Supplementary Information

For

Nucleophilic Reactivity of a Series of Peroxomanganese(III) Complexes Supported by Tetradentate Aminopyridyl Ligands

Robert A. Geiger, Swarup Chattopadhyay, Victor W. Day, and Timothy A. Jackson*

*e-mail: taj@ku.edu

Contents of Supplementary Information

Specific details of XRD data collection and analysis.

Tables S1-S5. Crystal data and structural refinement for Manganese(II) complexes.

Figure S1. Space-filling diagrams of manganese(II) complexes.

Figure S2. ESI-MS data collected for $[Mn^{III}(O_2)(L^8py_2^H)]^+$.

Tables S6-S8. Cartesian coordinates for DFT optimized models of $[Mn^{III}(O_2)(L^7py_2^{H})]^+$, $[Mn^{III}(O_2)(L^7py_2^{6-Me})]^+$, and $[Mn^{III}(O_2)(L^7py_2^{4-Me})]^+$.

Specific Details of XRD Data Collection and Analysis.

 $[Mn(L^6py_2)(NCCH_3)_3][ClO_4]_2.$ А colorless parallelepiped shaped crystal of $[Mn(N_4C_{16}H_{20})(NCCH_3)_3][ClO_4]_2 \cdot CH_3CN$ was cut from a larger single crystal. It was, at 173(2) K, triclinic, space group $P\overline{1} - C_i^{1}$ (No. 2)^[1] with a = 11.618(2) Å, b = 11.666(2) Å, c = 13.214(3) Å, $\alpha = 88.508(2)^{\circ}$, $\beta = 71.869(2)^{\circ}$, $\gamma = 69.296(2)^{\circ}$, V = 1585.0(5) Å³ and Z = 2 molecules {d_{calcd} = 1.438 g/cm³; $\mu_a(MoK\alpha) = 0.642 \text{ mm}^{-1}$ }. A full hemisphere of diffracted intensities (1850 20second frames with an ω scan width of 0.30°) was measured for a single-domain specimen using graphite-monochromated MoK α radiation (λ = 0.71073 Å) on a Bruker SMART APEX CCD Single Crystal Diffraction System^[2]. X-rays were provided by a fine-focus sealed x-ray tube operated at 50kV and 30mA. Lattice constants were determined with the Bruker SAINT software package using peak centers for 3845 reflections. A total of 15336 integrated reflection intensities having $2\theta((MoK\alpha) < 55.68^{\circ}$ were produced using the Bruker program SAINT^[3]; 7423 of these were unique and gave $R_{int} = 0.029$ with a coverage which was 98.3% complete. The data were corrected empirically for variable absorption effects using equivalent reflections; the relative transmission factors ranged from 0.872 to 1.000. The Bruker software package SHELXTL was used to solve the structure using "direct methods" techniques. All stages of weighted full-matrix least-squares refinement were conducted using F_0^2 data with the SHELXTL Version 6.10 software package^[4].

The final structural model incorporated anisotropic thermal parameters for all nonhydrogen atoms and isotropic thermal parameters for all hydrogen atoms. All methyl groups were incorporated into the structural model as rigid groups (using idealized sp³-hybridized geometry and a C-H bond length of 0.98 Å) that were allowed to rotate about their C-C bonds during least squares refinement cycles. The remaining hydrogen atoms were included in the structural model as idealized atoms (assuming sp²- or sp³-hybridization of the carbon atoms and C-H bond lengths of 0.95 or 0.99 Å). The isotropic thermal parameters of all hydrogen atoms were fixed at values 1.2 (nonmethyl) or 1.5 (methyl) times the equivalent isotropic thermal parameter of the carbon atom to which they are covalently bonded. A total of 392 parameters were refined using no restraints, 7423 data and weights of w = 1/ [$\sigma^2(F^2)$ + (0.0961 P)² + 0.6059 P] where P = [F_0² + 2F_c²] / 3. Final agreement factors at convergence are: R₁(unweighted,

based on F) = 0.059 for 5916 independent absorption-corrected "observed" reflections having $2\theta(MoK\alpha) < 55.68^{\circ}$ and I> $2\sigma(I)$; R₁(unweighted, based on F) = 0.073 and wR₂(weighted, based on F²) = 0.170 for all 7423 independent absorption-corrected reflections having $2\theta(MoK\alpha) < 55.68^{\circ}$. The largest shift/s.u. was 0.000 in the final refinement cycle. The final difference map had maxima and minima of 0.84 and -0.71 e^{-/}Å³, respectively.

