		Pt-C:4	0.148	-0.161	-0.113	0.736	0.463	0.428	-0.065	-0.439	0.180	1.221	-0.245	-1.660	
	T_1	Pt-C:1	0.153	-0.171	-0.120	0.762	0.470	0.425	-0.070	-0.453	0.187	1.220	-0.257	-1.673	3.58%
		Pt-C:2	0.153	-0.171	-0.122	0.764	0.471	0.406	-0.069	-0.452	0.187	1.221	-0.256	-1.673	3.72%
		Pt-C:3	0.153	-0.171	-0.121	0763	0.470	0.409	-0.070	-0.453	0.187	1.221	-0.257	-1.674	3.81%
		Pt-C:4	0.153	-0.171	-0.121	0.761	0.469	0.418	-0.070	-0.455	0.187	1.220	-0.257	-1.674	3.64%
8	S_0	Pt-C:1	0.134	-0.142	-0.092	0.630	0.395	0.539	-0.053	-0.399	0.152	1.139	-0.205	-1.539	
		Pt-C:2	0.134	-0.142	-0.092	0.630	0.395	0.539	-0.053	-0.399	0.152	1.139	-0.205	-1.539	
		Pt-C:3	0.134	-0.142	-0.092	0.630	0.396	0.540	-0.053	-0.399	0.152	1.140	-0.206	-1.539	
		Pt-C:4	0.134	-0.142	-0.092	0.630	0.395	0.539	-0.053	-0.399	0.152	1.139	-0.205	-1.539	
	T_1	Pt-C:1	0.137	-0.149	-0.099	0.646	0.398	0.501	-0.056	-0.410	0.156	1.135	-0.212	-1.545	2.79%
		Pt-C:2	0.137	-0.149	-0.099	0.646	0.398	0.501	-0.056	-0.410	0.156	1.136	-0.212	-1.546	2.92%
		Pt-C:3	0.137	-0.149	-0.099	0.646	0.398	0.501	-0.056	-0.410	0.156	1.136	-0.212	-1.546	2.84%
		Pt-C:4	0.137	-0.149	-0.099	0.646	0.398	0.501	-0.056	-0.410	0.156	1.135	-0.212	-1.545	2.83%

 $\nabla^2 \rho_c =$ Laplacian of charge denity at the BCP. $\lambda_1, \lambda_2, \lambda_3 =$ eigenvalues of $\nabla^2 \rho_c$ ($\nabla^2 \rho_c = \lambda_1 + \lambda_2 + \lambda_3$). $\varepsilon =$ bond ellipticity. $G(\mathbf{r}_c) =$ electronic kinetic energy density at the BCP. $V(\mathbf{r}_c) =$ electronic potential energy density at the BCP. $H(\mathbf{r}_c) =$ the total electronic energy density ($H(\mathbf{r}_c) = G(\mathbf{r}_c) + V(\mathbf{r}_c)$). $\Delta H(\mathbf{r}_c)/\rho(\mathbf{r}_c) = (T_1 \cdot S_0)/S_0 \times 100\%$.

Figure S3. The localization and delocalization of sigma Pt-C: in occupied orbitals of S_0 state for tetracarbene complexes 5-8.

State	E/nm(eV)	f	Config. (CI coeff.)	Assignment
\mathbf{S}_1	331(3.74)	0.0015	$H \rightarrow L+1(0.997)$	MLCT/XLCT
S_4	309(4.01)	0.0269	H-1→L+1(0.967)	MLCT/XLCT
S_9	282(4.40)	0.0033	H-2→L+1(0.994)	MLCT
S_{12}	272(4.56)	0.0118	H-4→L(0.968)	XMCT
S_{15}	262(4.73)	0.0122	H-5→L(0.948)	LMCT
S_{16}	261(4.75)	0.2422	H-3→L+1(0.904)	MLCT/XLCT
S_{33}	233(5.33)	0.0157	H-7→L+1(0.908)	XLCT
S_{47}	213(5.81)	0.0166	H-2→L+6(0.967)	MLCT
S_{50}	207(5.98)	0.0210	H-3→L+7(0.914)	MLCT/XLCT

Table S5. Transition energies calculated at the optimized S₀ geometry of 1 in the gas phase.

Table S6. Transition energies calculated at the optimized S₀ geometry of 2 in the gas phase.

		2	a a (a	
State	E/nm(eV)	f	Config. (CI coeff.)	Assignment
\mathbf{S}_1	360(3.44)	0.0130	$H \rightarrow L(0.784)$	XLCT/MLCT
			H-2→L(0.195)	XLCT/MLCT
S_2	356(3.48)	0.0106	H-2→L(0.802)	XLCT/MLCT
			H→L(0.186)	XLCT/MLCT
S_4	329(3.77)	0.0381	H-3→L(0.815)	XLCT/XMCT
S_9	308(4.03)	0.0135	$H\rightarrow L+2(0.875)$	XLCT/MLCT/MC
\mathbf{S}_{14}	300(4.14)	0.0232	H-1→L+2(0.834)	XLCT/MC
S_{15}	293(4.24)	0.0227	H-3→L+2(0.813)	XLCT/XMCT
S_{17}	291(4.26)	0.0109	H-4→L(0.950)	MLCT
S ₂₁	269(4.62)	0.0109	H-2→L+4(0.946)	XLCT/MLCT/MC
S_{26}	259(4.78)	0.0249	H-3→L+4(0.572)	XLCT/XMCT
			H-4→L+2(0.268)	MLCT/MXCT/MC
S_{28}	258(4.80)	0.0326	H-4→L+2(0.494)	MLCT/MXCT/MC
			H-5→L(0.298)	XLCT/MLCT/ILCT
S ₂₉	254(4.87)	0.0186	H-6→L(0.788)	XLCT/ILCT
S_{32}	239(5.18)	0.0125	H-5→L+1(0.678)	XLCT/MLCT/ILCT
			H-6→L+3(0.290)	XLCT/MLCT/ILCT
S_{41}	230(5.38)	0.0121	H-2→L+7(0.911)	XLCT/MLCT
S_{42}	229(5.43)	0.0528	H-5→L+2(0.383)	XLCT/MC
			H-4→L+5(0.364)	MLCT
S_{44}	226(5.48)	0.0385	H-4→L+5(0.602)	MLCT
			H-5→L+2(0.184)	XLCT/MC
S_{46}	225(5.50)	0.0099	H-6→L+2(0.712)	XLCT/MC
S_{48}	223(5.57)	0.0158	H-8→L+1(0.413)	XLCT/MLCT
			H-5→L+3(0.295)	XLCT/MLCT/ILCT

State	E/nm(eV)	f	Config. (CI coeff.)	Assignment
S_1	501(2.48)	0.0008	H→L(0.593)	ML _{py} CT/XL _{py} CT
			H-1→L(0.406)	ML _{py} CT/XL _{py} CT
S_2	459(2.70)	0.0563	H-1→L(0.582)	ML _{py} CT/XL _{py} CT
			H→L(0.394)	ML _{py} CT/XL _{py} CT
S_{17}	283(4.39)	0.0142	H-10→L(0.710)	ML _{py} CT/L _{NHC} L _{py} CT/XL _{py} CT
			H-5→L(0.247)	ML _{py} CT/L _{NHC} L _{py} CT
S ₁₉	276(4.49)	0.0316	H-5→L(0.585)	ML _{py} CT/L _{NHC} L _{py} CT
			H-10→L(0.235)	ML _{py} CT/L _{NHC} L _{py} CT/XL _{py} CT
S_{21}	266(4.66)	0.0525	H-2→L+3(0.660)	ML _{NHC} CT
			$H\rightarrow L+4(0.259)$	ML _{NHC} CT/XL _{NHC} CT
S ₂₃	260(4.77)	0.0101	H-3→L+2(0.544)	MC/MXCT/MLCT
			$H \rightarrow L + 4(0.156)$	ML _{NHC} CT/XL _{NHC} CT
S ₂₄	259(4.79)	0.0221	$H\rightarrow L+4(0.362)$	ML _{NHC} CT/XL _{NHC} CT
			H-3→L+2(0.194)	MC/MXCT/MLCT
			$H-1 \rightarrow L+4(0.163)$	ML _{NHC} CT/XL _{NHC} CT
S ₂₆	256(4.84)	0.0598	$H-5 \rightarrow L+1(0.401)$	ML _{py} CT/L _{NHC} L _{py} CT
			H-9→L(0.316)	IL _{py} CT/L _{py} MCT
S_{31}	250(4.95)	0.0128	H-4→L+3(0.921)	XL _{NHC} CT/IL _{NHC} CT/ML _{NHC} CT
S ₃₆	246(5.05)	0.0141	H-2→L(0.594)	ML _{py} CT/L _{NHC} L _{py} CT
			H-4→L+2(0.210)	L _{NHC} MCT/L _{NHC} XCT/L _{NHC} L _{py} CT
S ₃₉	235(5.28)	0.0594	$H-5 \rightarrow L+1(0.420)$	ML _{py} CT/L _{NHC} L _{py} CT
			H-9→L(0.339)	IL _{py} CT/LMCT
S49	219(5.67)	0.2115	H-3→L+4(0.700)	ML _{NHC} CT
S ₅₀	215(5.78)	0.0911	H-12→L+1(0.748)	$ML_{py}CT/XL_{py}CT/L_{NHC}L_{py}CT$

Table S7. Transition energy	es calculated at the op	timized S_0 geometry	γ of 3 in the gas phase.

