Cyclopentadienyl mesityl complexes of chromium(II) and chromium(III)

Wen Zhou,^a Jeffrey A. Therrien,^a D. Lee K. Wence,^a Emily N. Yallits,^a Julia L.

Conway,^a Brian O. Patrick^b and Kevin M. Smith*^a

^aDepartment of Chemistry, University of British Columbia Okanagan, 3333 University Way, Kelowna, BC, Canada VIV IV7 ^bDepartment of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada

V6T 1Z1

Table of Contents

1.	Experimental section	2
2.	Crystal data and refinement parameters for X-ray structures	9
3.	UV-visible spectra	11

Experimental Section:

General Considerations: All reactions were carried out under nitrogen using standard Schlenk and glove box techniques. Hexanes, Et₂O, THF and toluene were purified by passage through activated alumina and deoxygenizer columns from Glass Contour Co. (Laguna Beach, CA, USA). Celite (Aldrich) was dried overnight at 120 °C before being evacuated and then stored under nitrogen. Iodine was purified by sublimation and stored under nitrogen. PbCl₂ (Aldrich, 98%) was dried at 120 °C prior to use. NaCp (2.0M in Et₂O), CrCl₂ (99% anhydrous), CrCl₃ (anhydrous), 1,4-dioxane (anhydrous), MesMgBr (1.0 M in Et₂O) and benzoylacetone were purchased from Aldrich and used as received. 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU, Aldrich 98%) was distilled under vacuum, degassed with three freeze-pump-thaw cycles, and stored under nitrogen. Anhydrous DBU·HCl was prepared by the reaction of DBU in dry Et₂O under N₂ with anhydrous HCl (1.0 M in and storage in a glove Et₂O, Aldrich), followed by isolation box. 1,3-Dimethylimidazolium iodide (Me-NHC·HI),¹ 1,3-diisopropylimidazolium chloride (iPr-NHC·HCl),¹ and chromocene (Cp_2Cr) ,² were prepared according to the literature procedures. $[Cp_2Cr][X] (X = I \text{ or } OTf)^3$ were prepared by oxidation of Cp₂Cr in THF with iodine or AgOTf. 1,3-diisopropylimidazolium chloride was washed with acetone and dried prior to use.⁴ Salicylaldimine⁵ and β -ketoimine⁶ ligands were prepared according to the literature procedures by condensation of substituted anilines with salicylaldehyde and benzoylacetone, respectively. Elemental analyses were performed by Guelph Chemical Laboratories, Guelph, ON,

Canada or by the UBC Department of Chemistry microanalytical services. UV-visible spectra were obtained on a VARIAN Cary 50 Bio UV-vis spectrophotometer using air-tight cells sealed with Kontes Teflon valves. ¹H NMR spectra were recorded on a Varian Mercury Plus 400 spectrometer in C_6D_6 with chemical shifts referenced to the solvent peak.

CpCr(ⁱ**Pr-NHC**)**Cl** (1). To a mixture of solid 1,3-diisopropylimidazolium chloride (295 mg, 1.56 mmol) and Cp₂Cr (283 mg, 1.55 mmol) was added 18 mL of THF. The initially orange-red solution slowly turned purple, and was allowed to stir at room temperature overnight. The solvent was removed in vacuo, the bright purple solid was extracted with aliquots of 3:1 Et₂O:THF and filtered through the Celite. The purple solution (total volume 15 mL) was cooled to -35 °C to yield bright purple crystals of **1** (268 mg, 57%) after three days. ¹H NMR (C₆D₆, 400 MHz): δ 16.9 (br, $\omega_{1/2} = 560$ Hz, 12 H, CH(CH₃)₂), -11.0 (br, $\omega_{1/2} = 280$ Hz, 2 H, NCH). Anal. Calcd for C₁₄H₂₁N₂CrCl: C, 55.17; H, 6.94; N, 9.19. Found: C, 55.29; H, 6.62.; N, 9.05. UV/vis (THF; λ_{max} , nm (ϵ , M⁻¹cm⁻¹)): 517 (150).

