Supplementary Information

Novel N-heterocyclic ylideneamine gold(I) complexes: synthesis, characterisation and screening for antitumour and antimalarial activity

Jacorien Coetzee,^a Stephanie Cronje,^{* a} Liliana Dobrzańska,^a Helgard G. Raubenheimer,^a Gisela Jooné,^b Margo J. Nell^b and Heinrich C. Hoppe^c

DOI: 10.1039/b000000x

Synthesis and characterisation of 3-methyl-2-(3-10 methyl-3*H*-benzothiazol-2-ylideneamino)benzothiazol-3-ium trifluoromethanesulfonate, IV

During the preparation of 3-methyl-3H-benzothiazol-2ylideneamine (**II**, see main text), reaction temperatures above 66 °C led to the formation of the dimeric byproduct 3-methyl-

 ¹⁵ 2-(3-methyl-3*H*-benzothiazol-2-ylideneamino)benzothiazol-3ium trifluoromethanesulfonate, **IV**. This compound is propsosed to form *via* a condensation reaction which entails the loss of ammonia (Scheme SI 1) and similar compounds have been prepared by Deligeorgiev and Gadjev¹ by treating
 ²⁰ 3-methyl-3*H*-benzothiazol-2-ylideneamine derivatives with

HX, where $X = CH_3SO_3^-$, ClO_4^- , Br^- or I^- .

Scheme SI 1 Proposed formation of IV

- ²⁵ The byproduct IV, crystallised from a dichloromethane solution of compound II as yellow needles in the monoclinic space group *P*2₁/*c*, with two unique molecules of IV and one dichloromethane molecule present in the asymmetric unit. Fig. SI 1 depicts the molecular structure, indicating the numbering ³⁰ scheme, and Table SI 1 summarises selected bond lengths and angles of only one of the symmetrically unique molecules of IV as the bond lengths and angles in the two molecules do not
- differ significantly. The similarity between the C(1)-N(1)/C(1)-N(2) and C(3)-N(9)/C(9)-N(2) bond lengths and 35 their intermediate value when typical double C=N and single C-N bond distances are considered, suggest stabilisation of
- the positive charge by extensive delocalisation of the π electron density in the formal double and single bond over these bonds. Other bond parameters in the two 5-membered 40 heterocyclic rings such as S–C–S angles and C–S bond
- distances do not differ significantly from each other and the heterocyclic rings in 2-ylideneamine compounds.

Fig. SI 1 Molecular structure of a unique molecule of **IV** in the asymmetric unit (thermal ellipsoids are drawn at 50% probability level).

In the solid state packing of **IV** the cations assemble in columns which are stabilised by π - π interactions between the neighbouring benzimidazole rings. (Fig. SI 2). Additionally, numerous weak hydrogen bonds such as C-H...O, C-H...N, C-⁵⁰ H...F involving counterions and solvent molecules further stabilise the packing.

Fig. SI 2 Solid state packing of IV viewed along the c-axis, showing the columnar criss-cross packing motif of the 3-methyl-2-(3-methyl-3*H*-55 benzothiazol-2-ylideneamino)benzothiazol-3-ium cations stabilised by π-π interactions (in orange).

Supplementary Material (ESI) for Dalton Transactions This journal is © the Royal Society of Chemistry 2011

25

Table SI 1 Selected bond lengths (Å) and angles (°) of **IV** with estimated standard deviations in parenthesis

Bond lengths/Å		Bond angles/°	
N(2)-C(1)	1.324(6)	C(1)-N(2)-C(9)	124.2(4)
N(2)–C(9)	1.324(6)	N(1)-C(1)-N(2)	118.8(4)
N(1)-C(1)	1.350(6)	N(3)-C(9)-N(2)	120.1(4)
N(3)-C(9)	1.358(6)	N(2)-C(1)-S(1)	129.9(4)
N(1)-C(7)	1.414(6)	N(2)-C(9)-S(2)	129.0(4)
N(3)–C(15)	1.389(6)	N(1)-C(1)-S(1)	111.3(3)
N(1)-C(8)	1.465(6)	N(3)-C(9)-S(2)	110.9(4)
N(3)-C(16)	1.469(6)	C(1)-N(1)-C(7)	114.6(4)
S(1)-C(1)	1.749(5)	C(9)-N(3)-C(15)	114.8(4)
S(2)-C(9)	1.749(5)	C(1)-S(1)-C(2)	91.2(2)
S(1)-C(2)	1.743(5)	C(9)-S(2)-C(10)	91.3(2)
S(2)-C(10)	1.752(5)	N(1)-C(7)-C(2)	111.7(4)
C(2)-C(7)	1.398(7)	N(3)-C(15)-C(10)	112.9(4)
C(15)–C(10)	1.401(7)	S(1)-C(2)-C(7)	111.2(4)
		S(2)-C(10)-C(15)	110.1(4)