State	E/nm(eV)	f	Config. (CI coeff.)	Assignment
S_2	438(2.83)	0.0073	H-2→L(0.993)	ML _{py} CT/L _{NHC} L _{py} CT
S_3	436(2.84)	0.0654	H-1→L(0.950)	MLCT/XLCT
S_7	347(3.57)	0.0164	H-4→L(0.647)	L _{NHC} MCT/L _{NHC} L _{py} CT
			$H-2 \rightarrow L+1(0.299)$	ML _{py} CT/L _{NHC} L _{py} CT
S_8	332(3.74)	0.0455	H-2→L+1(0.586)	ML _{py} CT/L _{NHC} L _{py} CT
			H-4→L(0.331)	L _{NHC} MCT/L _{NHC} L _{py} CT
S_{11}	311(3.98)	0.0499	H-5→L(0.807)	L _{NHC} MCT/L _{NHC} L _{py} CT
S_{14}	285(4.36)	0.0203	H-4→L+1(0.585)	$L_{NHC}L_{py}CT$
			$H \rightarrow L+3(0.255)$	XMCT/XL _{py} CT
S_{21}	267(4.65)	0.1883	H-2→L+2(0.657)	ML _{py} CT
			$H-6 \rightarrow L+1(0.222)$	MLCT/XLCT
S ₂₆	255(4.87)	0.0370	$H-5 \rightarrow L+1(0.600)$	$L_{NHC}L_{py}CT$
			H-10→L(0.305)	$L_{NHC}L_{py}CT$
S_{28}	247(5.02)	0.1968	$H-6 \rightarrow L+1(0.609)$	MLCT/XLCT
S_{30}	238(5.20)	0.1130	H-3→L+3(0.520)	MC/MXCT/MLCT
			H-10→L(0.278)	$L_{NHC}L_{py}CT$
S_{31}	238(5.21)	0.0899	H-2→L+4(0.733)	ML _{NHC} CT/L _{py} L _{NHC} CT/IL _{NHC} CT
S ₃₃	237(5.23)	0.0998	H-10→L(0.328)	$L_{NHC}L_{py}CT$
			H-3→L+3(0.324)	MC/MXCT/MLCT
S ₃₉	227(5.45)	0.0204	H-4 \rightarrow L+2(0.345)	$L_{NHC}L_{py}CT$
			H-9→L+1(0.326)	MLCT/XLCT
S_{41}	226(5.47)	0.0167	$H-9 \rightarrow L+1(0.498)$	MLCT/XLCT
			$H-2 \rightarrow L+5(0.224)$	ML _{NHC} CT/L _{py} L _{NHC} CT
			$H-4 \rightarrow L+4(0.155)$	IL _{NHC} CT
S_{45}	220(5.64)	0.1197	$H-10 \rightarrow L+1(0.687)$	$L_{NHC}L_{py}CT$
			H-13→L(0.178)	L _{NHC} MCT/L _{NHC} L _{py} CT
S_{49}	205(6.03)	0.0330	H-5→L+4(0.881)	$L_{py}L_{NHC}CT$

Table S8.	Transition	energies	calculated	at the	optimized	S ₀ g	geometry	of 4	in the	e gas	phase.
-----------	------------	----------	------------	--------	-----------	------------------	----------	------	--------	-------	--------

State	E/nm(eV)	f	Config. (CI coeff.)	Assignment	Expt.(nm)
S_1	334(3.71)	0.0834	H-1→L(0.976)	MLCT/ILCT	
S_2	332(3.73)	0.1725	H→L(0.972)	MLCT/ILCT	315
S_5	287(4.31)	0.0130	H - 3→L(0.989)	LMCT	280
S_8	250(4.96)	0.0550	$H \rightarrow L+2(0.796)$	MLCT/ILCT	
			$H-2 \rightarrow L+1(0.183)$	MLCT	
S_9	246(5.03)	0.1004	$H-1 \rightarrow L+2(0.878)$	MLCT/ILCT	
S_{10}	244(5.09)	0.0122	H-5→L(0.985)	MLCT	
S_{11}	240(5.16)	0.0417	H-6→L(0.776)	MLCT/ILCT	
			$H-2 \rightarrow L+1(0.153)$	MLCT	
S_{17}	235(5.27)	0.0225	$H-2 \rightarrow L+1(0.506)$	MLCT	
			H-6→L(0.178)	MLCT/ILCT	
S ₂₀	230(5.39)	0.0101	$H \rightarrow L+6(0.437)$	MLCT/ILCT	
			H-2→L+3(0.361)	MLCT	
S ₂₄	228(5.43)	0.0355	H-8→L(0.885)	LMCT/ILCT	
S ₂₉	226(5.50)	0.0160	$H-1 \rightarrow L+6(0.266)$	MLCT/ILCT	
			H-9→L(0.262)	LMCT/ILCT	
			H-2→L+7(0.161)	MLCT	
S ₃₃	218(5.70)	0.0928	H-2→L+5(0.326)	MLCT	
			H-4→L+3(0.284)	ILCT	220
			H-2→L+7(0.234)	MLCT	
S ₃₆	216(5.73)	0.0425	H-2→L+3(0.342)	MLCT	
			H-4→L+7(0.319)	ILCT	
S_{40}	214(5.79)	0.1406	H-2→L+5(0.240)	MLCT	
			H-4→L+3(0.199)	ILCT	
			H-2→L+7(0.184)	MLCT	
S_{45}	206(6.03)	0.0215	$H-4 \rightarrow L+5(0.612)$	LMCT/ILCT	
			H-1→L+9(0.181)	MLCT/ILCT	

Table S9. Transition energies calculated at the optimized S_0 geometry of **5** in the gas phase, and together with the available experimental values.

State	E/nm(eV)	f	Config. (CI coeff.)	Assignment	Expt.(nm)
S_1	300(4.14)	0.1444	H→L(0.962)	MLCT/ILCT	
S_2	299(4.14)	0.0734	H-1→L(0.969)	MLCT/ILCT	
S_3	289(4.29)	0.0127	H-2→L(0.988)	MLCT	
S_4	275(4.50)	0.0047	H-3→L(0.965)	LMCT	
S_5	267(4.65)	0.0032	H-4→L(0.934)	MLCT/ILCT	
S ₁₃	233(5.32)	0.0254	H-9→L(0.398)	MLCT/ILCT	
			$H-1 \rightarrow L+1(0.315)$	MLCT	
S_{16}	231(5.38)	0.0295	$H \rightarrow L+2(0.580)$	MLCT/ILCT	
S ₁₉	228(5.44)	0.0205	H-12→L(0.771)	MLCT/LLCT	
S_{21}	227(5.46)	0.0645	H-1→L+2(0.677)	MLCT/ILCT	
S_{28}	219(5.66)	0.0178	H-14→L(0.705)	LMCT/LLCT	216

Table S10. Transition energies calculated at the optimized S_0 geometry of 6 in the gas phase, and together with the available experimental values.

