Supplementary Information

Intramolecularly coordinated azobenzene selenium derivatives: Effect of strength of the Se…N intramolecular interaction on luminescence[†]

Kriti Srivastava,^a Tapash Chakraborty,^a Harkesh B. Singh,^{*a} and Ray J. Butcher^b

^aDepartment of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India. Fax:+91 22 2572 3480; Tel: +91 22 2576 7190; E-mail: chhbsia@chem.iitb.ac.in ^bDepartment of Chemistry, Howard University, Washington, D.C 20059, USA.

CONTENTS

Page No

1. Graphical representation of UV-vis and Fluorescence plot	3-4
for compounds 6-10, 12 and azobenzene	
2. Pictorial representation of molecular orbitals involved in	5-6
π - π^* transition	
3. Comparison of the experimental and computed absorption wavelength	7
for n- π^* transition along with their respective oscillatory strength and	
percentage contribution of molecular orbital at B3LYP/6-31+G(d)	
4. FT-IR, ¹ H NMR, ¹³ C NMR, ⁷⁷ Se NMR, ES-MS/HRMS, CHN,	8-36
spectrum of 6, 7, 8, 9, 10, 11 and 12	
5. Pictorial representation of optimized geometry	37
6. Optimization coordinates and energy of 6-12	38-44

FigureS1 Graphical representation of UV-vis spectra for azobenzene and **5** in CHCl₃ at 10⁻⁵ concentration

FigureS2 Graphical representation of UV-vis spectra for **6**, **10** and **12** in CHCl₃ at 10⁻⁵ concentration

FigureS3 Graphical representation of UV-vis spectra for 7-9 in $CHCl_3$ at 10^{-5} concentration

FigureS4 Emission spectra of compound 6, 12 and 10 at 2×10^{-7} M in CHCl₃

TableS1 Pictorial representation of molecular orbitals involved in U.V-visible transition (B3LYP/6-31+G(d))

Entr	y MO		LUMO	Excita Wavele	Excitation Wavelength				
				$\lambda_{max}(exp)$	$\lambda_{max}(cal)$				
6	НОМО	(27%) (66%)	LUMO LUMO+1	404	451 439	0.1005 0.0651			
7	HOMO HOMO-1	(46%) (39%)	LUMO	432	423 413	0.0633 0.0304			
8	НОМО-2	(66%)	LUMO		481	0.0008			
9	НОМО	(85%)	LUMO	439	466	0.0816			
10	HOMO-4 HOMO	(27%) (29%)	LUMO LUMO+1	450	439 433	0.0096 0.0061			
12	НОМО	(56%)	LUMO+1	445	470	0.1240			

TableS2 Comparison of the experimental and computed absorption wavelength for $n-\pi^*$ transition along with their respective oscillatory strength and percentage contribution of molecular orbital at B3LYP/6-31+G(d)

Figure S6: ¹H NMR spectrum of 6

Figure S8: ⁷⁷Se NMR spectrum of 6

FigureS9: ES-MS spectrum of 6

FigureS10: FT-IR spectrum of 6

Eager 300 Report Sample: KRAZOMONOSE (KRAZOMONOSE) Page: 1

Method Name	: sp310	807					N-	
Method File	: G:\ea	lger300\E	ager 300	EA1112\SP3	310807.	mth (6)	
Chromatogram	: KRAZC	MONOSE						
Operator ID	: SP			Company	Name :	C.E. Instru	ments	
Analysed	: 08/31	./2007 1	4:03	Printed	:	8/31/2007	17:03	
Sample ID	: KRAZO	MONOSE (# 19)	Instrumer	nt N. :	Instrument #1		
Analysis Type	: UnkNo	wn (Area	.)	Sample we	ight : 1.77	1.774		
Calib. method	: using	r 'K Fact	ors'					
!!! Warning m	issing o	one or mo	re peaks		,		. *	
Element Nam	6	8	Ret.Tir	ne Area	BC	Area ratio	K factor	
Nitrogen	dala alao alao - una gina nin ni	12.059	0	4 2539	46 FU	11.381000	.118707E+07	
Carbon		65.208	0	55 28901	61 FU	1.000000	.249843E+07	
Hydrogen		3.782	3 1	75 3322	277 RS	8.698047	.495206E+07	
Totals		81.049	4	34763	384			