 $[Mn(L^7py_2^{4-Me})(ClO_4)_2].$ А colorless parallelepiped shaped of crystal [Mn(C₁₉H₂₆N₄)(O₃SCF₃)₂] was cut from a larger single crystal. It was, at 100(2) K, monoclinic, space group $P2_1/c - C_{2h}^{5}$ (No. 14)^[1] with **a** = 16.801(7) Å, **b** = 8.582(4) Å, **c** = 19.054(8) Å, **β** = 99.020(7)°, V = 2713(2) Å³ and Z = 4 molecules { $d_{calcd} = 1.624 \text{ g/cm}^3$; $\mu_a(MoK\alpha) = 0.726 \text{ mm}^-$ ¹}. A full hemisphere of diffracted intensities (1850 10-second frames with an ω scan width of 0.30°) was measured for a single-domain specimen using graphite-monochromated MoKa radiation (λ = 0.71073 Å) on a Bruker SMART APEX CCD Single Crystal Diffraction System^[2]. X-rays were provided by a fine-focus sealed x-ray tube operated at 50kV and 30mA. Lattice constants were determined with the Bruker SAINT software package using peak centers for 5226 reflections. A total of 24171 integrated reflection intensities having $2\theta((MoK\alpha) < 58.31^{\circ})$ were produced using the Bruker program SAINT^[3]; 6823 of these were unique and gave $R_{int} = 0.041$ with a coverage which was 93.3% complete. The data were corrected empirically for variable absorption effects using equivalent reflections; the relative transmission factors ranged from 0.810 to 1.000. The Bruker software package SHELXTL was used to solve the structure using "direct methods" techniques. All stages of weighted full-matrix least-squares refinement were conducted using F_0^2 data with the SHELXTL Version 6.10 software package^[4].

The final structural model incorporated anisotropic thermal parameters for all nonhydrogen atoms and isotropic thermal parameters for all hydrogen atoms. All methyl groups were incorporated into the structural model as rigid groups (using idealized sp³-hybridized geometry and a C-H bond length of 0.98 Å) that were allowed to rotate about their C-C bonds during least squares refinement cycles. The remaining hydrogen atoms were included in the structural model as idealized atoms (assuming sp²- or sp³-hybridization of the carbon atoms and C-H bond lengths of 0.99 Å). The isotropic thermal parameters of all hydrogen atoms

were fixed at values 1.2 (nonmethyl) or 1.5 (methyl) times the equivalent isotropic thermal parameter of the carbon atom to which they are covalently bonded. A total of 363 parameters were refined using no restraints, 6823 data and weights of $w = 1/[\sigma^2(F^2) + (0.0692 P)^2 + 0.3317 P]$ where $P = [F_0^2 + 2F_c^2] / 3$. Final agreement factors at convergence are: R_1 (unweighted, based on F) = 0.043 for 5777 independent absorption-corrected "observed" reflections having $2\theta(MoK\alpha) < 58.31^{\circ}$ and I>2 $\sigma(I)$; R_1 (unweighted, based on F) = 0.050 and wR_2(weighted, based on F²) = 0.118 for all 6823 independent absorption-corrected reflections having $2\theta(MoK\alpha) < 58.31^{\circ}$. The largest shift/s.u. was 0.000 in the final refinement cycle. The final difference map had maxima and minima of 1.46 and -0.67 e⁻/Å³, respectively.

 $[Mn(L^7q_2)(ClO_4)_2]$. A colorless near cube-shaped crystal of $[Mn(N_4C_{25}H_{26})][ClO_4]_2$ was cut from a larger single crystal. It was, at 100(2) K, monoclinic, space group $P2_1/c - C_{2h}^{5}$ (No. 14)^[1] with $\mathbf{a} = 9.012(2)$ Å, $\mathbf{b} = 8.305(2)$ Å, $\mathbf{c} = 34.494(6)$ Å, $\boldsymbol{\beta} = 92.618(3)^{\circ}$, $\mathbf{V} = 2578.9(8)$ Å³ and $\mathbf{Z} = 1000$ 4 molecules { $d_{calcd} = 1.639 \text{ g/cm}^3$; $\mu_a(MoK\alpha) = 0.778 \text{ mm}^{-1}$ }. A full hemisphere of diffracted intensities (1850 10-second frames with a ω scan width of 0.30°) was measured for a singledomain specimen using graphite-monochromated MoK α radiation (λ = 0.71073 Å) on a Bruker SMART APEX CCD Single Crystal Diffraction System^[2]. X-rays were provided by a fine-focus sealed x-ray tube operated at 50kV and 30mA. Lattice constants were determined with the Bruker SAINT software package using peak centers for 8878 reflections. A total of 23188 integrated reflection intensities having $2\theta((MoK\alpha) < 58.35^{\circ})$ were produced using the Bruker program SAINT^[3]; 6423 of these were unique and gave $R_{int} = 0.048$ with a coverage which was 92.0% complete. The data were corrected empirically for variable absorption effects using equivalent reflections; the relative transmission factors ranged from 0.900 to 1.000. The Bruker software package SHELXTL was used to solve the structure using "direct methods" techniques. All stages of weighted full-matrix least-squares refinement were conducted using F_0^2 data with the SHELXTL Version 6.10 software package^[4].