State	E/nm(eV)	f	Config. (CI coeff.)	Assignment
\mathbf{S}_1	405(3.06)	0.2546	H→L(0.857)	MLCT/ILCT
S_2	405(3.06)	0.2546	H-1→L(0.857)	MLCT/ILCT
S_5	378(3.28)	0.0117	H-4→L(0.728)	LMCT/LLCT
			H-5→L(0.247)	LMCT/ILCT
S_6	378(3.28)	0.0117	H-5→L(0.728)	LMCT/ILCT
			H-4→L(0.247)	LMCT/LLCT
S_9	311(3.98)	0.2123	$H \rightarrow L+1(0.901)$	MLCT/LLCT
\mathbf{S}_{10}	311(3.98)	0.2123	$H-1 \rightarrow L+1(0.901)$	MLCT/LLCT
S_{11}	311(3.98)	0.0140	H-8→L(0.993)	MLCT
S_{24}	274(4.53)	0.0499	H-2→L+2(0.772)	LMCT/ILCT
			H-7→L+3(0.168)	ILCT
S_{25}	274(4.53)	0.0499	H-2→L+3(0.771)	LMCT/ILCT
			H-7→L+2(0.168)	LLCT
S_{32}	260(4.76)	0.0804	H-7→L+2(0.331)	LLCT
			H→L+4(0.272)	MLCT/LLCT
S ₃₃	260(4.76)	0.0802	H-7→L+3(0.330)	ILCT
			H-1→L+4(0.272)	MLCT/LLCT
S_{35}	259(4.80)	0.0750	H-9→L(0.583)	MLCT/ILCT
			H-1→L+4(0.227)	MLCT/LLCT
S ₃₆	258(4.80)	0.0751	H-10→L(0.583)	MLCT/ILCT
			H→L+4(0.228)	MLCT/LLCT
S ₃₇	253(4.90)	0.0272	H-1→L+5(0.397)	MLCT/LLCT
			$H\rightarrow L+5(0.141)$	MLCT/LLCT
S ₃₈	253(4.90)	0.0273	H→L+5(0.393)	MLCT/LLCT
			H-1→L+5(0.139)	MLCT/LLCT

Table S11. Transition energies calculated at the optimized S_0 geometry of 7 in the gas phase.

State	E/nm(eV)	f	Config. (CI coeff.)	Assignment
S_1	477(2.60)	0.0296	H-1→L(0.955)	MLCT/ILCT
S_2	474(2.61)	0.1048	H→L(0.949)	MLCT/ILCT
\mathbf{S}_8	384(3.23)	0.0180	H-4→L(0.984)	MLCT
S_9	377(3.29)	0.0249	H-1→L+2(0.760)	MLCT/ILCT
\mathbf{S}_{11}	369(3.36)	0.0884	H-5→L(0.829)	MLCT/ILCT
S_{12}	365(3.39)	0.0786	H→L+2(0.386)	MLCT/ILCT
			$H-2 \rightarrow L+1(0.289)$	LMCT/ILCT
			H-3→L+3(0.203)	ILCT
S_{16}	353(3.51)	0.0436	H-8→L(0.934)	ILCT
S_{21}	325(3.82)	0.1866	H-2→L+3(0.408)	ILCT
			H-3→L+1(0.270)	LMCT/ILCT
			H-1→L+2(0.176)	MLCT/ILCT
S_{22}	322(3.85)	0.0201	H-3→L+3(0.629)	ILCT
S_{26}	314(3.95)	0.0439	H-11→L(0.753)	MLCT
			H-12→L(0.174)	ILCT
S_{29}	307(4.04)	0.0630	H-12→L(0.806)	ILCT
S_{31}	306(4.06)	0.0580	H-6→L+1(0.720)	LMCT/ILCT
			H-8→L+2(0.181)	ILCT
S_{36}	293(4.23)	0.0268	H-8→L+2(0.545)	ILCT
			H-7→L+3(0.399)	MLCT
S ₃₉	282(4.40)	0.0406	H-9→L+2(0.826)	MLCT
S_{41}	273(4.53)	0.1380	H-11→L+2(0.269)	MLCT
			H-7→L+3(0.263)	MLCT
S_{43}	273(4.55)	0.0115	H-10→L+1(0.860)	MLCT
S_{47}	268(4.63)	0.0925	H-1→L+4(0.523)	MLCT/ILCT

Table S12. Transition energies calculated at the optimized S_0 geometry of 8 in the gas phase.

		$E(T_m)$	ΔE_{1-2}	ΔE_{1-3}	$k_{\rm r}^{-1}$		$k_{\rm r}^2$	$k_{\rm r}^3$	<i>k</i> _r
Complexes		nm	cr	n^{-1}				s^{-1}	
1	T_1	1328	14.2	320.5	0.17	7	2020.61	2076.84	1365.88
	T_2	737	1358.1	1439.4	1.35	5E+5	41.77	1457.73	4.56E+4
2	T_1	4001	37.5	371.3	41.5	53	44.86	775.19	287.20
	T_2	855	5023.1	5045.1	4.13	8E+4	9132.42	2939.45	1.78E+4
3	T_1	2309	24.0	315.6	18.6	54	23.13	257.93	99.90
	T_2	859	1382.1	1548.4	4.39)E+4	4655.49	2.09E+4	2.32E+4
	T_3	811	260.0	1557.0	2.02	2E+4	1.54E+5	4597.70	5.97E+4
4	T_1	814	2.1	169.7	60.7	75	8190.01	9.81E+4	3.55E+4
5	T_1	409	15.5	209.9	243.	.07	1.71E+4	8.55E+5	2.91E+5
	T_2	406	245.0	304.5	1.63	8E+6	3.03E+2	2.06E+5	6.13E+5
6	T_1	867	11.7	83.2	6.99)E+3	4.30E+3	6.46E+3	5.92E+3
	T_2	438	6014.6	6071.4	1.14	E+5	2.73E+4	1.99E+5	1.13E+5
	T_3	406	824.1	2618.7	7.42	2E+5	2.09E+6	9.79E+3	9.49E+5
7	T_1	478	1.4	133.2	0.06	5	255.89	5.76E+5	1.92E+5
	T_2	477	150.7	216.8	6.14	E+5	0.00	8.09E+4	2.32E+5
8	T_1	559	4.2	97.4	8.50)	3995.21	1.49E+5	5.12E+4
	T_2	556	105.3	112.6	3.32	2E+5	0.22	1.53E+4	1.16E+5
	T_3	541	0.8	830.8	5.22		358.68	8.40E+6	2.80E+6

Table S13. Excitation energies $E(T_m)$, zero-filed-splitting (ZFS) parameters and radiative decay rate constants k_r of the $T_m \rightarrow S_0$ transitions of **1-8** at their respective T_1 optimized geometries obtained by DFT/TDDFT calculations.^{a,b}

^a $k_r^i = \frac{1}{\tau_i} = \frac{2}{t_0} \alpha_0^3 \left(\Delta E^i\right)^2 f^i$ where $t_0 = (4\pi\epsilon_0)^2 \hbar^3 / m_e e$, α_0 is the fine structure constant. Excitation energies ΔE^i and

oscillator strengths fⁱ can be calculated with inclusion of SOC effects.

^b
$$k_r^i = \frac{1}{3} \left(k_r^1 + k_r^2 + k_r^3 \right)$$

Table S14. Molecular orbital compositions at the optimized geometry for 6.

			π (%)
Orbits	Energy (eV)	d _{Pt} (%)	p_{pt}	$\pi_{ m NHC}$
HOMO-1	-12.58	43.70		36.29
HOMO	-11.32	22.81	46.86	12.34
LUMO	-9.85	16.54	21.01	42.86

Pt	0.000000	0.000000	0.001851
Cl	1.820525	-1.489054	0.002391
Cl	-1.820525	1.489054	0.002391
С	0.000000	0.000000	2.031201
Ν	0.268139	1.043297	2.868573
С	0.656257	2.375955	2.417947
Η	0.027865	2.651923	1.565056
Η	1.711784	2.385159	2.119889
Η	0.500341	3.084206	3.238344
С	0.172487	0.658434	4.196284
Н	0.356322	1.342219	5.013791
С	-0.172487	-0.658434	4.196284
Η	-0.356322	-1.342219	5.013791
Ν	-0.268139	-1.043297	2.868573
С	-0.656257	-2.375955	2.417947
Η	-0.500341	-3.084206	3.238344
Η	-0.027865	-2.651923	1.565056
С	0.000000	0.000000	-2.027680
Ν	-0.267173	-1.043573	-2.865188
С	-0.656978	-2.375930	-2.415476
Η	-1.720634	-2.392552	-2.147761
Η	-0.050346	-2.638974	-1.543125
Η	-0.470829	-3.089724	-3.224781
С	-0.172061	-0.658510	-4.192921
Η	-0.355636	-1.342376	-5.010447
С	0.172061	0.658510	-4.192921
Η	0.355636	1.342376	-5.010447
Ν	0.267173	1.043573	-2.865188
С	0.656978	2.375930	-2.415476
Н	0.050346	2.638974	-1.543125
Н	0.470829	3.089724	-3.224781
Η	1.720634	2.392552	-2.147761
Η	-1.711784	-2.385159	2.119889

Table S15. Cartesian coordinates of 1 at the S_0 optimized geometry.

