Supplementary Information

For

Zn²⁺-Trigged Excited-State Intramolecular Proton Transfer: A Sensitive Probe with Near-infrared Emission from Bis(benzoxazole) Derivative

Yongqian Xu and Yi Pang*

Department of Chemistry & Maurice Morton Institute of Polymer Science, The University of Akron, Akron, OH, 44325 yp5@uakron.edu

1. Absorption Spectra

Fig. S1. UV-vis absorption spectra of Zinhbo-1 in different solvents.

Fig. S2. Change in the UV-vis spectra for **Zinhbo-1** $(1.0 \times 10^{-5} \text{ M})$ in THF upon addition of zinc ions.

Fig. S3. Change in the UV-vis spectra for Zinhbo-1 $(2.0 \times 10^{-6} \text{ M})$ in absence (a) and presence (b) of 1 equiv zinc ions in DMSO/H₂O(5:95) at different pH.

Fig. S4. Absorption spectra of **Zinhbo-1** (30 μ M) in absence (a) and presence (b) of 1 equiv zinc ions in HEPES buffer system containing 5% DMSO upon addition of different metal ions (30 μ M heavy metal or 0.3 mM Na⁺, K⁺, Ca²⁺, Mg²⁺).

2. Fluorescence Spectra

Fig. S5. Change in the fluorescence spectra for Zinhbo-1(1.0×10^{-5} M) in THF with addition of zinc ions upon excitation at (a) 390, (b) 429 and (c) 480 nm.

Fig. S6. Change in the fluorescence spectra for Zinhbo-1(1.0×10^{-5} M) in DMSO with addition of zinc ions upon excitation at (a) 410, (b) 427 and (c) 480 nm.

Fig. S7. Emission spectra of **Zinhbo-1**(10 µ M) in HEPES buffer system containing 5% DMSO upon addition of zinc ions with the excitation at (a) 400, (b) 435 and (c) 480 nm.

Fig. S8. Emission spectra of **Zinhbo-1**(1.5μ M) in HEPES buffer system containing 5% DMSO and 10 mM EGTA upon addition of zinc ions with the excitation at (a) 410, (b) 435, (c) 460 and 480 nm (d).

Fig. S9. Change in the fluorescence spectra for **Zinhbo-1**(1.0×10^{-6} M) in absence (a) and presence (b) of 1 equiv of zinc ion in DMSO/H₂O(5:95) with different pH (excitation at 470 nm). Left: In acidic solutions (pH=3-6), emission band was at ~530 nm, attributing to the *enol* form. In the basic solution (pH>12), the emisson was near ~635 nm, originating from the phenoxide anion.

6. Determination of binding constant.^[S1]

A series of HEPES (2-[4-(2-hydroxyethyl)-1-piperazinyl]ethanesulfonic acid) buffer solutions (50 mM, pH 7.20, 0.1 M KNO₃) containing various amounts of Zn^{2+} (0 ~ 9.5 mM) and 10 mM of EGTA (ethylenebis(oxyethylenenitrilo)tetraacetic acid) were prepared. The concentration of free Zn^{2+} was calculated with [EGTA]_{total}, $[Zn^{2+}]_{total}$, and $K'_{Zn-EGTA}$, the apparent binding constant at a given pH and ionic strength. $K'_{Zn-EGTA}$ value was calculated from Eq. 1 at pH = 7.20

$$K'_{\text{Zn-EGTA}} = K_{(\text{ZnL})} (1+10^{(\text{pK}_{\text{LMH}}-\text{pH})} / ((1+10^{(\text{pH}-\text{pK}_{\text{Zn}})})(1+10^{(\text{pK}_1-\text{pH})}+10^{(\text{pK}_1+\text{pK}_2-2\text{pH})})) \text{ (Eq. 1)}$$

using the following published pK and log K values for EGTA; $pK_1 = 9.40$, $pK_2 = 8.79$, $pK_3 = 2.70$, $pK_{LMH} = 9.40$, log $K_{(ZnL)} = 12.6$ (25 °C, $\mu = 0.1$ M). All protonation constants were corrected upward by 0.11 when working in 0.1 M ionic strength. Thus, $K'_{Zn-EGTA}$ value at pH 7.20, 0.1 M ionic strength is 3.80×10^8 M⁻¹.