The final structural model incorporated anisotropic thermal parameters for all nonhydrogen atoms and isotropic thermal parameters for all hydrogen atoms. The first perchlorate anion is disordered with two preferred orientations about the Cl(1)-O(11) bond.

Atomic positions for oxygen atoms O(12), O(13) and O(14) correspond to the major orientation and are occupied 53% of the time; atomic positions for oxygen atoms O(12'), O(13') and O(14') correspond to the minor orientation and are occupied 47% of the time. All hydrogen atoms were located in a difference Fourier and included in the structural model as independent isotropic atoms whose parameters were allowed to vary in least-squares refinement cycles. A total of 493 parameters were refined using no restraints, 6423 data and weights of w = 1/ [$\sigma^2(F^2)$ + (0.0652 P)² + 0.3766 P], where P = [Fo² + 2Fc²] / 3. Final agreement factors at convergence are: R₁(unweighted, based on F) = 0.044 for 5411 independent absorption-corrected "observed" reflections having 2 θ (MoK α)< 58.35° and I>2 σ (I); R₁(unweighted, based on F) = 0.053 and wR₂(weighted, based on F²) = 0.113 for all 6423 independent absorption-corrected reflections having 2 θ (MoK α)< 58.35°. The largest shift/s.u. was 0.000 in the final refinement cycle. The final difference map had maxima and minima of 0.56 and -0.47 e⁻/Å³, respectively.

[**Mn**(L⁸**py**₂^{**H**})(**ClO**₄)₂]. Colorless crystals of [Mn(N₄C₁₈H₂₄)][ClO₄]₂ are, at 173(2) K, monoclinic, space group P2₁/c – C_{2h}⁵ (No. 14)^[1] with **a** = 14.731(2) Å, **b** = 17.692(2) Å, **c** = 8.752(1) Å, **β** = 95.547(1)°, V = 2270.1(5) Å³ and Z = 4 molecules {d_{caled} = 1.610 g/cm³; μ_a (MoK α) = 0.870 mm⁻¹}. A full hemisphere of diffracted intensities (1850 10-second frames with a ω scan width of 0.30°) was measured for a specimen using graphite-monochromated MoK α radiation (λ = 0.71073 Å) on a Bruker SMART APEX CCD Single Crystal Diffraction System^[2]. X-rays were provided by a fine-focus sealed x-ray tube operated at 50kV and 30mA. Lattice constants were determined with the Bruker SAINT software package using peak centers for 6611 reflections. A total of 18486 integrated reflection intensities having 2θ((MoK α)< 59.14° were produced using the Bruker program SAINT^[3]; 6352 of these were unique and gave R_{int} = 0.036 with a coverage which was 99.7% complete. The data were corrected empirically for variable absorption effects using equivalent reflections; the relative transmission factors ranged from 0.961 to 1.000. The Bruker software package SHELXTL was used to solve the structure using "direct methods" techniques. All stages of weighted full-matrix least-squares refinement were conducted using F_o² data with the SHELXTL Version 6.10 software package^[4].