FigureS11: Elemental analysis (C, H, N) of 6

Figure S12: ¹H NMR spectrum of 7

Figure S13: ¹³C NMR spectrum of 7

Figure S14: ⁷⁷Se NMR spectrum of 7

Figure S15: ES-MS spectrum of 7

Figure S16: FT-IR spectrum of 7

Page: 1 Samp	E Dle: KRAZOSEC	lager L2 (KRA	300 ZOSECL2	Report			N _{NN}
Method Name Method File Chromatogram Operator ID Analysed Sample ID Analysis Type	: sp200607 : G:\eager300 : KRAZOSECL2 : sp : 06/20/2007 : KRAZOSECL2 : UnkNown (A)	0\Eager 12:01 (# 7) rea)	300 EA Co Pi In Sa	1112 p200 ompany Na rinted nstrument ample weig	607. 	C.E. Instru 6/20/2007 Instrument 1.74	Se (7) ments 16:55 #1
Calib. method	: using 'K Fa	actors'					
Element Name	÷	Ret	t.Time	Area	BC	Area ratio	K factor
Nitrogen Carbon Hydrogen Sulphur Totals	8.3 48.2 2.6 0.4 59.6	3106 211 6082 676 6075	45 67 178 397	193164 2164377 247786 9461 2614788	FU FU RS RS	11.204850 1.000000 8.734863 228.768300	.133581E+07 .257956E+07 .545994E+07 .116286E+07

Figure S17: Elemental analysis (C, H, N) of 7

~

Figure S18: ¹H NMR spectrum of 9

Figure S19: ¹³C NMR spectrum of 9

Figure S20: ⁷⁷Se NMR spectrum of 9

Figure S21: ES-MS spectrum of 9

Figure S22: FT-IR spectrum of 9

/	Eag	er 300 K	eborc		
Page: 1 Sam	ple: KRSEBR (KRSI	EBR)			
	· · · · · · · · · · · · · · · · · · ·				l'
Method Name	: sp191207				Se
Method File	: G:\eager300\Ea	ager 300 EA11	12\SP191207.	mtn /	(9)
Chromatogram	: KRSEBR				
Operator ID	: SP	Con	pany Name :	C.E. Instru	ments
Analysed	: 12/19/2007 14	4:52 Pri	nted :	12/19/2007	15:50
Sample ID	: KRSEBR (# 26)	Ins	trument N. :	Instrument	#1
Analysis Type	: UnkNown (Area)	San	ple weight :	1.774	
Calib. method	l : using 'K Facto	ors'	•		
!!! Warning m	issing one or mo	re peaks.		•	
Element Nam	10 8	Ret.Time	Area BC	Area ratio	K factor
Nitrogen	7.741	44	176378 FU	11.370370	.1284328+07
Carbon	42.379	9 66	2005484 FU	1.000000	.266751E+07
Unding an	2.286	4 175	239490 RS	8.373978	.568787E+07
Total a	52 407	7	2421352		

1m

200

Figure S23: Elemental analysis (C, H, N) of 9

Figure S24: ¹H NMR spectrum of 8

Figure S25: ¹³C NMR spectrum of 8

Figure S26: ⁷⁷Se NMR spectrum of 8

Figure S27: ES-MS spectrum of 8

FigureS28: FT-IR spectrum of 8

Eager 300 Report

Page: 1 Sample: KRAZOSE2 (KRAZOSE2)

		역사 이 이 이 이 이 이 있는 것이 아니 이 이 이 이 이 이 이 가지 않는 것 같아. 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이
Method Name	: sp170907	Se
Method File	: G:\eager300\Eager 300	EA1112\SP170907.mth /
Chromatogram	: KRAZOSE2	I (0)
Operator ID	: SP	Company Name : C.E. Instruments
Analysed	: 09/17/2007 12:31	Printed : 9/17/2007 14:39
Sample ID	: KRAZOSE2 (# 8)	Instrument N. : Instrument #1
Analysis Type	: UnkNown (Area)	Sample weight : 2.059
Calib. method	: using 'K Factors'	
<pre>!!! Warning mi</pre>	ssing one or more peaks.	