The calculated $[Zn^{2+}]_{\text{free}}$ concentration of each solution is:

$[Zn^{2+}]_{total}$ (mM)	0.2	0.4	0.6	0.8	1	2	3	4	5	6	7	8
$[Zn^{2^+}]_{free}$ (nM)	0.054	0.11	0.168	0.229	0.29	0.66	1.1	1.8	2.6	4.0	6.1	11

The intensities at 710 nm in the emission spectrum of each solution was measured with the excitation wavelength at 480 nm and was fitted to the following equation (Eq. 2).

$$F_0/(F-F_0) = \alpha/(K_s[M]) + \alpha$$
 (Eq. 2)

Where $\alpha = a/(b-a)$, [M] $\approx C_{\rm M}$ is Zn²⁺ ion concentration, *a* and *b* are proportional to the molar absorption coefficients (at the excitation wavelength) and the fluorescent quantum yields of the ligand and complex, respectively. $K_{\rm s}$ can be determined by a fit curve analysis of *F* versus $C_{\rm M}$.

Fig.S10. Emission spectra of **Zinhbo-1**(1.5 μ M) in HEPES buffer system containing 5% DMSO and 10 mM EGTA upon addition of zinc ions (a) and Cd²⁺ (b) with the excitation at 460 nm. Low concentration of Cd²⁺ cation induced slight decrease in fluorescence, in contrast to the

addition of Zn^{2+} cation under the same concentration range.

Figure 11. Plots of fluorescence of **Zinhbo-1** (1.5 μ M) in HEPES buffer system containing 5% DMSO and 10 mM EGTA upon addition of zinc ions. The fluorescence intensity at 536 was used to calculate dissociation constant. K_d=1.91 ± 0.56×10⁻¹⁰ M (detection at 536 nm)

Fig. S12. Emission spectra of Zinhbo-1(1.5 μ M) and zinc ions in HEPES buffer system containing 5% DMSO with the excitation at 460 nm.

3. Determination of quantum yield.^[S2]

The quantum yield can be determined according to the literature.

$$QY_{u} = \frac{(QY_{s})(FA_{u})(A_{s})(\lambda_{exs})(\eta_{u}^{2})}{(FA_{s})(A_{u})(\lambda_{exu})(\eta_{s}^{2})}$$

where QY = quantum yield; FA = integrated area under the emission spectrum; A = absorbance at the excitation wavelength; λ_{ex} = the excitation wavelength; η = the refractive index of the solution; and the subscripts *u* and *s* refer to the unknown and the standard, respectively.

4. Fluorescence spectra with various metal ions

Fig. S13. Emission spectra of **Zinhbo-1**(30 μ M) in absence (a) and presence (b) of zinc ion (30 μ M) in HEPES buffer system(1:1) containing 5% DMSO upon addition of different metal ions (30 μ M heavy metal or 0.3 mM Na⁺, K⁺, Ca²⁺, Mg²⁺) with the excitation at 460 nm.

5. References

S1. (a) Valeur, B. Molecular *Fluorescence: Principles and Application*, Wiley-VCH, Weinheim, 2002

(b) Taki, M.; Wolford, J. L.; O'halloran, T. V. J. Am. Chem. Soc. 2004, 126, 712-713

S2. (a) Lakowicz, J. R. *Principles of Fluorescence Spectroscopy*; 2nd.; Kluwer Academic/Plenum: New York, 1999

(b) Velapoldi R. A.; Tønnesen H. H. J. Fluorescence, 2004, 14, 465-472.