The final structural model incorporated anisotropic thermal parameters for all

nonhydrogen atoms and isotropic thermal parameters for all hydrogen atoms. All hydrogen atoms were included in the structural model as idealized atoms (assuming sp²- or sp³-hybridization of the carbon atoms and C-H bond lengths of 0.95 or 0.99 Å). The isotropic thermal parameters of all hydrogen atoms were fixed at values 1.2 times the equivalent isotropic thermal parameter of the carbon atom to which they are covalently bonded. A total of 298 parameters were refined using no restraints, 6352 data and weights of w = 1/ [$\sigma^2(F^2)$ + (0.0498 P)² + 0.9315 P], where P = [Fo² + 2Fc²] / 3. Final agreement factors at convergence are: R₁(unweighted, based on F) = 0.037 for 5524 independent absorption-corrected "observed" reflections having 2 θ (MoK α)< 59.14° and I>2 σ (I); R₁(unweighted, based on F) = 0.043 and wR₂(weighted, based on F²) = 0.095 for all 6352 independent absorption-corrected reflections having 2 θ (MoK α)< 59.14°. The largest shift/s.u. was 0.001 in the final refinement cycle. The final difference map had maxima and minima of 0.45 and -0.36 e⁻/Å³, respectively.

[Mn(L⁸py₂^{6-Me})(OTF)₂]. Colorless crystals of Mn(C₂₀H₂₈N₄)(O₃SCF₃)₂ are, at 100(2) K, monoclinic, space group C2/c - C_{2h}^{6} (No. 15)^[1] with $\mathbf{a} = 13.546(3)$ Å, $\mathbf{b} = 10.324(2)$ Å, $\mathbf{c} =$ 19.340(4) Å, $\beta = 99.912(3)^{\circ}$, V = 2664.4(8) Å³ and Z = 4 molecules {d_{calcd} = 1.689 g/cm³; $\mu_a(MoK\alpha) = 0.741 \text{ mm}^{-1}$. A full hemisphere of diffracted intensities (1850 10-second frames with an ω scan width of 0.30°) was measured for a single-domain specimen using graphitemonochromated MoK α radiation (λ = 0.71073 Å) on a Bruker SMART APEX CCD Single Crvstal Diffraction System^[2]. X-rays were provided by a fine-focus sealed x-ray tube operated at 50kV and 30mA. Lattice constants were determined with the Bruker SAINT software package using peak centers for 9403 reflections. A total of 11982 integrated reflection intensities having $2\theta((MoK\alpha) < 58.21^{\circ}$ were produced using the Bruker program SAINT^[3]; 3356 of these were unique and gave $R_{int} = 0.052$ with a coverage which was 93.7% complete. The data were corrected empirically for variable absorption effects using equivalent reflections; the relative transmission factors ranged from 0.815 to 1.000. The Bruker software package SHELXTL was used to solve the structure using "direct methods" techniques. All stages of weighted full-matrix least-squares refinement were conducted using F_0^2 data with the SHELXTL Version 6.10 software package^[4].

Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2011

The final structural model incorporated anisotropic thermal parameters for all nonhydrogen atoms and isotropic thermal parameters for all hydrogen atoms. All hydrogen atoms were located from a difference Fourier and included in the structural model as independent isotropic atoms whose parameters were allowed to vary in least-squares refinement cycles. A total of 242 parameters were refined using no restraints, 3356 data and weights of w = 1/ [$\sigma^2(F^2)$ + (0.0504 P)² + 2.1167 P] where P = [Fo² + 2Fc²] / 3. Final agreement factors at convergence are: R₁(unweighted, based on F) = 0.030 or 3223 independent absorption-corrected "observed" reflections having 20(MoK α)< 58.21° and I>2 σ (I); R₁(unweighted, based on F) = 0.031 and wR₂(weighted, based on F²) = 0.085 for all 3356 independent absorption-corrected reflections having 20(MoK α)< 58.21°. The largest shift/s.u. was 0.001 in the final refinement cycle. The final difference map had maxima and minima of 0.50 and -0.33 e⁻/Å³, respectively.

References

- 1. International Tables for Crystallography, Vol A, 4th ed., Kluwer: Boston (1996).
- Data Collection: SMART Software Reference Manual (1998). Bruker-AXS, 5465 E. Cheryl Parkway, Madison, WI 53711-5373 USA.
- Data Reduction: SAINT Software Reference Manual (1998). Bruker-AXS, 6300 Enterprise Dr., Madison, WI 53719-1173, USA.
- G. M. Sheldrick (2000). SHELXTL Version 6.10 Reference Manual. Bruker-AXS, 5465 E. Cheryl Parkway, Madison, WI 53711-5373 USA.