Table S16. Cartesian coordinates of 1 at the T₁ optimized geometry.

Pt	-0.060704	-0.106733	0.001849
Cl	2.421449	0.237078	0.020569
Cl	-1.351791	2.039937	-0.019351
С	-0.106004	-0.233707	2.051780
Ν	0.305916	0.684190	2.973735
С	0.908370	1.978689	2.648270
Н	0.263648	2.499749	1.932452
Н	1.893618	1.819859	2.196570
Н	0.996217	2.558103	3.572414
С	0.119817	0.219525	4.262688
Н	0.390925	0.802777	5.132428
С	-0.426132	-1.023797	4.162222

Н	-0.726984	-1.729980	4.924127
Ν	-0.553771	-1.284965	2.808228
С	-1.128647	-2.507087	2.266628
Н	-0.746530	-3.372315	2.820578
Н	-0.828757	-2.577538	1.215955
С	-0.114563	-0.228501	-2.048308
Ν	-0.629513	-1.250057	-2.803207
С	-1.263182	-2.440159	-2.256539
Н	-2.286525	-2.536017	-2.639915
Н	-1.287619	-2.318011	-1.167619
Н	-0.685934	-3.336718	-2.515238
С	-0.481005	-1.001631	-4.157414
Н	-0.828333	-1.686379	-4.919390
С	0.142744	0.204415	-4.259394
Н	0.445007	0.770689	-5.130133
N	0.354318	0.660347	-2.971286
С	1.007243	1.930497	-2.647660
Н	0.380777	2.478290	-1.935506
Н	1.118843	2.504078	-3.572900
Н	1.983954	1.735803	-2.192067
Н	-2.224335	-2.483949	2.330308

Table S17. Cartesian coordinates of $\mathbf{2}$ at the S₀ optimized geometry.

Pt	0.082938	0.108674	0.063815
Cl	-1.708388	0.035737	-1.475672
Cl	-1.480590	-0.063629	1.827222
Ν	1.629368	-0.242518	-2.586537
С	1.406292	0.353220	-1.379173
Ν	2.439538	1.251658	-1.257708
Ν	2.603256	1.182295	1.113236
С	1.593056	0.273930	1.323088
Ν	1.977770	-0.390023	2.451606
С	2.582746	2.049191	-0.052119
Н	1.730051	2.733844	0.026790
Н	3.518211	2.613120	-0.100150
С	0.856570	-1.354495	-3.137923
Н	-0.129212	-1.352174	-2.660618
Н	1.379020	-2.301034	-2.949457
Н	0.738514	-1.205697	-4.216641
С	2.769066	0.273423	-3.191462
Н	3.105719	-0.064932	-4.162142
С	3.287789	1.211389	-2.355729
Н	4.151511	1.854168	-2.457618
С	1.283794	-1.535195	3.038721
Н	0.242471	-1.510857	2.700175
Н	1.313139	-1.448078	4.130181
Н	1.773479	-2.466927	2.728113
С	3.594343	1.081684	2.079863
Н	4.466436	1.720977	2.099138
С	3.191820	0.094629	2.923046

Н 3.657442 -0.298163 3.816853

Table S18. Cartesian coordinates of $\mathbf{2}$ at the T₁ optimized geometry.

Pt	0.096949	-0.060433	0.156256
Cl	-2.052212	-0.029375	-0.805814
Cl	0.642885	-2.492053	0.151455
Ν	1.531735	-0.208260	-2.636542
С	1.362058	0.373489	-1.422243
Ν	2.461246	1.171983	-1.268970
Ν	2.643740	1.166087	1.126964
С	1.589071	0.334099	1.431149
Ν	1.956322	-0.234004	2.617960
С	2.640637	1.980905	-0.072517
Н	1.813216	2.698988	-0.012556
Н	3.590382	2.517355	-0.143704
С	0.607027	-1.184604	-3.212015
Н	-0.359688	-1.073360	-2.710826
Н	0.983308	-2.199606	-3.042293
Н	0.500710	-0.988485	-4.284542
С	2.718609	0.210451	-3.226638
Н	3.036564	-0.136509	-4.201066
С	3.311145	1.081831	-2.365335
Н	4.232263	1.643360	-2.446764
С	1.153847	-1.221354	3.331902
Н	0.102478	-1.054415	3.076095
Н	1.306098	-1.095102	4.409529
Н	1.426742	-2.234051	3.015881
С	3.637436	1.109829	2.097742
Н	4.542935	1.699485	2.049251
С	3.197808	0.227792	3.034530
Н	3.658899	-0.101445	3.956105

Table S19. Cartesian coordinates of 3 at the S_0 optimized geometry.

Pt	2.017362	4.733120	7.697408
Cl	-0.267518	4.675956	7.956606
Ν	4.069355	4.784471	7.463502
С	4.776822	3.632362	7.304331
Ν	3.208065	2.161031	8.496043
С	4.002945	2.334506	7.284059
С	2.277507	3.084733	8.866381
Ν	1.785882	2.623987	10.044779
С	0.794233	3.294086	10.888272
С	2.399529	1.428831	10.397107

С	3.302492	1.134552	9.423144
С	6.160504	3.643755	7.149500
С	6.848015	4.853916	7.145870
С	4.736772	5.970918	7.465602
Ν	2.868999	7.356939	6.667424
С	3.924561	7.229163	7.667559
С	1.925964	6.386233	6.510177
Ν	1.158627	6.816690	5.476497
С	0.034121	6.096241	4.876310
С	1.616201	8.039876	5.003676
С	2.700154	8.383054	5.750559
С	6.118549	6.028636	7.304276
Н	3.329774	2.323689	6.415618
Н	4.693173	1.491128	7.198607
Н	2.142332	0.894558	11.302059
Н	3.974391	0.294872	9.308039
Н	6.690940	2.700981	7.029312
Н	7.928623	4.880944	7.022321
Н	3.465288	7.211685	8.665675
Н	4.573978	8.105906	7.599795
Н	1.134973	8.556758	4.184052
Н	3.338452	9.255508	5.716618
Н	6.615196	6.997103	7.307161
Н	-0.106533	5.158192	5.415508
Н	-0.877404	6.696939	4.964424
Н	0.249825	5.902589	3.819455
Н	1.243854	3.532269	11.858972
Н	0.467307	4.205215	10.384680
Н	-0.070116	2.637074	11.031899

Table S20. Cartesian coordinates of 3 at the T_1 optimized geometry.

Pt	1.939417	4.871619	7.887412
Cl	0.975580	3.471827	6.103764
N	4.100917	4.664205	7.340571
С	4.663168	3.437295	7.285073
Ν	3.073511	2.280290	8.821476
С	3.789254	2.230575	7.545012
С	2.185529	3.267188	9.124182
N	1.684103	2.922183	10.338472
С	0.684274	3.692601	11.073892
С	2.247293	1.735437	10.785212
С	3.126556	1.328667	9.828366
С	6.008447	3.284794	6.945085
С	6.773046	4.408412	6.646125
С	4.835623	5.767091	7.085427
Ν	2.953331	7.354435	6.587522
С	4.202338	7.125952	7.305009
С	1.842690	6.583386	6.776988
Ν	0.890646	7.157374	5.996189

С	-0.496017	6.702070	5.891538
С	1.394427	8.271106	5.341238
С	2.698072	8.398429	5.709770
С	6.177698	5.664932	6.720360
Η	3.038364	2.163431	6.741493
Η	4.402298	1.326058	7.537146
Н	1.980328	1.285314	11.732097
Н	3.763755	0.455982	9.779712
Н	6.444483	2.287920	6.910947
Η	7.820129	4.307758	6.367242
Η	4.008432	7.242438	8.382121
Н	4.909218	7.904448	7.005899
Н	0.791534	8.871126	4.672743
Н	3.445534	9.128297	5.429956
Η	6.748253	6.566670	6.504895
Η	-0.539776	5.651612	6.190227
Н	-1.140912	7.311584	6.535545
Η	-0.825218	6.790100	4.851560
Η	1.075723	3.971123	12.058700
Н	0.464300	4.596754	10.498486
Η	-0.231422	3.102840	11.193573

Table S21. Cartesian coordinates of 4 at the S_0 optimized geometry.

