Synthesis of glycerol carbonate from glycerol and urea with gold-based

catalysts

Supplementary Material

Ceri Hammond,^a Jose A. Lopez-Sanchez,^{a,**}Mohd Hasbi Ab Rahim, ^a Nikolaos Dimitratos,^a Robert L. Jenkins,^a Albert F. Carley,^a Qian He, ^b Christopher J. Kiely,^b

David W. Knight, and Graham J. Hutchingsa*

^a Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building,

Park Place, Cardiff, CF10 3AT, UK

^b Center for Advanced Materials and Nanotechnology, Lehigh University, 5 East Packer

Avenue, Bethlehem, PA 18015-3195, USA

** Co-corresponding author:

sacjal@cardiff.ac.uk

Tel: +44 29 2087 4061

Fax: +44 29 2087 4059

*Corresponding author:

hutch@cardiff.ac.uk

Tel: +44 29 2087 4059

Fax: +44 29 2087 4059

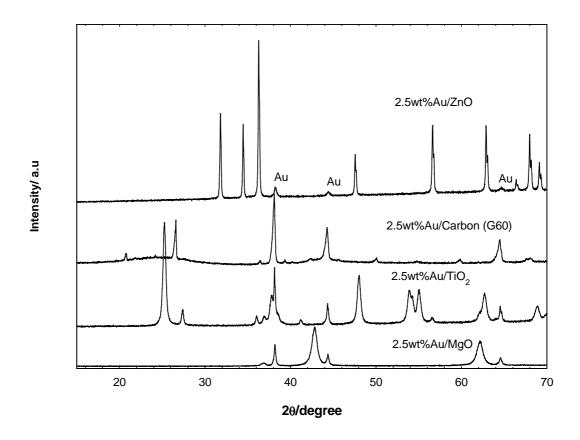
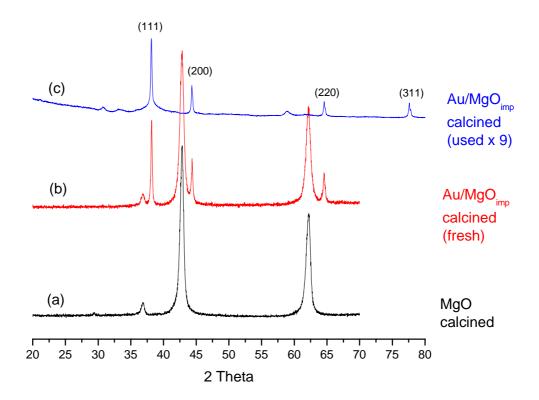
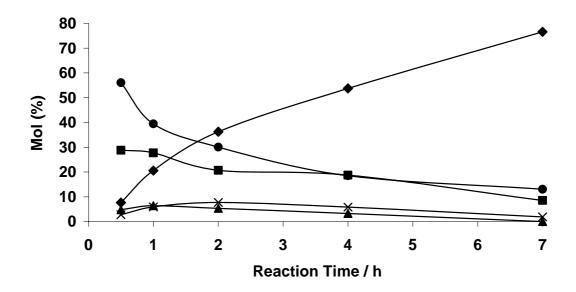
Contents

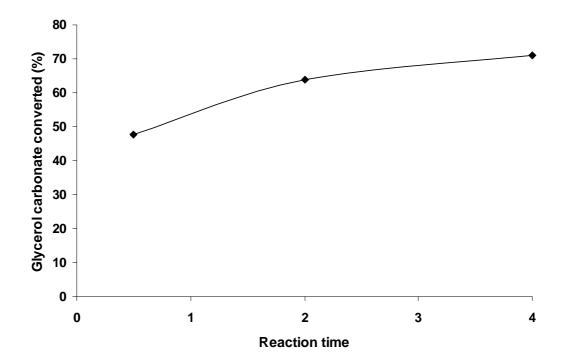
- Table S1 Reusability data with 2.5 wt% Au/MgO synthesized via an impregnation method^a
- Fig. S1 XRD diffractogram of 2.5 wt% Au supported on MgO. TiO₂, carbon and ZnO.
- Fig. S2 X-ray diffraction patterns for (a) MgO, calcined at 400 °C for 3 h in static air; (b) 2.5 wt. % Au/MgO prepared by impregnation and calcined at 400 °C for 3 h in static air and (c) 2.5 wt. % Au/MgO prepared by impregnation and calcined at 400 °C for 3 h in static air after 9 catalytic cycles.
- Fig. S3 TOL data in molar composition obtained with 2.5 wt% Au/MgO (Mol vs Time).
- Fig. S4 Plot of glycerol carbonate converted from reaction of glycerol carbonate with urea at 150°C under flow of nitrogen.
- Fig. S5 TOL blank glycerol carbonate synthesis reaction performed with a ratio of 2:1 glycerol to urea.
- Fig. S6 TOL of 2:1 glycerol to urea ratio with presence of 2.5 wt% Au/MgO impregnation catalyst

