Magnetic properties of isostructural $M(H_2O)_4[Au(CN)_4]_2$ -based coordination polymers (M = Mn, Co, Ni, Cu, Zn) by SQUID and μ SR studies

Andrew R. Geisheimer,^a Wen Huang,^b Vighen Pacradouni,^b Seyed Ahmad Sabok-Sayr,^b Jeff E. Sonier,^{b,c,*} and Daniel B. Leznoff^{a,*}

^a Department of Chemistry, ^b Department of Physics, Simon Fraser University, 8888 University Drive,

Burnaby, British Columbia, Canada V5A 1S6; ^cCanadian Institute for Advanced Research Toronto,

Ontario, Canada M5G 1Z8

Electronic Supplementary Information

Selected Atoms	Hydrogen Bond Lengths for M(H ₂ O) ₄ [Au(CN) ₄] ₂ ·4H ₂ O (Å)				
	Mn	Со	Ni	Zn	
O(1) – H(11) – O(3)"	2.762(6)	2.752(8)	2.735(14)	2.751(10)	
O(1) – H(12) – N(22)	2.763(6)	2.754(8)	2.749(14)	2.764(10)	
$O(2) - H(21) - N(21)^{\$}$	2.890(6)	2.880(8)	2.901(14)	2.881(10)	
O(2) – H(22) – O(4)€	2.769(6)	2.756(8)	2.762(14)	2.767(10)	
$O(3) - H(31) - O(4)^{\underline{\ell}}$	2.793(6)	2.779(8)	2.765(14)	2.777(10)	
O(3) – H(32) – N(12)	2.927(6)	2.903(8)	2.913(14)	2.925(10)	
O(4) – H(41) – O(1)	2.922(6)	2.929(8)	2.933(14)	2.915(10)	
O(4) - H(42) - O(3)	2.888(6)	2.891(8)	2.911(14)	2.892(10)	

Table S1.Lengths of hydrogen bonds (Å) for $M(H_2O)_4[Au(CN)_4]_2 \cdot 4H_2O$ (M = Mn, Co, Ni, Zn)coordination polymers

Symmetry transformations: " = 2-x, 1-y, 2-z; ^{\$} = x, y, 1+z; [€] = 1-x, -y, 2-z; 1-x, [£] = 1-y, 2-z

Selected Atoms	Bond Length	Selected Atoms	Bond Length
Au(1) - C(11)	1.997(3)	Au(1) - C(13)	1.994(3)
Au(1) - C(12)	1.998(3)	Au(1) - C(14)	1.989(3)
C(11) – N(11)	1.145(3)	C(13) – N(13)	1.146(3)
C(12) – N(12)	1.142(4)	C(14) – N(14)	1.142(4)
Au(2) – C(21)	1.994(4)	Au(2) – C(22)	1.988(3)
C(21) – N(21)	1.143(5)	C(22) – N(22)	1.139(4)
Au(3) – C(31)	1.995(3)	Au(3) – C(32)	1.987(3)
C(31) – N(31)	1.148(4)	C(32) – N(32)	1.144(4)
Cu(1) – O(11)	1.995(2)	Cu(1) – O(12)	1.986(2)
Cu(1) - N(11)	2.312(2)	Cu(2) – O(21)	2.280(2)
Cu(2) – O(22)	1.985(2)	Cu(2) – N(13)	2.010(2)

Table S2. Selected bond lengths (Å) for $Cu(H_2O)_4[Au(CN)_4]_2 \cdot 4H_2O$

Selected Atoms	Bond Length	Selected Atoms	Bond Length
Au(1) – N(21)	3.159(3)	Au(1) - N(31)	3.158(3)
Au(2) – N(14)	3.278(3)	$\mathrm{Au}(3)-\mathrm{N}(12)^{\dagger}$	3.156(3)
O(1) – H(11) – O(3)	2.848(5)	O(1) – H(12) – N(14)"	2.879(5)
$O(2) - H(21) - O(1)^{\ddagger}$	2.899(5)	O(2) – H(22) – O(1)	2.745(5)
O(3) – H(31) – O(21)"	2.800(5)	O(3) – H(32) – O(4)	2.757(5)
$O(4) - H(41) - N(12)^{\$}$	2.882(5)	O(4) - H(42) - O(2)	2.820(5)
O(11) – H(111) – O(1)	2.696(5)	$O(11) - H(112) - N(32)^{\text{F}}$	2.726(5)
O(12) – H(121) – O(2)	2.711(5)	$O(12) - H(122) - N(21)^{\$}$	2.857(5)
$O(21) - H(211) - O(4)^{\$}$	2.748(5)	O(21) -H(212) - N(22) ^{\$}	2.785(5)
O(22) – H(221) – O(3) ^{\$}	2.714(5)	$O(12) - H(122) - N(31)^{\ddagger}$	2.872(5)

