Supporting Information for

Structural Characterization of Manganese and Iron Complexes with Methylated Derivatives of Bis(2-pyridylmethyl)-1,2-ethanediamine Reveals Unanticipated Conformational Flexibility

Cristina M. Coates, Kenton Hagan, Casey A. Mitchell, John D. Gorden, and Christian R. Goldsmith*

Department of Chemistry & Biochemistry, Auburn University, Auburn, AL 36849 *To whom correspondence should be addressed: <u>crgoldsmith@auburn.edu</u>

Contents

Pages S2-S4: **Figures S1-6**. Electron paramagnetic resonance (EPR) spectra of Mn(II) complexes in N,N-dimethylformamide (DMF).

Page S5-7: Figures S7-9. Proton nuclear magnetic resonance (¹H NMR) spectra of $[Fe(L^{Me}2)Cl_2]$ and $[Fe(L^{Me}4)Cl_2]$ in CD₃CN.

Pages S8-13: Figures S10-21. Cyclic voltammograms for Mn(II) and Fe(II) complexes with methylated bispicen ligands in acetonitrile (MeCN).

Page S14: **Table S1**. Selected crystallographic data for $[Mn(L)(H_2O)Cl](MnCl_4)$, $[Mn(L^{Me}3)(H_2O)Cl_2]$, and $[Mn(L^{Me}2'-ox)Cl_2]$.

Page S15: Figure S22. ORTEP representation of the cation in $[Mn(L)(H_2O)Cl]_2(MnCl_4)$; Figure S23. ORTEP representation of $[Mn(L^{Me}3)(H_2O)Cl_2]$.

Page S16: Figure S24. ORTEP representation of [Mn(L^{Me}2'-ox)Cl₂].

Figure S1. X-band EPR spectrum of a 1 mM sample of [Mn(L)Cl₂] in DMF at 50 K.

Figure S2. X-band EPR spectrum of a 1 mM sample of $[Mn(L^{Me}1)Cl_2]$ in DMF at 50 K.

Figure S3. X-band EPR spectrum of a 1 mM sample of $[Mn(L^{Me}2)Cl_2]$ in DMF at 50 K.

Figure S4. X-band EPR spectrum of a 1 mM sample of [Mn(L^{Me}2')Cl₂] in DMF at 50 K.

Figure S5. X-band EPR spectrum of a 1 mM sample of [Mn(L^{Me}3)Cl₂] in DMF at 50 K.

Figure S6. X-band EPR spectrum of a 1 mM sample of $[Mn(L^{Me}4)Cl_2]$ in DMF at 50 K.

Figure S7. ¹H NMR spectrum of a 20 mM solution of $[Fe(L^{Me}2)Cl_2]$ in CD₃CN. Major peaks outside the diamagnetic region: δ 131.4, 118.0, 109.2, 89.3, 77.9, 61.1, 57.2, 52.8, 50.7, 43.0, 21.7, 10.1, -4.4, -22.3. These data were recorded on a 250 MHz NMR instrument.

Figure S8. ¹H NMR spectra (400 MHz) of a 20 mM solution of $[Fe(L^{Me}2)Cl_2]$ in CD₃CN at 294 K (left) and 335 K (right).

Figure S9. ¹H NMR spectrum of a 20 mM solution of $[Fe(L^{Me}4)Cl_2]$ in CD₃CN. Major peaks outside the diamagnetic region: δ 133.9, 106.4, 65.0, 51.7, 47.4, 35.1, 21.5, 19.3, 14.8, -7.3, -31.1, -44.7. These data were recorded on a 250 MHz NMR instrument.