$C_{24}H_{32}Cl_2MnN_8O_8$	
686.42	
173(2) K	
0.71073 Å	
Triclinic	
$P \overline{1} - C_i^{1}$ (No. 2)	
a = 11.618(2) Å	$\alpha = 88.508(2)^{\circ}$
$\mathbf{b} = 11.666(2) \text{ Å}$	$\beta = 71.869(2)^{\circ}$
c = 13.214(3) Å	$\gamma = 69.296(2)^{\circ}$
$1585.0(5) \text{\AA}^3$	
2	
1.438 Mg/m^{3}	
0.642 mm^{-1}	
710	
$0.18 \ge 0.14 \ge 0.09 \text{ mm}^3$	
3.72° to 27.84°	
$-15 \le h \le 15, -15 \le k \le 15$, - 17 ≤ 1 ≤ 17
15336	
7423 $[R_{int} = 0.029]$	
98.3 %	
Multi-scans	
1.000 and 0.872	
Full-matrix least-squares	on F^2
7423 / 0 / 392	
1.071	
$R_1 = 0.059, wR_2 = 0.161$	
$R_1 = 0.073, wR_2 = 0.170$	
0.84 and -0.71 $e^{-}/\text{Å}^{3}$	
	$\begin{array}{l} C_{24}H_{32}Cl_2MnN_8O_8\\ 686.42\\ 173(2)\ K\\ 0.71073\ Å\\ Triclinic\\ P\ \overline{l}-C_i{}^1\ (No.\ 2)\\ \textbf{a}=11.618(2)\ Å\\ \textbf{b}=11.666(2)\ Å\\ \textbf{c}=13.214(3)\ Å\\ 1585.0(5)\ Å^3\\ 2\\ 1.438\ Mg/m^3\\ 0.642\ mm^1\\ 710\\ 0.18\ x\ 0.14\ x\ 0.09\ mm^3\\ 3.72^\circ\ to\ 27.84^\circ\\ -15\leq h\leq 15,\ -15\leq k\leq 15\\ 15336\\ 7423\ [R_{int}=0.029]\\ 98.3\ \%\\ Multi-scans\\ 1.000\ and\ 0.872\\ Full-matrix\ least-squares\ 4\\ 7423\ /\ 0\ /\ 392\\ 1.071\\ R_1=0.059,\ wR_2=0.161\\ R_1=0.073,\ wR_2=0.170\\ 0.84\ and\ -0.71\ e^{/}A^3\\ \end{array}$

Table S1.	Crystal data and	structure refinement	for [Mn(L ⁶]	py ₂)(NCCH ₃)	$_{3}][ClO_{4}]_{2}.$	CH ₃ CN.
-----------	------------------	----------------------	--------------------------	---------------------------------------	-----------------------	---------------------

 $\overline{R_{1} = \Sigma ||F_{0}| - |F_{C}|| / \Sigma |F_{0}|}$ $wR_{2} = \{ \Sigma [w(F_{0}^{2} - F_{C}^{2})^{2}] / \Sigma [w(F_{0}^{2})^{2}] \}^{1/2}$

Empirical formula	$C_{21}H_{26}F_6MnN_4O_6S_2$	
Formula weight	663.52	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	$P2_1/c - C_{2h}^{5}$ (No. 14)	
Unit cell dimensions	a = 16.801(7) Å	$\alpha = 90.000^{\circ}$
	b = 8.582(4) Å	$\beta = 99.020(7)^{\circ}$
	c = 19.054(8) Å	$\gamma = 90.000^{\circ}$
Volume	$2713(2) \text{ Å}^3$	
Ζ	4	
Density (calculated)	1.624 Mg/m^{3}	
Absorption coefficient	0.726 mm ⁻¹	
F(000)	1356	
Crystal size	$0.50 \ge 0.34 \ge 0.18 \text{ mm}^3$	
Theta range for data collection	2.31° to 29.15°	
Index ranges	$\textbf{-22} \le h \le 22, \textbf{-11} \le k \le 11$, $-25 \le l \le 25$
Reflections collected	24171	
Independent reflections	$6823 [R_{int} = 0.041]$	
Completeness to theta = 29.15°	93.3 %	
Absorption correction	Multi-scans	
Max. and min. transmission	1.000 and 0.810	2
Refinement method	Full-matrix least-squares	on F^2
Data / restraints / parameters	6823 / 0 / 363	
Goodness-of-fit on F^2	1.082	
Final R indices [I>2sigma(I)]	$R_1 = 0.043, WR_2 = 0.115$	
R indices (all data)	$R_1 = 0.050, wR_2 = 0.118$	
Largest diff. peak and hole	1.464 and -0.673 $e^{-}/\text{Å}^{3}$	