5 Molecular Structure of 4a

The poor crystal quality of **4a** resulted in weak X-ray diffraction data and is therefore included in the SI merely for the purpose of comparison. The presence of included solvent molecules influence the solid state packing immensely. The ¹⁰ appearance of π - π interactions between the neighbouring

benzimidazole rings, absent in **4b**, as well as numerous, new, weak C-H...O interactions between the triphenylphosphine unit and nitrate ion are noteworthy.

Fig. SI 3 Molecular structure of 4a showing the numbering scheme (thermal ellipsoids drawn at 50% probability level).

Table SI 3 Selected bond lengths (Å) and angles (°) of **4a** with estimated standard deviations in parenthesis

Bond lengths/Å	<i>Bond angles/°</i>
Au(1)–P(1) 2.226(3)	N(3)–Au(1)–P(1) 177.0(3)
Au(1)–N(3) 2.031(9)	C(211)–N(3)–Au(1) 131.3(8)
$\begin{array}{l} N(3) = C(211) \ 1.297(13) \\ N(1) = C(211) \ 1.378(14) \\ N(2) = C(211) \ 1.353(14) \\ N(1) = C(218) \ 1.438(14) \\ N(2) = C(219) \ 1.454(14) \end{array}$	N(1)-C(211)-N(3) 126.0(11) N(2)-C(211)-N(3) 126.9(11) N(1)-C(211)-N(2) 107.1(10)

To improve the refinement stability, restraints were placed on the displacement parameters of the atoms C(1), C(2), C(3), and O(1) of one acetone molecule. A restraint on the bond length C(2)-C(3) was also applied.

Compound reference	4a
Chemical formula	C33H38AuN4O5P
Formula Mass	798.61
Crystal system	Triclinic
a/Å	9.043(3)
b/Å	14.043(4)
c/Å	14.902(4)
αI°	63.333(4)
βl°	85.257(4)
y/°	84.437(4)
Unit cell volume/Å ³	1681.5(8)
Temperature/K	150(2)
Space group	$P\overline{1}$
No. of formula units per unit cell, Z	2
No. of reflections measured	18785
No. of independent reflections	7599
R _{int}	0.0878
Final R_1^a values $(I > 2\sigma(I))$	0.0869
Final wR_2^{b} values $(I > 2\sigma(I))^{a}$	0.1701
Final R_1^a values (all data)	0.1191
Final wR_2^{b} values (all data)	0.1828
Goodness-of-fit	1.140

${}^{a}R_{1} = \Sigma[\|F_{o}| - |F_{c}|]/\Sigma |F_{o}|; {}^{b}wR_{2} = \{\Sigma[w(F_{o}^{2} - F_{c}^{2})^{2}]/\Sigma[w(F_{o}^{2})^{2}]\}^{1/2}$

Notes and references

40

- ^a Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602, Stellenbosch, South Africa. Fax:+27 21 808 3849; Tel:+27 21 808 2180; E-mail: <u>scron@sun.ac.za</u> or stephanie.cronje@gmail.com
 ^b Department of Pharmacology, Faculty of Medicine, University of
- ³⁵ Pretoria, P.O. Box 2034, Pretoria, 0001, South Africa
 ^c CSIR, Biosciences, PO Box 395, Pretoria, 0001, South Africa
 - 1 T. Deligeorgiev, N. I. Gadjev, Dyes and Pigments 1995, 29, 315.

2 Suppl. Info.: Journal Name, [year], [vol], 00-00