Figure S10. Cyclic voltammogram for [Mn(L)Cl₂] in a 0.10 M solution of tetrabutylammonium perchlorate in acetonitrile. L = N,N-bis(2-pyridylmethyl)-1,2-ethanediamine. Ferrocene was subsequently added to reference the spectrum. For this particular scan: $E_{pc} = 870$ mV vs SHE, $I_{pc} = 2.4 \times 10^{-4}$ Amp, $E_{pa} = 721$ mV vs SHE, $I_{pa} = 2.3 \times 10^{-4}$ Amp, $E_{1/2} = +795$ mV vs. SHE, $\Delta E = 149$ mV. The arrows indicate the direction of the scan.

Figure S11. Cyclic voltammogram for $[Mn(L^{Me}1)Cl_2]$ in a 0.10 M solution of tetrabutylammonium perchlorate in acetonitrile. $L^{Me}1 = N$ -methyl-N,N'-bis(2-pyridylmethyl)-1,2-ethanediamine. Ferrocene was subsequently added to reference the spectrum. For this particular scan: $E_{pc} = 963$ mV vs SHE, $I_{pc} = 6.9 \times 10^{-5}$ Amp, $E_{pa} = 837$ mV vs SHE, $I_{pa} = 6.1 \times 10^{-5}$ Amp, $E_{1/2} = +900$ mV vs. SHE, $\Delta E = 126$ mV. The arrows indicate the direction of the scan.

Figure S12. Cyclic voltammogram for $[Mn(L^{Me}2)Cl_2]$ in a 0.10 M solution of tetrabutylammonium perchlorate in acetonitrile. $L^{Me}2 = N,N'$ -dimethyl-N,N'-bis(2-pyridylmethyl)-1,2-ethanediamine. Ferrocene was subsequently added to reference the redox features. For this particular scan: $E_{pc} = 976$ mV vs SHE, $I_{pc} = 2.6 \times 10^{-5}$ Amp, $E_{pa} = 888$ mV vs SHE, $I_{pa} = 2.5 \times 10^{-5}$ Amp, $E_{1/2} = +932$ mV vs. SHE, $\Delta E = 88$ mV. The arrows indicate the direction of the scan.

Figure S13. Cyclic voltammogram for $[Mn(L^{Me}2')Cl_2]$ in a 0.10 M solution of tetrabutylammonium perchlorate in acetonitrile. $L^{Me}2' = N,N'$ -bis(6-methyl-2-pyridylmethyl)-1,2-ethanediamine. Ferrocene was subsequently added to reference the redox features. For this particular scan: $E_{pc} = 940$ mV vs SHE, $I_{pc} = 8.6 \times 10^{-5}$ Amp, $E_{pa} = 767$ mV vs SHE, $I_{pa} = 5.0 \times 10^{-5}$ Amp, $E_{1/2} = +854$ mV vs. SHE, $\Delta E = 173$ mV. The arrows indicate the direction of the scan.

Figure S14. Cyclic voltammogram for $[Mn(L^{Me}3)Cl_2]$ in a 0.10 M solution of tetrabutylammonium perchlorate in acetonitrile. $L^{Me}3 = N$ -methyl-N,N'-bis(6-methyl-2-pyridylmethyl)ethane-1,2-diamine. Ferrocene subsequently added as an internal reference. For this particular scan: $E_{pc} = 987$ mV vs SHE, $I_{pc} = 1.23 \times 10^{-4}$ Amp, $E_{pa} = 829$ mV vs SHE, $I_{pa} = 9.7 \times 10^{-5}$ Amp, $E_{1/2} = +908$ mV vs. SHE, $\Delta E = 158$ mV. The arrows indicate the direction of the scan.

Figure S15. Cyclic voltammogram for $[Mn(L^{Me}4)Cl_2]$ in a 0.10 M solution of tetrabutylammonium perchlorate in acetonitrile. $L^{Me}4 = N,N'$ -dimethyl-N,N'-bis(6-methyl-2-pyridylmethyl)-1,2-ethanediamine. Ferrocene was subsequently added to reference the redox features. For this particular spectrum: $E_{pc} = 1034$ mV vs SHE, $I_{pc} = 3.6 \times 10^{-5}$ Amp, $E_{pa} = 907$ mV vs SHE, $I_{pa} = 3.7 \times 10^{-5}$ Amp, $E_{1/2} = +971$ mV vs. SHE, $\Delta E = 127$ mV. The arrows indicate the direction of the scan.