	Table S2.	Crystal data and s	structure refinement for	$Mn(L^7py_2^{4-N})$	Ae)(OTf) ₂].
--	-----------	--------------------	--------------------------	---------------------	--------------------------------

 $\overline{R_{1} = \Sigma ||F_{0}| - |F_{c}|| / \Sigma |F_{0}|}$ $wR_{2} = \{ \Sigma [w(F_{0}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{0}^{2})^{2}] \}^{1/2}$

Empirical formula	C25H26Cl2MnN4O8	
Formula weight	636.34	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	$P2_1/c - C_{2h}^{5}$ (No. 14)	
Unit cell dimensions	a = 9.0119(17) Å	$\alpha = 90.000^{\circ}$
	b = 8.3049(15) Å	$\beta = 92.618(3)^{\circ}$
	c = 34.494(6) Å	$\gamma = 90.000^{\circ}$
Volume	$2578.9(8) \text{ Å}^3$	
Z	4	
Density (calculated)	1.639 Mg/m^3	
Absorption coefficient	0.778 mm^{-1}	
F(000)	1308	
Crystal size	$0.28 \ge 0.26 \ge 0.24 \text{ mm}^3$	
Theta range for data collection	2.50° to 29.18°	
Index ranges	$-12 \le h \le 12, -10 \le k \le 10$, $-45 \le l \le 46$
Reflections collected	23188	
Independent reflections	$6423 [R_{int} = 0.048]$	
Completeness to theta = 29.18°	92.0 %	
Absorption correction	Multi-scans	
Max. and min. transmission	1.000 and 0.900	
Refinement method	Full-matrix least-squares	on F^2
Data / restraints / parameters	6423 / 0 / 493	
Goodness-of-fit on F^2	1.041	
Final R indices [I>2sigma(I)]	$R_1 = 0.044, wR_2 = 0.109$	
R indices (all data)	$R_1 = 0.053, wR_2 = 0.113$	
Largest diff. peak and hole	$0.56 \text{ and } -0.47 \text{ e}^{-1}/\text{Å}^{-3}$	

Table S3. Crystal data and structure refinement for $[Mn(L^7q_2)][ClO_4]_2$.

 $R_{1} = \Sigma ||F_{0}| - |F_{c}|| / \Sigma |F_{0}|$ $wR_{2} = \{ \Sigma [w(F_{0}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{0}^{2})^{2}] \}^{1/2}$

Empirical formula	$C_{18}H_{24}Cl_2MnN_4O_8$	
Formula weight	550.25	
Temperature	173(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	$P2_1/c - C_{2h}^{5}$ (No. 14)	
Unit cell dimensions	a = 14.731(2) Å	$\alpha = 90.000^{\circ}$
	b = 17.692(2) Å	$\beta = 95.547(1)^{\circ}$
	c = 8.752(1) Å	$\gamma = 90.000^{\circ}$
Volume	$2270.1(5) \text{ Å}^3$	
Ζ	4	
Density (calculated)	1.610 Mg/m^{3}	
Absorption coefficient	0.870 mm^{-1}	
F(000)	1132	
Crystal size	$0.27 \ge 0.24 \ge 0.22 \text{ mm}^3$	
Theta range for data collection	3.97° to 29.57°	
Index ranges	$0 \le h \le 20, -24 \le k \le 0, -12 \le l \le 12$	
Reflections collected	18486	
Independent reflections	$6352 [R_{int} = 0.036]$	
Completeness to theta = 29.57°	99.7 %	
Absorption correction	Multi-scans	
Max. and min. transmission	0.8317 and 0.7991	2
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	6352 / 0 / 298	
Goodness-of-fit on F^2	1.057	
Final R indices [I>2sigma(I)]	$R_1 = 0.037, wR_2 = 0.092$	
R indices (all data)	$R_1 = 0.043, wR_2 = 0.095$	
Largest diff. peak and hole	0.45 and -0.36 e^{-1}/A^{3}	

Table S4. Crystal data and structure refinement for $[Mn(L^8py_2^H)][ClO_4]_2$.