 $CpCr(^{i}Pr-NHC)Mes$ (2). Purple crystals of 1 (97 mg, 0.318 mmol) were suspended in 15 mL Et₂O and stirred until most of the crystals had dissolved. Slow addition of MesMgBr (0.4 mL, 1.0 M in Et₂O, 0.4 mmol) led to a rapid colour change from purple to orange-brown. After stirring at room temperature for 2 h, 1,4-dioxane (0.4 mL, 4.7 mmol) was added, resulting in the immediate formation of a large quantity of white precipitate. After stirring for an additional 20 min, the suspension was filtered through Celite, and the insoluble residue was washed with

3

additional 3 × 4 mL Et₂O. The solvent was removed in vauco, and the brown residue was extracted with aliquots of first hexanes and then Et₂O, which were filtered again through Celite. The resulting orange-brown solution (total volume 16 mL, 3:1 hexanes:Et₂O) was cooled to -35 °C overnight to yield **2** as small, shiny black crystals (67 mg, 54%). ¹H NMR (C₆D₆, 400 MHz): δ 48.6 (br, $\omega_{1/2} = 530$ Hz), 16.7 (br, $\omega_{1/2} = 670$ Hz), -14.1 (br, $\omega_{1/2} = 400$ Hz). Anal. Calcd for C₂₃H₃₃N₂Cr: C, 70.92; H, 8.54; N, 7.19. Found: C, 69.78; H, 8.63; N, 7.11. UV/vis (THF; λ_{max} , nm (ϵ , M⁻¹cm⁻¹)): 462 (320).

CpCr(ⁱPr-NHC)(Mes)I, (3) *Method A: from 2*. Black crystals of 2 (73.3 mg, 0.189 mmol) were dissolved in 1:1 THF:Et₂O (10 mL total volume), and to the resulting solution was added I₂ (26.3 mg, 0.104 mmol) dissolved in 3 mL Et₂O. After stirring for 20 h, the solvent was removed in vacuo, the residue was extracted with 8 mL Et₂O and 2 mL THF and then filtered through Celite. The deep purple solution was cooled to -35 °C to yield black crystals of **3** (48.7 mg, 50%) in two fractions. ¹H NMR (C₆D₆, 400 MHz): δ 26.6, 19.1, 10.3, 5.4, -7.8, -23.1. Anal. Calcd for C₂₃H₃₃N₂CrI: C, 53.49; H, 6.44; N, 5.42. Found: C, 50.22; H, 5.95; N, 5.04. UV/vis (THF; λ_{max} , nm (ϵ , M⁻¹cm⁻¹)): 536 (490).

Method B from 1. Purple crystals of 1 (77.2 mg, 0.253 mmol) were dissolved in 10 mL Et₂O, and then MesMgBr (0.3 mL, 1.0 M in Et₂O, 0.3 mmol) was added, leading to a rapid colour change from bright purple to orange. After 40 min, 1,4-dioxane (0.3 mL, 3.5 mmol) was added inducing the immediate precipitation of white powder. The solution was filtered through Celite and washed with Et₂O.

Addition of I₂ (32.4 mg, 0.255 mmol) dissolved in 3 mL Et₂O led to a colour change from orange to deep purple. After for an additional 45 min, solution filtered through the Celite and cooled to -35 °C overnight to yield black crystals of **3** (47 mg, 36%).

CpCr('Pr-NHC)Cl₂ (4). To a mixture of solid **1** (101 mg, 0.331 mmol) and PbCl₂ (166.1 mg, 0.643 mmol) was added 15 mL of THF. Over 1 h, the colour of the solution changed from bright purple to a darker blue purple, and the white precipitate turned to a metallic grey. The THF solution was filtered through the Celite, the residue was washed with 4 mL Et₂O, and the resulting solution was cooled to -35 °C. Black crystals of **4** (48.2 mg, 43 %) were isolated in three fractions. ¹H NMR (C₆D₆, 400 MHz): δ 8.1, -10.8. Anal. Calcd for C₁₄H₂₁N₂CrCl₂: C, 49.42; H, 6.22; N, 8.23. Found: C, 50.18; H, 6.33; N, 8.18. UV/vis (THF; λ , nm (ϵ , M⁻¹cm⁻¹)): 578 (890).