Figure S16. Cyclic voltammogram for [Fe(L)Cl₂] in a 0.10 M solution of tetrabutylammonium perchlorate in acetonitrile. L = N,N-bis(2-pyridylmethyl)-1,2-ethanediamine. Ferrocene is subsequently added to reference the redox features. For this particular scan: $E_{pc} = 349$ mV vs SHE, $I_{pc} = 7.7 \times 10^{-5}$ Amp, $E_{pa} = 228$ mV vs SHE, $I_{pa} = 7.1 \times 10^{-5}$ Amp, $E_{1/2} = +289$ mV vs. SHE, $\Delta E = 121$ mV. The arrows indicate the direction of the scan.

Figure S17. Cyclic voltammogram for $[Fe(L^{Me}1)Cl_2]$ in a 0.10 M solution of tetrabutylammonium perchlorate in acetonitrile. $L^{Me}1 = N$ -methyl-N,N'-bis(2-pyridylmethyl)-1,2-ethanediamine. Ferrocene is subsequently added as an internal standard. For this particular scan: $E_{pc} = 389$ mV vs SHE, $I_{pc} = 4.8 \times 10^{-5}$ Amp, $E_{pa} = 275$ mV vs SHE, $I_{pa} = 5.1 \times 10^{-5}$ Amp, $E_{1/2} = +332$ mV vs. SHE, $\Delta E = 114$ mV. The arrows indicate the direction of the scan.

Figure S18. Cyclic voltammogram for $[Fe(L^{Me}2)Cl_2]$ in a 0.10 M solution of tetrabutylammonium perchlorate in acetonitrile. $L^{Me}2 = N,N'$ -dimethyl-N,N'-bis(2-pyridylmethyl)-1,2-ethanediamine. Ferrocene is subsequently added as an internal standard. For this particular scan: $E_{pc} = 431$ mV vs SHE, $I_{pc} = 2.9 \times 10^{-5}$ Amp, $E_{pa} = 338$ mV vs SHE, $I_{pa} = 3.5 \times 10^{-5}$ Amp, $E_{1/2} = +385$ mV vs. SHE, $\Delta E = 93$ mV. The arrows indicate the direction of the scan.

Figure S19. Cyclic voltammogram for $[Fe(L^{Me}2')Cl_2]$ in a 0.10 M solution of tetrabutylammonium perchlorate in acetonitrile. $L^{Me}2' = N,N$ -bis(6-methyl-2-pyridylmethyl)-1,2-ethanediamine. Ferrocene was subsequently added to reference the redox features. For this particular scan: $E_{pc} = 361$ mV vs SHE, $I_{pc} = 1.8 \times 10^{-5}$ Amp, $E_{pa} = 208$ mV vs SHE, $I_{pa} = 1.1 \times 10^{-5}$ Amp, $E_{1/2} = +285$ mV vs. SHE, $\Delta E = 153$ mV. The arrows indicate the direction of the scan.

Figure S20. Cyclic voltammogram for $[Fe(L^{Me}3)Cl_2]$ in a 0.10 M solution of tetrabutylammonium perchlorate in acetonitrile. $L^{Me}3 = N$ -methyl-N,N'-bis(6-methyl-2-pyridylmethyl)ethane-1,2-diamine. Ferrocene is subsequently added to reference the redox features. For this particular scan: $E_{pc} = 534$ mV vs SHE, $I_{pc} = 3.7 \times 10^{-5}$ Amp, $E_{pa} = 418$ mV vs SHE, $I_{pa} = 3.4 \times 10^{-5}$ Amp, $E_{1/2} = +476$ mV vs. SHE, $\Delta E = 116$ mV. The arrows indicate the direction of the scan.