Element Name	8	Ret.Time	Area	BC	Area ratio	K factor
Nitrogen	6.9026	44	170286	RS	11.438950	.119816E+07
Carbon	37.6517	67	1947893	RS	1.000000	.250955E+07
Hydrogen	1.6507	178	179503	RŚ	10.851590	.504004E+07
Totals	46.2050		2297682			× .

FigureS29: Elemental analysis (C, H, N) of 8

N_SN

ſſ

Figure S30: 1H NMR spectrum of 10

Figure S31: ¹³C NMR spectrum of 10

Figure S32: ⁷⁷Se NMR spectrum of 10

FigureS33: ES-MS spectrum of 10

Figure S34: FT-IR spectrum of 10

Page: 1	Sample:	KRAZOSEO	(ARAZOSEO)
---------	---------	----------	------------

Method Name	::	sp061107			-		
Method File	:	G:\eager300\Eager 300	EA1112\SP061107	1.1	mth	(1	0)
Chromatogram	:	ARAZOSEO					
Operator ID	:	SP	Company Name	:	C.E.	Instru	ments
Analysed	:	11/06/2007 14:35	Printed	:	11/6/	2007	16:16
Sample ID	:	KRAZOSEO (# 25)	Instrument N.	:	Instr	ument	#1
Analysis Type	:	UnkNown (Area)	Sample weight	:	1.803	3	
Calib method	•	using 'K Factors'				•	

!!! Warning missing one or more peaks.

Element	Name	8	Ret.Time	Area	BC	Area ratio	K factor
Nitrogen	a gina ang ang ang ang ang ang ang ang ang a	11.5347	44	270825	FU	11.340450	.1302238+07
Carbon		63.4209	65	3071276	FU	1.000000	.268411E+07
Hydrogen		3.7230	169	395587	RS	7.763844	.575777E+07
Totals		78.6785		3737688			
1							

Figure S35: Elemental analysis (C, H, N) of 10

Figure S36: ¹H NMR spectrum of 11

Figure S37: D₂O exchange ¹H NMR spectrum of 11

Figure S38: ¹³C NMR spectrum of 11

Figure S39: ⁷⁷Se NMR spectrum of 11

Figure S40: ES-MS of 11

		Eag	er 300	Report		í Ý /	
Page: 1 Sam	ple: KRA	MINE (KRA	MINE)	-		Se H	1
Method Name Method File Chromatogram Operator ID Analysed Sample ID Analysis Type	: sp021 : G:\ea : KRAMI : SP : 11/02 : KRAMI : UnkNo	107 ger300\Ea NE /2007 14 NE (# 30) WN (Area)	nger 300 E :49	A1112\SP021 Company Na Printed Instrument Sample weig	1107 me : N. : jht :	.mth (1 : C.E. Instru : 11/2/2007 : Instrument : 1.717	Iments 16:11 #1
Calib. method	: using	'K Facto	rs'				*
!!! Warning mi	ssing o	ne or mor	e peaks.				
Element Name		8	Ret.Time	Area	BC	Area ratio	K factor
Nitrogen Carbon Hydrogen Totals		11.7779 65.1790 4.9396 81.8965	43 64 169	258744 2976805 503643 3739103	FU FU RS	11.504820 1.000000 5.910546	.127947E+0 .265670E+0 .583662E+0

Figure S42: Elemental analysis (C, H, N) of 11

Figure S43: ¹H NMR spectrum of 12

Figure S44: ¹³C NMR spectrum of 12

Figure S45: ⁷⁷Se spectrum of 12

Figure S46: ES-MS of 12

Figure S47: FT-IR of 12

!!! Warning missing one or more peaks.