CpCr(Me-NHC)I₂ (5). To a brown yellow suspension of $[Cp_2Cr][I]$ (414.6 mg, 1.341 mmol) in 30 mL THF was added solid 1,3-dimethylimidazolium iodide (299.4 mg, 1.336 mmol). After 30 min stirring, the supernatant had turned a dark green colour. The suspension was left to stir for 3 days, after which it was a dark, homogeneous teal solution. The solution was concentrated in vacuo then filtered through the Celite. Cooling the teal solution to -35 °C yielded black blocks of **5** (277 mg, 44%) isolated in three different fractions. Anal. Calcd for C₁₀H₁₃N₂CrI₂: C, 25.72; H, 2.81; N, 6.00. Found: C, 26.10; H, 2.45; N, 5.72. UV/vis (THF; λ_{max} , nm (ϵ , M⁻¹cm⁻¹)): 580 (1100).

CpCr[OC₆H₄CHN(2,6-ⁱPr₂C₆H₃)]I (6b). To an orange-red solution of Cp₂Cr

5

(123 mg, 0.676 mmol) in 15 mL of Et₂O was added I₂ (105 mg, 0.406 mmol), resulting in the precipitation of yellow [Cp₂Cr][I]. The solvent was removed in vacuo and the salicylaldimine ligand [OC₆H₄CHN(2,6-iPr₂C₆H₃)] (211.1 mg, 0.749 mmol) was added. To the solids was added 15 mL Et₂O and 2 mL CH₂Cl₂, and the reaction mixture was stirred overnight. After 20 h the solvent was removed in vacuo, and the residue was extracted with 10 mL of hexane and 5 mL of CH₂Cl₂ then filtered through the Celite. The Celite was washed with 2×5 mL hexanes and the combined filtrates were crystallized at -35 °C to give black crystals of **6b** (156.8 mg, 44%) in three different fractions.

The complexes CpCr[OC(Ph)CHC(Me)O]I (6a) and $CpCr[OC(Ph)CHC(Me)N(3,5-Me_2C_6H_3)](O_3SCF_3)$ (6c) were prepared by analogous protonolysis reactions of $[Cp_2Cr][I]$ and $[Cp_2Cr][OTf]$ with benzoylacetone and $Ph(O)CHC(Me)NH(3,5-Me_2C_6H_3)$, respectively.

CpCr(DBU)Cl (7). To an orange-red solution of Cp₂Cr (487.8 mg, 2.68 mmol) in 30 mL THF, solid DBU·HCl (505.8 mg, 2.68 mmol) was added and the suspension was stirred at room temperature for 20 h. The solvent of the resulting purple solution was removed in vacuo. The purple residue was triturated with Et₂O and the solvent was again removed in vauco. The residue was extracted with toluene, filtered through Celite and cooled to -35 °C. Purple 7 (458 mg, 56%) was isolated in two fractions. Anal. Calcd for C₁₄H₂₁N₂CrCl: C, 55.17; H, 6.95; N, 9.19. Found: C, 55.17; H, 6.64; N, 8.90. UV/vis (THF; λ_{max} , nm (ϵ , M⁻¹cm⁻¹)): 547 (110).

CpCr(DBU)Mes, (8) Method A: from CrCl₂. To a suspension of CrCl₂

(150.1 mg, 1.22 mmol) in 20 mL THF, NaCp (0.63 mL, 2.0 M in THF, 1.26 mmol) was added dropwise. After stirring for 30 min, DBU (0.90 mL, 6.02 mmol) was added, resulting in a colour change from orange-brown to a very dark purple-red. Dropwise addition of MesMgBr (1.30 mL, 1.0 M in Et₂O, 1.30 mmol) resulted in a further darkening of the solution. After stirring for 16 h, 1,4-dioxane (1.0 mL, 12 mmol) was added. The solvent was removed in vacuo, and the residue was extracted with aliquots of Et₂O and filtered through Celite until the washings were colourless. The filtrate was concentrated in vacuo to 15 mL, and the resulting solution was cooled to -35 °C. After four days, black crystals of **8** (277.8 mg, 59%) were isolated in one fraction. ¹H NMR (C₆D₆, 400 MHz): δ 75.6, 43.7, 11.5. Anal. Calcd for C₂₃H₃₂N₂Cr: C, 71.11; H, 8.30; N, 7.21. Found: C, 69.18; H, 8.18; N, 7.40. UV/vis (THF; λ_{max} , nm (ϵ , M⁻¹cm⁻¹)): 496 (160), 358 (790).