Figure S21. Cyclic voltammogram for $[Fe(L^{Me}4)Cl_2]$ in a 0.10 M solution of tetrabutylammonium perchlorate in acetonitrile. $L^{Me}4 = N,N'$ -dimethyl-N,N'-bis(6-methyl-2-pyridylmethyl)-1,2-ethanediamine. Ferrocene is subsequently added as an internal standard. For this particular scan: $E_{pc} = 651 \text{ mV vs SHE}$, $I_{pc} = 2.6 \times 10^{-5} \text{ Amp}$, $E_{pa} = 541 \text{ mV vs SHE}$, $I_{pa} = 1.9 \times 10^{-5} \text{ Amp}$, $E_{1/2} = +596 \text{ mV vs}$. SHE, $\Delta E = 110 \text{ mV}$. The arrows indicate the direction of the scan.

Table S1. Selected crystallographic data for $[Mn(L)(H_2O)Cl]_2(MnCl_4)$, $[Mn(L^{Me}3)(H_2O)Cl_2]$, and $[Mn(L^{Me}2'-ox)Cl_2]$.

Parameter	$[Mn(L)(H_2O)Cl]_2(MnCl_4)$	$[Mn(L^{Me}3)(H_2O)Cl_2]$	$[Mn(L^{Me}2'-ox)Cl_2]$
Formula	$C_{28}H_{40}Cl_6Mn_3N_8O_2$	C ₁₇ H ₂₄ Cl ₂ MnN ₄ O	$C_{16}H_{18}Cl_2MnN_4$
MW	898.2	426.24	392.18
cryst syst	Monoclinic	Monoclinic	Monoclinic
space group	C2/c (#15)	$P2_{1}/c$ (#14)	C2/c (#15)
a (Å)	28.4241(12)	11.3978(7)	12.0792(9)
b (Å)	8.5365(4)	8.7356(6)	9.6386(7)
c (Å)	19.0616(9)	20.5972(13)	15.2205(11)
α (deg)	90	90	90
β (deg)	122.7350(10)	104.7320(10)	101.7710(10)
γ(deg)	90	90	90
$V(Å^3)$	3890.6(3)	1983.4(2)	1734.8(2)
Z	4	4	4
Cryst color	Colorless	Colorless	Light amber
T (K)	193	193	193
Reflns collected	17021	19737	8565
Unique reflns	3922	3551	2150
$R1$ (F, I > 2 σ (I))	0.0352	0.0543	0.0440
wR2 (F^2 , all data)	0.0823	0.1417	0.1211

 $R1 = \Sigma ||F_0| - |F_c|| / \Sigma ||F_0|; wR2 = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w (F_0^2)^2]^{1/2}.$

Figure S22. ORTEP representation of the crystal structure of the cation $[Mn(L)(H_2O)Cl]^+$. The hydrogen atoms and the other manganous species in the unit cell are omitted for clarity. Thermal ellipsoids are drawn at 50% probability.

Figure S23. ORTEP representation of the crystal structure of $[Mn(L^{Me}3)(H_2O)Cl_2]$. Hydrogen atoms are omitted for clarity. Thermal ellipsoids are drawn at 50% probability.

Figure S24. ORTEP representation of the crystal structure of $[Mn(L^{Me}2'-ox)Cl_2]$. Hydrogen atoms are omitted for clarity. Thermal ellipsoids are drawn at 50% probability. The N(2)-C(6) bonds have been oxidized to double bonds, as indicated by the N-C bond lengths, which contract from 1.46 to 1.25 angstroms. The Mn-N and Mn-Cl bond distances do not change significantly from those in $[Mn(L^{Me}2')Cl_2]$; these data and the pale color of the crystals suggest that the oxidation state of the manganese remains +2.