Pt	9.876229	0.033372	19.214321
Ν	8.188781	-1.436671	21.521495
Ν	8.387305	0.718702	21.549034
Ν	9.557918	1.835952	19.963306
Ν	10.802577	2.535264	18.204105
Ν	11.626761	1.149024	16.760207
С	8.750259	-0.425183	20.832530
С	7.493843	-0.962613	22.634483
С	7.614932	0.388241	22.656682
С	8.820402	1.964421	21.087845
С	8.574811	3.214484	21.644424
С	9.117385	4.329960	20.999698
С	9.880585	4.196657	19.836038
С	10.082447	2.913668	19.340027
С	11.497191	3.307922	17.280430
С	12.010998	2.434722	16.378492
С	10.881333	1.177660	17.881140
С	11.994863	-0.065176	16.025892
С	8.285618	-2.854605	21.162290
Н	6.974872	-1.627942	23.312101
Н	7.225104	1.117955	23.351003
Н	7.982475	3.321334	22.548140
Н	8.942291	5.321233	21.411614
Н	10.300666	5.065149	19.337667
Н	11.568396	4.384197	17.336714
Н	12.616024	2.614613	15.499447

Н	8.885805	-2.937710	20.251749
Н	7.280832	-3.254122	20.986851
Н	8.765693	-3.404097	21.979313
Н	11.561535	-0.924805	16.544996
Н	13.086192	-0.155477	15.997334
Н	11.600917	-0.005625	15.005498
Cl	10.246024	-2.060002	18.344590

Table S22. Cartesian coordinates of 4 at the T_1 optimized geometry.

Pt	9.779626	0.017973	19.135887
Ν	8.518759	-1.427402	21.679864
Ν	8.401944	0.754678	21.561353
Ν	9.358426	1.876169	19.841005
Ν	10.807252	2.560222	18.239410
Ν	11.894916	1.106584	17.017313
С	8.926890	-0.369510	20.919343
С	7.740519	-0.985127	22.732624
С	7.665810	0.376521	22.672028
С	8.740915	2.004688	21.055308
С	8.579770	3.238779	21.659454
С	9.129104	4.365528	21.027955
С	9.886221	4.219501	19.855161
С	10.007535	2.955487	19.306004
С	11.542530	3.286495	17.317278
С	12.211337	2.370608	16.557433
С	11.005069	1.190438	18.049507
С	12.452059	-0.140004	16.495709
С	8.879854	-2.821970	21.432210
Н	7.286770	-1.670309	23.437218
Н	7.137110	1.077067	23.301803
Н	8.068543	3.327668	22.614197
Н	9.022248	5.346192	21.483593
Н	10.390960	5.070979	19.406838
Н	11.516639	4.364444	17.252274
Н	12.875964	2.524936	15.717053
Н	8.858006	-3.012125	20.354424
Н	8.158270	-3.468576	21.938337
Н	9.888688	-3.021923	21.811965
Н	11.660785	-0.895015	16.448076
Н	13.251403	-0.498650	17.154639
Н	12.851111	0.043812	15.494821
Cl	9.891926	-2.016420	18.110211: q

Table S23. Cartesian coordinates of 5 at the S_0 optimized geometry.

Pt	-0.031372	0.070633	0.106224
С	1.721211	0.732779	-3.690608
Η	2.612843	1.039180	-4.221788
С	0.396804	0.302753	-1.886908
Ν	2.367566	-1.881171	0.721129
N	-0.279028	0.047004	-3.037288
N	2.892633	-0.195807	-0.511133
N	1.628759	0.725099	-2.305736
С	0.513592	0.310886	-4.148667
H	0.156255	0.167875	-5.160411
С	3.711388	-2.019245	0.392320
H	4.306740	-2.856430	0.733523
C	4.044738	-0.960504	-0.391326
H	4,984697	-0.689641	-0.854065
C	1.846555	-0.753154	0.171887
Ĉ	2 707248	0 975331	-1 358209
н	3 630547	1 174399	-1 906303
Н	2.458232	1 842703	-0 737668
C	1 630775	-2 890383	1 483469
н	0.601780	-2 549417	1 610506
н	2 100380	-3.036821	2 462093
Н	1 633214	-3 838930	0.935010
C C	-1 624565	-0 519779	-3 140680
н	-2 037494	-0 624798	-2 135851
H	-1 572157	-0.024798	-3 615805
н Ц	-2.262436	0.13788/	-3 7/0888
C	-1 78/1591	-0 501125	3 002801
с u	-2 676345	-0.391123	1 / 133012
C	-0.459821	-0.161510	2 000370
N N	-2 /303/8	2 022283	-0 509087
N	0 215743	0.004620	3 2/0825
N N	2 055465	0.094020	0.723304
N N	-2.955405	0.537055	2 518055
C C	-1.091887	0.160140	2.518055 A 361080
с u	-0.377007	-0.109140	5 372867
Γ	2 77/2//	-0.023770	0.180847
с u	1 260701	2.100004	-0.180847 0.522414
Γ	4.309794	1 101/68	-0.522414
с u	-4.107094	0.820575	1.065571
Γ	-3.04//1/	0.830373	0.040503
C C	-1.909290	0.094430	0.040303
С U	-2.770210	-0.834048	1.3/043/
п u	-3.093379	-1.055070	2.116430
п С	-2.321106	-1./01400	0.930049
С U	-1.093535	2.600624	-1.2/0390
11 11	-0.004339	2.090034	-1.378434
1] 1]	-2.1032/2	J.1/9/24 2.070949	-2.240001
11 C	-1.093099	J.7/7040 0.661420	-0.721034
с u	1.301239	0.001439	5.555405
11 U	1.9/4913	0.703031	2,348/23
11 11	1.30800/	1.048011	3.02/208
11	2.198023	0.004480	5.734908

Table S24. Cartesian coordinates of **5** at the T_1 optimized geometry.

Pt	-0.031467	0.070588	0.106209
С	1.715770	0.711271	-3.687376
Н	2.609759	0.964131	-4.242936
С	0.395951	0.353976	-1.856429
N	2.361953	-1.840899	0.781170
Ν	-0.311532	0.107764	-3.018280
Ν	2.905197	-0.187137	-0.523575
Ν	1.646833	0.731722	-2.309930
С	0.477062	0.328251	-4.127523
Н	0.114073	0.184523	-5.137425
С	3.683339	-2.009675	0.429889
Н	4.275080	-2.848070	0.775296
С	4.028710	-0.976218	-0.400790
H	4.967619	-0.757295	-0.893075
С	1.840360	-0.700017	0.197101
C	2.721440	0.979493	-1.366780
Н	3.645752	1.202155	-1.903379
Н	2.434297	1.829130	-0.727243
С	1.599429	-2.811962	1.561575
Н	0.605598	-2.921217	1.114930
Н	1.494310	-2.486565	2.603536
Н	2.122290	-3.772276	1.539716
С	-1.667445	-0.431896	-3.082231
Н	-1.794429	-1.161834	-2.276075
Н	-1.808082	-0.921860	-4.049896
Н	-2.415120	0.362949	-2.973000
С	-1.778568	-0.569246	3.899941
Н	-2.672560	-0.821895	4.455595
С	-0.458769	-0.212439	2.068881
N	-2.425039	1.981916	-0.569111
Ν	0.248763	0.033983	3.230675
N	-2.968136	0.328355	0.735915
Ν	-1.709676	-0.589998	2.522503
С	-0.539813	-0.186222	4.339978
Н	-0.176788	-0.042294	5.349841
С	-3.746514	2.150547	-0.217991
Н	-4.338353	2.988763	-0.563641
С	-4.091786	1.117236	0.612880
Н	-5.030723	0.898239	1.105121
С	-1.903340	0.841224	0.015199
С	-2.784289	-0.838049	1.579423
Н	-3.708586	-1.060611	2.116096
Н	-2.497117	-1.687845	0.940105
С	-1.662667	2.953009	-1.349652
Н	-0.668500	3.061677	-0.903638
Н	-1.558412	2.628020	-2.391830
Н	-2.185114	3.913535	-1.327024
С	1.604761	0.573451	3.294537
Н	1.732269	1.302157	2.487361
Н	1.745009	1.064827	4.261550