Method B: from Cp₂Cr. To an orange-red solution of Cp₂Cr (49.9 mg, 0.274 mmol) in 10 mL of THF was added solid DBU·HCl (51.9 mg, 0.275 mmol) and a few drops of neat DBU. After stirring for 18 h, the colour changed from orange to bright purple. The solvent was removed in vacuo to remove the cyclopentadiene byproduct. The residue was dissolved in 20 mL THF, MesMgBr (0.30 mL, 1.0 M in Et₂O, 0.30 mmol) was added dropwise, and the solution was stirred for 24 h. 1,4-dioxane (0.3 mL, 3.5 mmol) was added and the solution was stirred for 15 min. The solvent was removed in vacuo, the residue was extracted with Et₂O, filtered through Celite and the resulting solution was concentrated and filtered through Celite again. The UV-visible spectra of a diluted aliquot of this solution was identical to that of **8**

prepared by the preceding method.

CpCr(DBU)(Mes)I (9). To a solution of **8** (199.5 mg, 0.514 mmol) in 20 mL of Et₂O, I₂ (67.8 mg, 0.267 mmol) was added as a solution in 2 mL THF, resulting in a colour change to blue-violet. After stirring for 4 h, the solution was filtered through Celite and cooled to -35 °C overnight. Black crystals of **9** (119.9 mg 45%) were isolated the next day. ¹H NMR (C₆D₆, 400 MHz): δ 20.1, 16.9, 3.9, -0.1. Anal. Calcd for C₂₃H₃₂N₂CrI: C, 53.60; H, 6.26; N, 5.43. Found: C, 53.83; H, 6.18; N, 5.52. UV/vis (THF; λ_{max} , nm (ε, M⁻¹cm⁻¹)): 574 (1150), 357 (2500).

[CpCr(μ-Mes)]₂ (10).To a suspension of CrCl₂ (508.9 mg, 4.141 mmol) in 50 mL of THF was added NaCp (2.10 mL, 2.0 M in THF, 4.20 mmol). After stirring for 30 min, MesMgBr (4.6 mL, 1.0 M in Et₂O, 4.6 mmol) added by syringe. After stirring at room temperature for 24 h, the solvent was removed in vacuo, and the residue was extracted with toluene and filtered through Celite. The filtrate was concentrated in vacuo to ~30 mL and filtered through Celite again. The dark purple solution was cooled to -35 °C. After four days, black crystals of 10 (397.7 mg, 41%) were isolated. ¹H NMR (C₆D₆, 400 MHz): δ 19.6 (br, $\omega_{1/2} = 340$ Hz), 10.1, 9.92. Anal. Calcd for C₂₈H₃₂Cr: C, 71.17; H, 6.83. Found: C, 71.17; H, 6.49. UV/vis (THF; λ_{max} , nm (ε, M⁻¹cm⁻¹)): 583 (750).

	2	8	9	10
Chemical formula	$C_{23}H_{32}CrN_2$	$C_{23}H_{32}N_2Cr$	$C_{23}H_{32}N_2ICr$	C ₅₆ H ₆₄ Cr ₄
Formula weight (g/mol)	388.51	388.51	515.41	945.12
Crystal size (mm)	0.10 X 0.25 X 0.35	0.18 X 0.32 X 0.40	0.24 X 0.35 X 0.52	0.16 X 0.35 X 0.40
Crystal system	Triclinic	Orthorhombic	Monoclinic	Triclinic
Unit-cell dimensions				
a, Å	8.3577(2)	14.3796(11)	11.5521(5)	8.3398(8)
b, Å	8.4155(2)	15.9373(12)	13.9206(5)	11.8870(12)
c, Å	18.1329(5)	18.4488(13)	14.6207(6)	12.6085(12)
a, deg	97.0890(10)	90	90	94.928(5)
β, deg	98.1880(10)	90	110.507(1)	93.544(4)
γ, deg	118.4210(10)	90	90	108.619(5)
V, Å ³	1083.10(5)	4227.9(5)	2202.2(2)	1174.86(23)
Т (К)	173(2)	173(2)	173(2)	173(2)
Space group	<i>P</i> -1	<i>P</i> bca	P 21/n	<i>P</i> -1
Z	2	8	4	2
F(000)	416	1663.7	1044	495.9
μ, (mm ⁻¹⁾	0.536	0.549	1.931	0.937
Reflections measured,	17616	26292	31129	16929
Indep reflections, R _{int}	5028, 0.0164	5111, 0.0366	5314, 0.025	5590, 0.0235
θ, range (deg)	2.817-27.8275	2.2065-17.522	2.38-28.01	1.63-28.07
Absorp, T_{\min}, T_{\max}	0.857, 0.948	0.7648, 0.9059	0.485, 0.629	0.797, 0.861
DC (calc) (Mgm ⁻³)	1.19	1.22	1.555	1.34
Obsd data(<i>I</i> >2.00σ(<i>I</i>))	4383	3446	4798	4831
R1,wR2 (<i>F</i> ²,all data)	0.0375, 0.0761	0.0726, 0.1059	0.025, 0.054	0.0466, 0.1025
R1,wR2 (<i>F,I</i> >2.00σ <i>(I)</i>)	0.0294, 0.0715	0.0371, 0.0885	0.022, 0.052	0.0394, 0.0996
Goodness-of-fit (S)	1.023	1.035	1.06	1.186
No. data/rest/params	5028/0/238	5111/0/238	5214/0/245	5590/0/275
Max.,min. peak ³ , (e⁻ų)	0.318, -0.356	0.285, -0.379	0.86, -0.38	0.394, -0.318