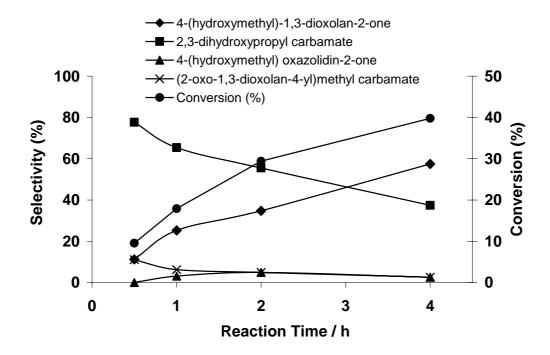
Table S1 Reusability data with 2.5 wt% Au/MgO synthesized via an impregnation method^a

Entry	Catalyst	Conv. (%)	Selectivity (%)				
							Glycerol Carbonate Yield (%)
			Glycerol carbonate	5	7	9	
1	Blank	59	36	44	7	13	21
2	MgO	67	37	37	10	16	27
	2.5wt%Au/MgO	81	68	16	4	12	56
3	Fresh						
4	2.5wt%Au/MgO After 1 st used	79	71	16	3	10	56
5	2.5wt%Au/MgO After 2nd used	78	65	19	5	11	51
6	2.5wt%Au/MgO After 4 th used	80	63	20	5	11	51
7	2.5wt%Au/MgO After 6 th used	90	63	12	6	19	57
8	2.5wt%Au/MgO After 8 th used	87	81	8	2	9	70
9	2.5wt%Au/MgO After 10 th used	80	69	17	4	10	55

^aReaction conditions: Glycerol to Urea molar ratio: (1:1.5), Temperature: 150 °C, Catalyst: 0.25 g, Reaction time: 4 hrs, N₂ flow. Product (**5**): 2,3-dixydroxylpropyl carbamate, Product (**7**): 4-(hydroxymethyl) oxazolidin-2-one, Product (**9**):(2-oxo-1,3-dioxolan-4-yl) methyl carbamate.


Fig. S1 XRD diffractogram of 2.5 wt% Au supported on MgO. TiO_2 , carbon and ZnO.


Fig. S2 X-ray diffraction patterns for (a) MgO, calcined at 400 °C for 3 h in static air; (b) 2.5 wt. % Au/MgO prepared by impregnation and calcined at 400 °C for 3 h in static air and (c) 2.5 wt. % Au/MgO prepared by impregnation and calcined at 400 °C for 3 h in static air after 9 catalytic cycles.

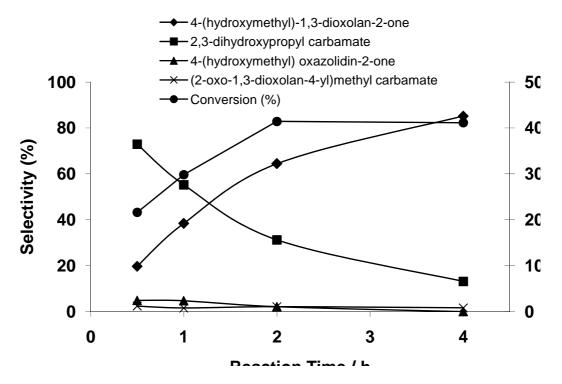

Fig. S3 TOL data in molar composition obtained with 2.5 wt% Au/MgO (Mol vs Time). Key: ◆ 4-(hydroymethyl)-1,3-dioxolan-2-one, ■ 2,3-dihydroxyproyl carbamate, ▲ 4-(hydroxymethyl) oxazolidin-2-one, × (2-oxo-1,3-dioxolan-4-yl) methyl carbamate, • glycerol.

Fig. S4 Plot of glycerol carbonate converted from reaction of glycerol carbonate with urea at 150°C under flow of nitrogen.

Fig. S5 TOL blank glycerol carbonate synthesis reaction performed with a 2:1 glycerol: urea. Key: ◆ selectivity to 4-(hydroymethyl)-1,3-dioxolan-2-one, ■ selectivity to 2,3-dihydroxyproyl carbamate, ▲ selectivity to 4-(hydroxymethyl) oxazolidin-2-one, × selectivity to (2-oxo-1,3-dioxolan-4-yl) methyl carbamate and, • glycerol conversion.

Fig. S6 TOL of 2:1 glycerol to urea ratio with presence of 2.5 wt% Au/MgO impregnation catalyst. Key: ◆ selectivity to 4-(hydroymethyl)-1,3-dioxolan-2-one, selectivity to 2,3-dihydroxyproyl carbamate, ▲ selectivity to 4-(hydroxymethyl) oxazolidin-2-one, × selectivity to (2-oxo-1,3-dioxolan-4-yl) methyl carbamate and, • glycerol conversion.