Н 2.352339 -0.221713 3.186861

Pt	-0.053643	-0.003983	-0.031401
Ν	-2.802148	0.333177	-1.165299
Ν	-1.628758	1.864602	-2.052124
Ν	-3.663552	0.966878	-2.019251
С	-1.549975	0.843319	-1.149839
Ν	1.499713	-1.855440	1.989759
Ν	-2.231064	-1.925032	-0.755260
Ν	-0.414431	-2.939474	-1.178215
С	-2.919110	1.905178	-2.542431
Ν	2.708753	-0.343003	1.109715
С	-3.209067	-0.882637	-0.473406
Н	-4.178079	-1.199161	-0.865647
Н	-3.272819	-0.702957	0.605128
Ν	2.744395	-2.006339	2.554172
Ν	0.297109	2.905450	1.122626
С	1.432363	-0.854378	1.093449
N	2.136146	1.926125	0.695268
Ν	1.279936	3.790760	1.497986
С	-0.890913	-1.762806	-0.676533
С	0.989228	-3.314224	-1.384229
Н	1.578969	-2.407877	-1.536573
Н	1.058815	-3.940330	-2.278639
Н	1.370150	-3.873229	-0.522575
С	3.463669	-1.066073	2.007785
C	0.774134	1.753522	0.617126
С	0.428454	-2.712695	2.492103
Н	-0.484844	-2.496366	1.934539
Н	0.274965	-2.500939	3.555723
Н	0.721223	-3.760699	2.374958
C	-1.086732	3.284481	1.399670
Н	-1.746213	2.494691	1.035174
Н	-1.304726	4.236734	0.906340
Н	-1.212367	3.405489	2.480891
C	2.394620	3.167141	1.236083
С	-0.544127	2.752349	-2.486964
Н	0.408842	2.235248	-2.357478
Н	-0.551846	3.682144	-1.907777
Н	-0.681825	2.987072	-3.546753
С	3.078505	0.860132	0.371341
Н	3.052590	0.657076	-0.704524
Н	4.087400	1.167413	0.658464
N	-2.628560	-3.126576	-1.275746
C	-1.494632	-3.729804	-1.518138
Н	3.385671	3.573714	1.405147
Н	-1.407426	-4.723595	-1.944723
Н	-3.263547	2.621254	-3.280245

Table S25. Cartesian coordinates of 6 at the S₀ optimized geometry.

4.512620 -0.888790 2.217137

Н

Pt	0.138699	-0.082430	-0.240991
N	-2.587436	0.677405	-1.278932
Ν	-1.175266	1.599068	-2.572868
Ν	-3.351990	1.357182	-2.185483
С	-1.253816	0.787403	-1.477151
Ν	2.091525	-1.845126	1.660807
Ν	-2.592129	-1.467426	-0.284437
Ν	-1.118930	-2.972306	-0.638116
С	-2.459019	1.919596	-2.960897
N	2.877993	0.016328	0.998439
С	-3.204852	-0.158820	-0.250824
Н	-4.268714	-0.258685	-0.477159
Н	-3.057054	0.293051	0.734539
Ν	3.298785	-1.701063	2.308978
Ν	-0.337152	2.443632	1.735343
С	1.795791	-0.826544	0.824495
N	1.675993	2.056772	1.132999
Ν	0.398494	3.515216	2.184293
С	-1.254167	-1.681484	-0.189385
С	0.119300	-3.707670	-0.922129
Н	0.968120	-3.030546	-0.805097
Н	0.090638	-4.062180	-1.958065
Н	0.216576	-4.564447	-0.248506
С	3.749013	-0.549443	1.905101
С	0.401868	1.533267	1.075045
С	1.285381	-2.994612	2.058650
Н	0.255321	-2.833584	1.735106
Н	1.322634	-3.066839	3.149854
Н	1.701284	-3.911704	1.629322
С	-1.760077	2.409259	2.061296
Н	-2.028076	1.401226	2.391623
Н	-2.357257	2.716413	1.195305
Н	-1.922172	3.116772	2.878208
С	1.621389	3.253986	1.807003
С	0.051005	2.036532	-3.248057
Н	0.847322	1.325854	-3.009321
Н	0.330015	3.042507	-2.915627
Н	-0.116285	2.042698	-4.329481
С	2.840817	1.389110	0.539688
Н	2.749132	1.406835	-0.553621
Н	3.751033	1.911407	0.844984
N	-3.297256	-2.536305	-0.783514
С	-2.375149	-3.440352	-0.969819
Н	2.474349	3.896306	1.995852
Н	-2.564030	-4.439648	-1.347248
Н	-2.696551	2.549049	-3.811542

Table S26.Cartesian coordinates of **6** at the T_1 optimized geometry.

4.687009 -0.105561 2.219908

Н

Table S27. Cartesian coordinates of 7 at the S_0 optimized geometry.

Pt	-0.031513	0.127925	0.117245
С	-0.221089	1.497051	-1.322371
С	-0.175480	3.470928	-2.444016
С	-0.677223	2.485878	-3.314968
С	-1.063850	2.793705	-4.618755
Н	-1.469498	2.047923	-5.299062
С	-0.910437	4.118432	-5.025260
Н	-1.197569	4.399144	-6.036069
С	-0.393288	5.098523	-4.161052
Н	-0.286241	6.119929	-4.519179
С	-0.014359	4.793680	-2.854468
Н	0.388087	5.563474	-2.199451
С	-1.297217	0.047333	-3.055554
Н	-1.173366	0.010552	-4.141644
N	0.077611	2.818018	-1.224798
N	-0.673440	1.284318	-2.584788
С	-0.267786	-1.323410	-1.232099
С	-0.758488	-2.421919	-3.157939
С	-0.289048	-3.365426	-2.225170
С	-0.172690	-4.716395	-2.549918
Н	0.204348	-5.455737	-1.846485
С	-0.562787	-5.091380	-3.834795
Н	-0.490353	-6.136636	-4.126681
С	-1.047590	-4.151840	-4.760603
Н	-1.344764	-4.486858	-5.751773
С	-1.156365	-2.799443	-4.439835
Н	-1.537540	-2.085606	-5.166957
С	0.677194	-3.214068	0.107652
Н	0.378211	-4.263360	0.184117
N	-0.714120	-1.176929	-2.506050
N	-0.012964	-2.644610	-1.049998
С	0.157760	-1.241176	1.556921
С	0.450775	-3.222429	2.627041
С	0.272434	-2.222684	3.601374
С	0.277579	-2.522249	4.963114
Н	0.124151	-1.764340	5.728369
С	0.488461	-3.854880	5.314236
Н	0.502758	-4.129710	6.366491
С	0.683600	-4.850414	4.341739
Н	0.848593	-5.877757	4.658464
С	0.670137	-4.553463	2.979635
Н	0.826894	-5.335391	2.239633
С	-0.292917	0.241435	3.522264
Н	0.149523	0.265988	4.522227
N	0.357954	-2.572923	1.383505
N	0.110004	-1.017694	2.895330

С	0.204999	1.579253	1.466550
С	0.355331	2.685066	3.444159
С	0.565693	3.613950	2.408037
С	0.829919	4.956735	2.674931
Н	1.011653	5.684082	1.886562
С	0.855160	5.339563	4.015266
Н	1.054810	6.378971	4.265798
С	0.628189	4.415348	5.049269
Н	0.653035	4.756296	6.081802
С	0.372442	3.070768	4.783948
Н	0.194875	2.368918	5.596014
С	0.788080	3.437008	-0.105478
Н	0.524246	4.498399	-0.096400
Ν	0.151655	1.443510	2.816484
Ν	0.449589	2.889696	1.208534
Н	-1.387781	0.262980	3.616528
Н	1.762419	-3.164147	-0.059239
Н	-2.370522	0.072618	-2.820071
Н	1.870792	3.340452	-0.268147

Table S28. Cartesian coordinates of 7 at the T_1 optimized geometry.