 $R_{1} = \Sigma ||F_{0}| - |F_{c}|| / \Sigma |F_{0}|$ $wR_{2} = \{ \Sigma [w(F_{0}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{0}^{2})^{2}] \}^{1/2}$

Empirical formula	$C_{22}H_{28}F_6MnN_4O_6S_2$	
Formula weight	677.54	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	$C2/c - C_{2h}^{6}$ (No. 15)	
Unit cell dimensions	a = 13.546(3) Å	$\alpha = 90.000^{\circ}$
	$\mathbf{b} = 10.324(2) \text{ Å}$	$\beta = 99.912(3)^{\circ}$
	c = 19.340(4) Å	$\gamma = 90.000^{\circ}$
Volume	$2664.4(8) \text{ Å}^3$	
Z	4	
Density (calculated)	1.689 Mg/m^3	
Absorption coefficient	0.741 mm^{-1}	
F(000)	1388	
Crystal size	$0.52 \ge 0.48 \ge 0.33 \text{ mm}^3$	
Theta range for data collection	2.49° to 29.10°	
Index ranges	$-18 \le h \le 18, -13 \le k \le 13, -25 \le l \le 25$	
Reflections collected	11982	
Independent reflections	$3356 [R_{int} = 0.052]$	
Completeness to theta = 29.10°	93.7 %	
Absorption correction	Multi-scans	
Max. and min. transmission	1.000 and 0.815	
Refinement method	Full-matrix least-squares of	on F^2
Data / restraints / parameters	3356 / 0 / 242	
Goodness-of-fit on F ²	1.052	
Final R indices [I>2sigma(I)]	$R_1 = 0.030, wR_2 = 0.084$	
R indices (all data)	$R_1 = 0.031, wR_2 = 0.085$	
Largest diff. peak and hole	0.50 and -0.33 e^{-1}/A^{3}	

Table S5. Crystal data and structure refinement for $Mn(L^8py_2^{6-Me})(OTF)_2$.

 $R_{1} = \Sigma ||F_{0}| - |F_{c}|| / \Sigma |F_{0}|$ $wR_{2} = \{ \Sigma [w(F_{0}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{0}^{2})^{2}] \}^{1/2}$

Figure S1. Space-filling diagrams of A) $[Mn^{II}(L^6py_2^H)(NCMe)_3](ClO_4)_2$, B) $[Mn^{II}(L^7py_2^{4-Me})(OTf)_2]$ C) $[Mn^{II}(L^7q_2)(ClO_4)_2]$, D) $[Mn^{II}(L^8py_2^H)(ClO_4)_2]$, and E) $[Mn^{II}(L^8py_2^{6-Me})(OTf)_2]$ F) $[Mn^{II}(L^7py_2^{6-Me})(ClO_4)_2]$ (reference 20) G) $[Mn^{II}(L^7py_2^{6-MeO})(ClO_4)_2]$ (reference 20) based on X-ray crystal structure data. Non-coordinating perchlorate counter anions or triflate counter anions have been removed for clarity.

Figure S2. Experimental ESI-MS spectrum of $[Mn^{III}(O_2)(L^8py_2^H)]^+$ ({ $[Mn^{III}(O_2)(L^8py_2^H)]^+$, M⁺, 383.1)}). Red and black sticks correspond to the experimental simulated isotope patterns of $[Mn^{III}(O_2)(L^8py_2^H)]^+$.

Atom	X	У	Z
Mn	-0.278039	3.034828	1.014223
0	-0.530305	4.859658	0.740655
0	-0.465168	4.514143	2.141256
Ν	-2.317116	2.194425	0.577825
Ν	-0.078869	2.390066	-1.093472
Ν	1.927974	2.504719	0.632849
Ν	0.268396	1.650337	2.593571
С	-3.322184	2.010708	1.463726
С	-4.503722	1.331376	1.140523
С	-4.641411	0.811159	-0.157280
С	-3.613618	1.026398	-1.088321
С	-2.471888	1.743733	-0.691357
С	-1.425796	2.186651	-1.690302
С	0.648120	3.432208	-1.906270
С	2.155548	3.503896	-1.646692
С	2.577884	3.573907	-0.177665
С	1.900181	1.194508	-0.073690
С	0.675030	1.101141	-1.030678
С	-0.590734	0.961349	3.380083
С	-0.179480	0.238707	4.505421
С	1.186704	0.221011	4.828353
С	2.084240	0.915868	4.004365
C	1.595669	1.625589	2.896411
C	2.511141	2.411294	1.982433
Н	-1.650313	0.987/444	3.088341
H	-0.924374	-0.301387	5.108938
H	1.552324	-0.336/29	5.705353
H	3.166225	0.909450	4.211218
H	2.616851	3.448600	2.3/4032
H	3.331/38	1.960528	1.9/2863
П	-3.1/2322	2.441/34	2.400/48
п	-3.293983	1.210349	1.89/433
п	-3.340270	0.232725	-0.440123
п u	-3.090843	1 402287	-2.121402
П Ц	-1.370148	1.495567	-2.300048
н Ц	-1.739923	3 207261	-2.085078
н Н	0.490980	1 404307	-1 687563
н	2 536/10	4 / 136/0	-2 159/75
н	2.550410	2 651322	-2.137773 -2.145422
Н	2.005571	4 548807	0 276252
H	3 689178	3 474600	-0 115001
H	1 820144	0 397089	0 690882
H	2 857508	1 023183	-0.615632
H	0.983031	0 792755	-2 055881
Н	-0.035488	0.334608	-0.657343