Symmetry transformations: * = -x, 1-y, -z; [†] = 1+x, y, z; [‡] = -1+x, y, z; [´] = -1+x, -1+y, z; [″] = -x, 2-y, 1-z; [§] = -1-x, 1-y, 1-z; [§] = -1-x, 2-y, 1-z; [£] = -1-x, 1-y, -z

Table S3.Selected angles (deg) for $Cu(H_2O)_4[Au(CN)_4]_2 \cdot 4H_2O$

Selected Atoms	Angle	Selected Atoms	Angle
C(11) - Au(1) - C(12)	90.10(12)	C(12) - Au(1) - C(13)	89.63(12)
C(11) - Au(1) - C(13)	178.93(12)	C(12) - Au(1) - C(14)	179.35(11)
C(11) - Au(1) - C(14)	89.63(12)	C(13) - Au(1) - C(14)	90.94(12)
Au(1) - C(11) - N(11)	179.4(3)	Au(1) - C(13) - N(13)	178.9(3)
Au(1) - C(12) - N(12)	179.9(3)	Au(1) - C(14) - N(14)	179.3(3)
C(11) - N(11) - Cu(1)	169.9(3)	C(13) - N(13) - Cu(2)	175.6(3)
$C(12) - N(12) - Au(3)^{\ddagger}$	132.4(3)	$C(14)-N(14)-Au(2)^{\dagger}$	129.0(3)
C(11) - Au(1) - N(21)	74.51(11)	C(13) - Au(1) - N(21)	104.44(11)
C(12) - Au(1) - N(21)	87.98(11)	C(14) - Au(1) - N(21)	92.17(11)
C(11) - Au(1) - N(31)	105.32(11)	C(13) - Au(1) - N(31)	75.71(11)
C(12) – Au(1) – N(31)	88.14(11)	C(14) - Au(1) - N(31)	91.70(11)
N(21) - Au(1) - N(31)	176.12(8)		

Selected Atoms	Angle	Selected Atoms	Angle
C(21) - Au(2) - C(22)	88.38(14)	$C(22) - Au(2) - C(21)^{\$}$	91.62(14)
$C(21) - Au(2) - C(21)^{\$}$	180	$C(22) - Au(2) - C(22)^{\$}$	180
$C(21) - Au(2) - C(22)^{\$}$	91.62(14)	$C(21)^{\$} - Au(2) - C(22)^{\$}$	88.38(14)
Au(2) - C(21) - N(21)	178.2(3)	Au(2) - C(22) - N(22)	177.9(3)
C(21) - N(21) - Au(1)	98.5(2)	$N(14)^{\ddagger} - Au(2) - N(14)''$	180
$C(21) - Au(2) - N(14)^{\ddagger}$	75.61(12)	$C(21)^{\$} - Au(2) - N(14)^{\ddagger}$	104.39(12)
$C(22) - Au(2) - N(14)^{\ddagger}$	107.38(12)	$C(22)^{\$} - Au(2) - N(14)^{\ddagger}$	72.62(12)
C(31) - Au(3) - C(32)	91.54(13)	C(32) – Au(3) – C(31)*	88.46(13)
C(31) – Au(3) – C(31)*	180	$C(32) - Au(3) - C(32)^*$	180
C(31) – Au(3) – C(32)*	88.46(13)	C(31)*- Au(3) -C(32)*	91.54(13)
Au(3) – C(31) – N(31)	178.4(3)	Au(3) – C(32) – N(32)	178.0(3)
C(31) - N(31) - Au(1)	101.9(2)	$N(12)^{\dagger} - Au(3) - N(12)^{\ell}$	180
$C(31) - Au(3) - N(12)^{\dagger}$	77.40(12)	$C(31)^* - Au(3) - N(12)^{\dagger}$	102.60(12)
$C(32) - Au(3) - N(12)^{\dagger}$	75.11(12)	$C(32)^* - Au(3) - N(12)^{\dagger}$	104.89(12)

Symmetry transformations: * = -x, 1-y, -z; [†] = 1+x, y, z; [‡] = -1+x, y, z; [′] = -1+x, -1+y, z; [″] = -x, 2-y, 1-z; [§] = -1-x, 1-y, 1-z; [§] = -1-x, 2-y, 1-z; [£] = -1-x, 1-y, -z

Figure S1. The thermal decomposition profile (TGA) for $Co(H_2O)_4[Au(CN)_4]_2 \cdot 4H_2O$, showing loss of eight water molecules and the subsequent, stepwise loss of four equivalents of cyanogen gas.

Figure S2 Comparison of the powder X-ray diffraction pattern (generated from the single-crystal data) for $Cu(H_2O)_4[Au(CN)_4]_2$ ·4H₂O (bottom) and experimentally collected (top) for partially-dehydrated $Cu(H_2O)_4[Au(CN)_4]_2$, indicating the lack of isostructurality.