Pt	0.028319	0.126355	0.108374
С	-0.177142	1.484685	-1.313458
С	-0.165933	3.470888	-2.426338
С	-0.670795	2.474910	-3.304224
С	-1.076237	2.787420	-4.601608
Н	-1.481976	2.040474	-5.280217
С	-0.937473	4.114714	-5.004744
Н	-1.238360	4.399068	-6.010508
С	-0.412384	5.098525	-4.141304
Н	-0.316080	6.120808	-4.500047
С	-0.015418	4.793473	-2.839263
Н	0.388553	5.564570	-2.187148
С	-1.324097	0.049604	-2.997010
Н	-1.340339	0.014911	-4.089059
Ν	0.101813	2.826166	-1.217412
Ν	-0.641475	1.275827	-2.591924
С	-0.224145	-1.312477	-1.223816
С	-0.752946	-2.410880	-3.147693
С	-0.281271	-3.365155	-2.207243
С	-0.176127	-4.715798	-2.534546
Н	0.202003	-5.456860	-1.833925
С	-0.584383	-5.089893	-3.814912
Н	-0.523225	-6.135688	-4.107391
С	-1.076486	-4.146112	-4.740228
Н	-1.387613	-4.483831	-5.726169
С	-1.169848	-2.791831	-4.422963
Н	-1.550596	-2.076519	-5.148496
С	0.765030	-3.179432	0.093202

Н	0.581452	-4.254896	0.152978
Ν	-0.682483	-1.170380	-2.513578
Ν	0.009468	-2.653768	-1.041801
С	0.197517	-1.231180	1.535736
С	0.454654	-3.223224	2.607825
С	0.276326	-2.212362	3.589623
С	0.262002	-2.515680	4.950901
Н	0.108485	-1.756542	5.714584
С	0.457830	-3.850226	5.303211
Н	0.457790	-4.127992	6.354785
С	0.660136	-4.849896	4.329135
Н	0.815108	-5.877629	4.649710
С	0.664705	-4.553649	2.965981
Н	0.823387	-5.337047	2.228311
С	-0.335509	0.240330	3.474809
Н	-0.024885	0.268696	4.522070
Ν	0.378130	-2.582656	1.369786
Ν	0.143384	-1.011045	2.893046
С	0.244282	1.566021	1.446075
С	0.357660	2.673614	3.432993
С	0.568752	3.612991	2.388690
С	0.823374	4.955892	2.661112
Н	1.007487	5.684671	1.874966
С	0.829740	5.338918	4.002450
Н	1.019075	6.379354	4.256678
С	0.595007	4.411024	5.038320
Н	0.605014	4.755477	6.069917
С	0.354566	3.063896	4.772002
Н	0.176433	2.360816	5.582558
С	0.875490	3.397881	-0.117418
Н	0.727972	4.480492	-0.126863
Ν	0.184275	1.435235	2.814668
Ν	0.469826	2.897339	1.194172
Н	-1.436686	0.257065	3.422797
Н	1.839296	-3.002197	-0.076243
Н	-2.359698	0.079027	-2.619871
Н	1.943097	3.174407	-0.273756

Table S29. Cartesian coordinates of non-truncated 7 at the S_0 optimized geometry.

Pt	7.852893	10.804151	1.706477
С	6.070329	11.710816	1.746874
С	4.262449	12.873911	2.472734
С	4.162586	12.742773	1.078106
С	3.101259	13.317799	0.374915
Н	3.010132	13.241816	-0.705192
С	2.146018	14.011346	1.114885
Н	1.308492	14.473922	0.597767
С	2.243661	14.130767	2.511383
Н	1.479042	14.681855	3.054140

С	3.307807	13.570558	3.213961
Н	3.389037	13.692830	4.290936
С	5.437321	11.482215	-0.736381
Н	5.059522	12.296722	-1.365183
С	4.940393	9.115261	-0.246960
Н	6.011625	8.991541	-0.047247
Н	4.596666	8.239202	-0.810808
Н	4.401687	9.142410	0.717817
С	3.319833	10.478937	-1.491754
H	2.610316	10.625497	-0.659486
Н	3.019443	9.580595	-2.044845
Н	3.241660	11.331757	-2.178493
N	5.441422	12.209547	2.846101
N	5.297221	12.014339	0.669963
N	4 707545	10 311307	-1 056177
C	7 911383	11 007588	-0 282563
C	7 259032	11 262767	-2 440649
C	8 622171	10.925185	-2 436533
C C	9 3 2 7 2 1 3	10.761980	-3 631457
н	10 378312	10.487331	-3 653788
C	8 626066	10.467331	-4 818955
с н	9 144473	10.900215	-5 767154
n C	7 265017	11 308876	-4 818547
с н	6 751341	11 453289	-5.766271
n C	6 555726	11 458793	-3 629321
с u	5 496204	11 700072	-3.640438
n C	10 428727	10.632801	0 650675
с u	10.428727	0.061325	-0.039075
n C	10.857255	12 010021	-1.412090
с u	0.053//7	12.919921	0.200737
и П	11 606488	13.510918	-0.270932
п п	10 200152	12 545503	1 170282
n C	10.390132	12.343303	1.1/0362
с u	12 262255	12.22/990	-1.880283
п п	12.203233	12 802020	-2.402242
п п	12.090312	12.892029	-1.030300
11 N	6 961795	12.703219	-2.304903
IN NI	0.004/03	11.320442	-1.094320
IN NI	0.900/02	10./6045/	-1.085507
N C	0 642468	0.012202	-0.030340
C C	9.043408	9.913393	1.008019
C C	11.720404	9.282303	2 2 2 4 2 0 0
C C	11.339//4	0.030902	2.334209
С U	12.303200	8.209108	5.028525
п С	12.432033	7.004952	4.039449
С U	13.730300	7.989903	2.340303
п	14.3/0083	7.489324	2.839037
	13.931095	8.405249	1.015465
H C	14.8/901/	8.21/802	0.51/320
U U	12.91//10	9.005/83	0.323124
П	13.0/1421	9.408155	-0.094950
U U	9.39/043	0./99090	J.Y8084J
П	10.4102/1	8.8453/0	4./21094
U U	9.991804	0.393011	4.323931
П II	10.01353/	0.0/3334	3.4/0223
п	9.402866	5.551595	4.001460

10.650384	6.688054	5.151119
8.058947	7.139614	3.004038
7.338167	7.958482	2.891513
7.514049	6.252962	3.351116
8.496237	6.914818	2.014090
10.523510	9.911332	0.629711
10.242082	9.264879	2.702743
9.071088	7.484920	4.002006
7.785860	10.583865	3.693439
8.167586	9.794282	5.786021
7.084992	10.686533	5.849800
6.417012	10.923372	7.053664
5.568337	11.598196	7.125022
6.877409	10.249556	8.182861
6.377399	10.408820	9.135484
7.968047	9.366263	8.117042
8.297094	8.857183	9.020090
8.627508	9.117396	6.915777
9.452144	8.410823	6.870002
5.946750	12.299695	4.234722
5.082962	12.110436	4.882456
7.655551	14.040031	3.860487
8.559279	13.646072	4.360300
7.697058	15.136039	3.883847
7.668251	13.722235	2.810926
6.248554	14.112152	5.873053
5.256801	13.837399	6.255129
6.300364	15.207456	5.845456
7.015347	13.747712	6.577894
8.580609	9.773391	4.444462
6.884436	11.155093	4.536503
6.418361	13.606678	4.509461
	$\begin{array}{c} 10.650384\\ 8.058947\\ 7.338167\\ 7.514049\\ 8.496237\\ 10.523510\\ 10.242082\\ 9.071088\\ 7.785860\\ 8.167586\\ 7.084992\\ 6.417012\\ 5.568337\\ 6.877409\\ 6.377399\\ 7.968047\\ 8.297094\\ 8.627508\\ 9.452144\\ 5.946750\\ 5.082962\\ 7.655551\\ 8.559279\\ 7.697058\\ 7.668251\\ 6.248554\\ 5.256801\\ 6.300364\\ 7.015347\\ 8.580609\\ 6.884436\\ 6.418361\\ \end{array}$	10.650384 6.688054 8.058947 7.139614 7.338167 7.958482 7.514049 6.252962 8.496237 6.914818 10.523510 9.911332 10.242082 9.264879 9.071088 7.484920 7.785860 10.583865 8.167586 9.794282 7.084992 10.686533 6.417012 10.923372 5.568337 11.598196 6.877409 10.249556 6.377399 10.408820 7.968047 9.366263 8.297094 8.857183 8.627508 9.117396 9.452144 8.410823 5.946750 12.299695 5.082962 12.110436 7.655551 14.040031 8.559279 13.646072 7.697058 15.136039 7.668251 13.722235 6.248554 14.112152 5.256801 13.837399 6.300364 15.207456 7.015347 13.747712 8.580609 9.773391 6.884436 11.155093 6.418361 13.606678

Table S30. Cartesian coordinates of $\mathbf{8}$ at the S₀ optimized geometry.