Element	Name	8	Ret.Time	Area	BC	Area ratio	K factor
Nitrogen		9.7754	43	183525	FU	11.577480	.1296558+07
Carbon		54.7260	65	2124752	FU	1.000000	.268131E+07
Hydrogen		3.6939	169	312958	RS	6.789255	.576150E+07
Totals	ja jir V.	68.1953		2621234			

Figure S48: Elemental analysis (C, H, N) of 12

Figure S49 Optimized geometry of compound **6-12** at B3LYP/6-31+G(d)

Optimizide coordinates and Energy of **6**:

34	-0.512931000	-0.924034000	-0.639370000
7	2.461161000	0.027525000	-0.485231000
7	3.566636000	0.613374000	-0.610708000
7	-2.922716000	-0.181369000	1.388894000
7	-2.785647000	0.108025000	0.167670000
6	1.140994000	-1.910185000	-1.012365000
6	1.019456000	-3.214460000	-1.500588000
1	0.037714000	-3.678079000	-1.542057000
6	2.144782000	-3.928292000	-1.915825000
1	2.040006000	-4.947730000	-2.278306000
6	3.407729000	-3.324482000	-1.869375000
1	4.287387000	-3.876169000	-2.191497000
6	3.542329000	-2.018913000	-1.407450000
1	4.512815000	-1.535595000	-1.366846000
6	2.409062000	-1.296165000	-0.992226000
6	3.598955000	1.933941000	-0.091702000
6	4.852532000	2.562161000	-0.115427000
1	5.700547000	2.013757000	-0.515767000
6	4.993923000	3.863386000	0.369391000
1	5.967629000	4.345710000	0.353535000
6	3.880529000	4.543066000	0.870503000
1	3.985635000	5.558111000	1.245038000
6	2.624454000	3.918715000	0.884775000
1	1.759072000	4.453194000	1.268440000
6	2.475865000	2.619523000	0.409063000
1	1.510230000	2.125518000	0.409757000
6	-0.663368000	-1.261017000	1.240095000
6	0.349407000	-1.910346000	1.959718000
1	1.255228000	-2.218311000	1.450352000
6	0.214746000	-2.173985000	3.322477000
1	1.021923000	-2.680077000	3.846066000
6	-0.942145000	-1.790727000	4.013368000
1	-1.046144000	-1.995645000	5.074981000
6	-1.952881000	-1.139721000	3.320168000
1	-2.864894000	-0.819214000	3.815517000
6	-1.834076000	-0.866245000	1.943143000
6	-3.853914000	0.810353000	-0.439873000
6	-5.032761000	1.193458000	0.224245000
1	-5.155690000	0.941621000	1.271934000
6	-6.018437000	1.888086000	-0.471740000
1	-6.930530000	2.185221000	0.039944000
6	-5.841238000	2.207098000	-1.825318000
1	-6.614343000	2.751361000	-2.361469000
6	-4.668411000	1.824944000	-2.483065000
1	-4.527678000	2.070456000	-3.532439000

6	-3.676923000	1.124791000	-1.796006000
1	-2.758932000	0.820239000	-2.288910000
Ene	ergy (E): -3543.79	253191	

Optimized coordinates and energy of **7**:

34	-0.525467000	-1.132958000	0.013332000	
17	-2.207378000	-2.814824000	0.324481000	
7	0.296998000	1.657892000	-0.139511000	
7	0.810661000	0.491663000	-0.157825000	
6	-1.716919000	0.330655000	-0.043934000	
6	-3.117225000	0.277210000	-0.041063000	
1	-3.619344000	-0.681984000	0.006019000	
6	-3.845635000	1.461216000	-0.083321000	
1	-4.931271000	1.410572000	-0.074455000	
6	-3.209899000	2.719390000	-0.135626000	
1	-3.805030000	3.627409000	-0.163782000	
6	-1.829134000	2.790562000	-0.151203000	
1	-1.299258000	3.737422000	-0.193466000	
6	-1.077002000	1.597609000	-0.119190000	
6	2.222425000	0.364631000	-0.081582000	
6	2.967567000	1.193283000	0.768047000	
1	2.457722000	1.948317000	1.357525000	
6	4.352095000	1.045734000	0.823586000	
1	4.935494000	1.691481000	1.474216000	
6	4.984575000	0.047483000	0.073673000	
1	6.062536000	-0.075562000	0.133024000	
6	4.231824000	-0.783819000	-0.761513000	
1	4.722379000	-1.549977000	-1.355269000	
6	2.847142000	-0.631514000	-0.842425000	
1	2.255577000	-1.256639000	-1.504620000	
Energy (E): -3431.82850732				