Table 1. Crystal data and refinement parameters for X-ray structures of 2, 8, 9 and 10.

	6a	6b	6c
Chemical formula	C ₁₅ H ₁₄ O ₂ CrI	C ₂₄ H ₂₇ NOCrI	$C_{24}H_{23}O_4F_3NSCr$
Formula weight (g/mol)	405.16	524.37	530.5
Crystal size (mm)	0.10 X 0.12 X 0.24	0.12 X 0.25 X 0.25	0.16 X 0.36 X 0.44
Crystal system	Monoclinic	Triclinic	Orthorhombic
Unit-cell dimensions			
a, Å	19.6228(14)	8.9810(8)	13.518(9)
b, Å	7.4584(6)	10.4430(9)	16.712(8)
c, Å	20.531(2)	12.6068(11)	21.148(16)
a, deg	90	92.002(4)	90
β, deg	98.570(4)	107.735(4)	90
γ, deg	90	91.342(5)	90
V, Å ³	2971.3(4)	1124.77(17)	4778(5)
Т (К)	173(2)	173(2)	173(2)
Space group	P 2 ₁ /c	<i>P</i> -1	<i>P</i> bca
Z	8	2	8
F(000)	1576	526	2184
μ, (mm ⁻¹⁾	2.842	1.895	0.621
Reflections measured,	32094	26216	33379
Indep reflections, R _{int}	7098, 0.037	8161, 0.048	5769, 0.027
θ, range (deg)	2.4-27.72	1.7-27.94	2.73-27.93
Absorp, T_{\min}, T_{\max}	0.628, 0.753	0.49, 0.797	0.816, 0.905
DC (calc) (Mgm ⁻³)	1.811	1.548	1.475
Obsd data(<i>I</i> >2.00σ(<i>I</i>))	5357	7372	4501
R1,wR2 (<i>F</i> ² ,all data)	0.051, 0.064	0.033, 0.076	0.050, 0.087
R1,wR2 (<i>F,I</i> >2.00σ(<i>I</i>))	0.030, 0.058	0.027, 0.072	0.032, 0.077
Goodness-of-fit (S)	1.01	1.11	1.06
No. data/rest/params	7098/0/345	8161/0/258	5769/0/310
Max.,min. peak ³ , (e ⁻ Å ³)	0.69, -0.69	0.65, -0.62	0.41, -0.35

Table 2. Crystal data and refinement parameters for X-ray structures of 6a, 6b and 6c.

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2010

Wavelength (nm)

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2010

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2010

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2010

References

(1) T. Schaub, M. Backes and U. Radius, Organometallics, 2006, 25, 4196-4206.

- (2) R. B. King, *Organometallic Syntheses: Vol. 1*, Academic Press: New York, NY, 1965; pp 66-67.
- (3) E. O. Fischer, K. Ulm and P. Kuzel, Z. Anorg. Allg. Chem., 1963, 319, 253-265.
- (4) M. H. Voges, C. Rømming and M. Tilset, Organometallics, 1999, 18, 529-533.
- (5) S. Chang, L. Jones II, C. Wang, L. M. Henling and R. H. Grubbs, *Organometallics*, 1998, **17**, 3460-3465.
- (6) X. He, Y. Yao, X. Luo, J. Zhang, Y. Liu, L. Zhang and Q. Wu, *Organometallics*, 2003, **22**, 4952-4957.