Pt	0.006207	-0.003012	-0.000278
Ν	-0.773229	2.597110	1.203399
С	0.815924	1.815916	2.515415
Ν	-0.446313	3.651681	2.069312
С	0.004091	1.502439	1.387280
С	-0.802968	-1.824465	-2.514417
Ν	-0.775167	2.597242	-1.202546
С	0.813888	1.817404	-2.515647
С	0.493078	3.136620	2.935094
Ν	0.788076	-2.602710	-1.202689
С	-1.573535	2.793278	0.001113
Н	-2.018539	3.789028	0.001556
Н	-2.370326	2.042266	0.001676
С	-0.479642	-3.145444	-2.932486
С	-0.804821	-1.823442	2.513464
С	0.009385	-1.509060	-1.387071

N	0.787373	-2.602400	1.203500
С	-0.482123	-3.144348	2.932250
С	0.002666	1.503023	-1.387225
N	0.460394	-3.659477	-2.066326
С	0.008706	-1.508615	1.386793
N	0.458695	-3.658769	2.067174
С	1.587097	-2.797995	0.000675
Н	2.383407	-2.046452	0.000786
Н	2.032677	-3.793455	0.000860
N	-0.448176	3.653098	-2.067335
С	0.490744	3.138327	-2.934143
С	1.806952	1.093325	-3.207616
С	2.415599	1.684670	-4.297781
С	2.054674	2.988702	-4.715282
С	1.092727	3.734820	-4.052059
С	-1.797105	-1.101270	-3.205728
С	-2.406548	-1.693525	-4.294968
С	-2.045340	-2.997557	-4.712195
С	-1.082359	-3.742824	-4.049487
С	1.809502	1.091407	3.206227
С	2.419038	1.682057	4.296226
С	2.058564	2.985914	4.714793
С	1.096125	3.732460	4.052874
С	-1.799679	-1.099926	3.203425
С	-2.410439	-1.691782	4.292142
С	-2.049869	-2.995747	4.710118
С	-1.086177	-3.741307	4.048770
Н	2.079021	0.092136	-2.881819
Н	3.183069	1.148167	-4.851501
Н	2.551772	3.422036	-5.581281
Η	0.839004	4.739297	-4.384204
Η	-2.069317	-0.100029	-2.880239
Н	-3.174862	-1.157699	-4.848175
Η	-2.543004	-3.431567	-5.577540
Η	-0.828346	-4.747334	-4.381328
Η	2.081310	0.090420	2.879596
Η	3.186937	1.145189	4.848998
Η	2.556493	3.418704	5.580586
Н	0.842770	4.736776	4.385805
Н	-2.071446	-0.098753	2.877328
Н	-3.179300	-1.155692	4.844331
Н	-2.548656	-3.429498	5.574935
Н	-0.832679	-4.745735	4.381243
С	1.436159	-4.691346	-2.397792
Η	1.713406	-5.269223	-1.509378
Н	0.952953	-5.382674	-3.093027
Η	2.332659	-4.270741	-2.874922
С	1.433916	-4.690810	2.399704
Η	0.949834	-5.382048	3.094401
H	1.711997	-5.268619	1.511535
H	2.329957	-4.270298	2.877783
C	-1.418030	4.688669	2.395602
H	-0.937806	5.372296	3.100399
H	-1.681280	5.273604	1.507481
H	-2.322601	4.271871	2.860678

С	-1.422858	4.686578	-2.396613
Н	-1.695348	5.266540	-1.508078
Н	-0.940926	5.375604	-3.094977
Н	-2.322137	4.267182	-2.869571

Table S31. Cartesian coordinates of 8 at the T₁ optimized geometry.

Pt	0.005800	-0.003467	0.000207
Ν	-0.852250	2.588131	1.211197
С	0.809120	1.834707	2.474302
Ν	-0.460948	3.663518	2.034720
С	-0.044001	1.493433	1.375810
С	-0.797025	-1.841890	-2.474101
Ν	-0.852145	2.587904	-1.210945
С	0.808615	1.834027	-2.474745
С	0.509652	3.168149	2.873570
Ν	0.864362	-2.594812	-1.210816
С	-1.642582	2.763424	0.000052
Н	-2.139269	3.734847	-0.000086
Н	-2.395972	1.966530	0.000082
С	-0.497038	-3.175183	-2.873427
С	-0.797803	-1.841296	2.474577
С	0.055856	-1.500407	-1.375506
Ν	0.863456	-2.594782	1.211185
С	-0.498087	-3.174716	2.873978
С	-0.043997	1.492966	-1.375718
Ν	0.473561	-3.670422	-2.034370
С	0.055054	-1.499955	1.375829
Ν	0.472769	-3.669508	2.035441
С	1.654437	-2.770008	0.000513
Н	2.407646	-1.972935	0.000791
Н	2.151323	-3.741339	0.000715
Ν	-0.461280	3.662765	-2.035129
С	0.509104	3.167491	-2.874098
С	1.817719	1.130013	-3.148966
С	2.468105	1.747676	-4.214618
С	2.137768	3.059882	-4.609585
С	1.158085	3.794058	-3.949319
С	-1.806779	-1.138212	-3.147868
С	-2.457093	-1.755993	-4.213282
С	-2.125939	-3.067967	-4.608605
С	-1.145725	-3.801743	-3.948779
С	1.818750	1.130828	3.147960
С	2.469549	1.748585	4.213129
С	2.138929	3.060676	4.608370
С	1.158786	3.794664	3.948685
С	-1.807322	-1.137633	3.148454
С	-2.458086	-1.755637	4.213716
С	-2.127570	-3.067754	4.608725
С	-1.147335	-3.801570	3.948882

Н	2.078068	0.120285	-2.840349
Н	3.247762	1.213978	-4.754086
Н	2.665643	3.513751	-5.445805
Н	0.923827	4.811473	-4.255756
Н	-2.067535	-0.128685	-2.838935
Н	-3.237288	-1.222744	-4.752415
Н	-2.653677	-3.521923	-5.444875
Н	-0.910839	-4.818883	-4.255635
Н	2.079116	0.121169	2.839142
Н	3.249738	1.215186	4.752065
Н	2.666989	3.514579	5.444435
Н	0.924288	4.811898	4.255496
Н	-2.067761	-0.127926	2.839863
Н	-3.238192	-1.222259	4.752801
Н	-2.655704	-3.521844	5.444655
Н	-0.912828	-4.818889	4.255431
С	1.400259	-4.750352	-2.336407
Н	1.640400	-5.325077	-1.434638
Н	0.902628	-5.428471	-3.034177
Н	2.322922	-4.372229	-2.800413
С	1.395385	-4.754133	2.332017
Н	0.899828	-5.427716	3.035597
Н	1.624747	-5.332170	1.429501
Н	2.323917	-4.380229	2.787645
С	-1.386298	4.744817	2.335669
Н	-0.888369	5.422304	3.033824
Н	-1.624726	5.319739	1.433569
Н	-2.309942	4.368105	2.798850
С	-1.384943	4.746191	-2.333230
Н	-1.617212	5.323333	-1.430897
Н	-0.888747	5.421002	-3.035201
Н	-2.311898	4.371171	-2.791152