Optimized coordinates and energy of 8:

34	0.253775000	-0.434026000	-0.029913000
53	2.961673000	-1.468668000	0.060801000
7	-1.769488000	0.473673000	-0.064011000
7	-1.771735000	1.739692000	-0.038277000
6	0.634185000	1.431797000	-0.041696000
6	1.904390000	2.014133000	-0.048268000
1	2.783455000	1.379676000	-0.047885000
6	2.029028000	3.400467000	-0.050049000
1	3.023932000	3.836692000	-0.053453000
6	0.900994000	4.240102000	-0.046417000
1	1.023977000	5.318585000	-0.048073000

6	-0.364152000	3.682415000	-0.040790000
1	-1.263763000	4.289238000	-0.039049000
6	-0.506089000	2.280266000	-0.039100000
6	-3.000590000	-0.222563000	-0.028617000
6	-4.202884000	0.429875000	0.290902000
1	-4.185944000	1.490482000	0.512730000
6	-5.386926000	-0.298626000	0.321998000
1	-6.317316000	0.203127000	0.572089000
6	-5.383774000	-1.669167000	0.039717000
1	-6.312330000	-2.231869000	0.068240000
6	-4.185431000	-2.313101000	-0.276698000
1	-4.177560000	-3.375743000	-0.499614000
6	-2.992280000	-1.595363000	-0.311513000
1	-2.061756000	-2.088889000	-0.571166000
Ener	rgy (E): -9893.16	5722435	

Optimized coordinates and Energy of **9**:

34	0.458135000	-0.735799000	-0.000153000	
35	2.591284000	-2.098352000	0.000055000	
7	-1.243010000	0.561416000	0.000121000	
7	-0.988074000	1.809699000	0.000070000	
6	1.276227000	0.968736000	0.000025000	
6	2.650589000	1.235070000	-0.000060000	
1	3.356941000	0.413340000	-0.000052000	
6	3.092413000	2.554092000	-0.000076000	
1	4.161663000	2.748978000	-0.000231000	
6	2.188276000	3.635344000	0.000025000	
1	2.560078000	4.655719000	0.000007000	
6	0.827184000	3.389272000	0.000183000	
1	0.097263000	4.193232000	0.000348000	
6	0.363027000	2.057135000	0.000111000	
6	-2.599279000	0.144268000	0.000085000	
6	-3.652399000	1.073000000	-0.000147000	
1	-3.425710000	2.132865000	-0.000339000	
6	-4.969679000	0.622275000	-0.000135000	
1	-5.781839000	1.344184000	-0.000219000	
6	-5.248504000	-0.749575000	-0.000016000	
1	-6.278068000	-1.096901000	-0.000017000	
6	-4.197967000	-1.671745000	0.000129000	
1	-4.405326000	-2.738068000	0.000155000	
6	-2.875506000	-1.231085000	0.000208000	
1	-2.065226000	-1.952382000	0.000321000	
Energy (E): -5543.36693440				

Optimized coordinates and energy of 10:

34	-0.871615000	-1.209904000	-0.819999000
8	-0.953849000	-2.863379000	-1.097818000
7	1.692394000	-0.970560000	0.570240000
7	2.886669000	-0.983530000	0.963356000
7	-2.551839000	1.716642000	-0.380695000
7	-1.310182000	1.523046000	-0.289364000
6	-0.619267000	-1.150303000	1.137275000
6	-1.659752000	-1.302074000	2.051827000
1	-2.687283000	-1.364886000	1.708303000
6	-1.376951000	-1.359616000	3.418149000
1	-2.189876000	-1.466038000	4.131844000
6	-0.051838000	-1.284789000	3.870209000
1	0.161129000	-1.330626000	4.935065000
6	0.991789000	-1.159472000	2.960571000
1	2.024948000	-1.109594000	3.286646000
6	0.710097000	-1.095870000	1.583982000
6	3.861766000	-0.855432000	-0.056988000
6	5.192600000	-0.843382000	0.387067000
1	5.383487000	-0.931611000	1.452820000
6	6.237146000	-0.725279000	-0.530550000
1	7.266685000	-0.718072000	-0.182824000
6	5.954948000	-0.621265000	-1.895392000
1	6.765795000	-0.534479000	-2.614066000
6	4.624777000	-0.634523000	-2.340487000
1	4.408739000	-0.559068000	-3.403123000
6	3.576966000	-0.745863000	-1.431658000
1	2.545681000	-0.768223000	-1.766208000
6	-2.797870000	-0.742459000	-0.829704000
6	-3 654232000	-1.791984000	-1.139933000
1	-3.220036000	-2.777853000	-1.295734000
6	-5.034646000	-1 571905000	-1 238102000
1	-5 696920000	-2.402261000	-1 469377000
6	-5 556152000	-0.289717000	-1.047256000
1	-6 624975000	-0 113274000	-1 132089000
6	-4 696699000	0.769577000	-0 758193000
1	-5.071855000	1 779698000	-0.620829000
6	-3 313416000	0 557997000	-0.641088000
6	-0 525029000	2 681069000	-0.059454000
6	-1.065356000	3 958571000	0.057454000
1	-2 142327000	4 084183000	0.175220000
6	-2.142327000	5.036258000	0.385588000
1	-0.212107000	6 024387000	0.569710000
6	1 178562000	4 853855000	0.361671000
1	1 830731000	5 701160000	0.501071000
т 6	1 71/100000	3 58/618000	0.520597000
1	1./14199000 2 700851000	3.304010000	0.127034000
1	2.190031000	5.455507000	0.10/392000

6	0.864120000	2.496928000	-0.078650000		
1	1.257909000	1.501965000	-0.261675000		
Energy (E): -3618.96747620					

Optimized coordinates and geometry of **11**:

34	0.711127000	1.325114000	-0.496227000
7	-2.301710000	0.477999000	-0.659242000
7	-3.487054000	0.079658000	-1.272344000
7	1.890272000	-1.609329000	-0.307603000
7	2.686953000	-0.720977000	-1.053445000
6	-0.872591000	2.348457000	-0.059176000
6	-0.730288000	3.674253000	0.362765000
1	0.270037000	4.072397000	0.511021000
6	-1.846494000	4.483869000	0.582528000
1	-1.722640000	5.512099000	0.910461000
6	-3.121831000	3.946034000	0.381996000
1	-4.003745000	4.558711000	0.553462000
6	-3.285370000	2.629458000	-0.045354000
1	-4.275018000	2.215920000	-0.207693000
6	-2.164468000	1.812049000	-0.275062000
6	-4.026933000	-1.166508000	-0.899475000
6	-4.902612000	-1.818485000	-1.784439000
1	-5.111097000	-1.379660000	-2.758902000
6	-5.518809000	-3.012650000	-1.412231000
1	-6.197488000	-3.500380000	-2.107869000
6	-5.259938000	-3.587135000	-0.163457000
1	-5.736772000	-4.520256000	0.123425000
6	-4.377377000	-2.942561000	0.708213000
1	-4.161338000	-3.377143000	1.681381000
6	-3.755001000	-1.744971000	0.349900000
1	-3.066119000	-1.251315000	1.026774000
6	0.756068000	0.128855000	1.034079000
6	0.218385000	0.516812000	2.264943000
1	-0.223939000	1.503745000	2.360516000
6	0.216514000	-0.347539000	3.360941000
1	-0.219144000	-0.026597000	4.303079000
6	0.772528000	-1.622501000	3.230865000
1	0.779177000	-2.310934000	4.071838000
6	1.346524000	-2.006594000	2.020522000
1	1.799943000	-2.991867000	1.923499000
6	1.353899000	-1.139855000	0.915259000
6	4.089351000	-0.737508000	-0.884610000
6	4.684048000	-1.033152000	0.352251000
1	4.065956000	-1.260526000	1.214510000
6	6.075480000	-1.012344000	0.478742000

1	6.521237000	-1.244006000	1.442906000
6	6.890150000	-0.687128000	-0.608188000
1	7.971028000	-0.670069000	-0.500693000
6	6.295427000	-0.382882000	-1.837476000
1	6.913401000	-0.130847000	-2.695676000
6	4.909463000	-0.417746000	-1.980580000
1	4.456073000	-0.192953000	-2.944327000
1	-1.448802000	0.062434000	-1.034383000
1	-3.509621000	0.259490000	-2.274560000
1	2.326144000	-2.525988000	-0.210770000
1	2.398438000	-0.728938000	-2.025584000
Ene	$r_{\rm GV}$ (F): -35/16/21	3/7/15	

Energy (E): -3546.21347415

Optimized coordinates and geometry of **12**:

6	0.800169000	2.417720000	-0.925752000
6	1.813470000	1.482504000	-0.696681000
6	3.161250000	1.924019000	-0.772401000
6	3.451421000	3.268079000	-1.072787000
6	2.431123000	4.182241000	-1.294257000
6	1.101549000	3.746913000	-1.219806000
1	-0.235834000	2.098973000	-0.885309000
1	4.496487000	3.559292000	-1.125147000
1	2.661315000	5.218143000	-1.525678000
1	0.287633000	4.446213000	-1.393635000
7	3.965217000	-0.105354000	-0.331340000
7	4.268054000	1.094290000	-0.578893000
6	5.031795000	-1.011998000	-0.128531000
6	6.387695000	-0.653057000	-0.222628000
6	4.675779000	-2.330494000	0.193551000
6	7.371882000	-1.612632000	-0.004853000
1	6.648151000	0.370438000	-0.469049000
6	5.668353000	-3.285875000	0.412212000
1	3.624778000	-2.591437000	0.268101000
6	7.016715000	-2.931028000	0.312125000
1	8.420240000	-1.335896000	-0.081016000
1	5.389246000	-4.306286000	0.660290000
1	7.789352000	-3.676465000	0.481219000
6	-1.422376000	0.212708000	1.346803000
6	-2.798986000	0.224375000	1.652568000
6	-0.503132000	0.590761000	2.328346000
6	-3.236145000	0.615516000	2.929819000
6	-0.945161000	0.983458000	3.591347000
1	0.559277000	0.577953000	2.109653000
6	-2.313309000	0.994102000	3.897474000
1	-4.301030000	0.612767000	3.136831000

1	-0.216536000	1.277644000	4.342773000
1	-2.651324000	1.295680000	4.885200000
7	-4.885613000	-0.142375000	0.845905000
7	-3.652303000	-0.174585000	0.600832000
6	-5.725297000	-0.545135000	-0.222528000
6	-5.269664000	-0.937671000	-1.495191000
6	-7.099540000	-0.534514000	0.057201000
6	-6.192098000	-1.318615000	-2.464764000
1	-4.204796000	-0.941863000	-1.700312000
6	-8.018627000	-0.916104000	-0.921319000
1	-7.423318000	-0.225500000	1.047023000
6	-7.566570000	-1.308223000	-2.184058000
1	-5.843817000	-1.624262000	-3.448217000
1	-9.082416000	-0.906814000	-0.699450000
1	-8.278533000	-1.606248000	-2.949456000
34	-0.942563000	-0.405613000	-0.415656000
34	1.459382000	-0.373460000	-0.319188000
Ener	rgy (E): -5943.24	056877	