Table S6. Cartesian coordinates for DFT optimized model of [Mn^{III}(O₂)(L⁷py₂^H)]⁺.

Mn -0.010842 0.095253 0.495449 O -0.688271 0.281369 2.268111 O 0.517331 -0.523306 2.175018 N -1.973742 -0.890898 -0.172400 N -0.823722 1.528735 -0.881397 N 1.440974 1.851885 0.478487 N 1.852991 -0.745970 -0.252437 C -2.595424 -1.884041 0.526700 C -3.987895 -2.067748 0.424103 C -4.752404 -1.229497 -0.402558 C -4.095348 -0.217583 -1.123466 C -2.710950 -0.083283 -0.980245 C -1.423382 2.588126 0.028798 C -1.423382 2.588126 0.028798 C -0.40180 3.518720 0.692445 C 0.814257 2.870690 1.371788 C -1.748460 -2.805510 1.372782 C 2.05	Atoms	X	У	Z
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mn	-0.010842	0.095253	0.495449
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	-0.688271	0.281369	2.268111
N -1.973742 -0.890898 -0.172400 N -0.823722 1.528735 -0.881397 N 1.440974 1.851885 0.478487 N 1.852991 -0.745970 -0.252437 C -2.595424 -1.884041 0.526700 C -3.987895 -2.067748 0.424103 C -4.752404 -1.229497 -0.402558 C -4.095348 -0.217583 -1.123466 C -2.710950 -0.083283 -0.980245 C -1.423382 2.588126 0.028798 C -1.423382 2.588126 0.028798 C -0.400180 3.518720 0.692445 C 0.814257 2.870690 1.371788 C 2.056048 -1911850 -0.934629 C 3.342309 -2.473030 -1.024592 C 4.431553 -1.839473 -0.407691 C 2.655641 1.231888 0.998374 C 0.26	0	0.517331	-0.523306	2.175018
N -0.823722 1.528735 -0.881397 N 1.440974 1.851885 0.478487 N 1.852991 -0.745970 -0.252437 C -2.595424 -1.884041 0.526700 C -3.987895 -2.067748 0.424103 C -4.752404 -1.229497 -0.402558 C -4.095348 -0.217583 -1.123466 C -2.710950 -0.083283 -0.980245 C -1.423382 2.588126 0.028798 C -1.423382 2.588126 0.028798 C -0.400180 3.518720 0.692445 C 0.814257 2.870690 1.371788 C -1.748460 -2.805510 1.372782 C 2.056048 -1.911850 -0.934629 C 3.342309 -2.473030 -1.024592 C 2.055641 1.23188 0.998374 C 1.566742 2.350614 -0.910856 C 0.2655	Ν	-1.973742	-0.890898	-0.172400
N 1.440974 1.851885 0.478487 N 1.852991 -0.745970 -0.252437 C -2.595424 -1.884041 0.526700 C -3.987895 -2.067748 0.424103 C -4.752404 -1.229497 -0.402558 C -4.095348 -0.217583 -1.123466 C -2.710950 -0.083283 -0.980245 C -1.423382 2.588126 0.028798 C -1.423382 2.588126 0.028798 C -0.400180 3.518720 0.692445 C 0.814257 2.870690 1.371788 C -1.748460 -2.805510 1.372782 C 2.056048 -1.911850 -0.934629 C 3.342309 -2.473030 -1.024592 C 4.431553 -1.839473 -0.407691 C 4.265612 -0.627952 0.258826 C 2.055641 1.23188 0.998374 C 1.5667	Ν	-0.823722	1.528735	-0.881397
N 1.852991 -0.745970 -0.252437 C -2.595424 -1.884041 0.526700 C -3.987895 -2.067748 0.424103 C -4.752404 -1.229497 -0.402558 C -4.095348 -0.217583 -1.123466 C -2.710950 -0.083283 -0.980245 C -1.423382 2.588126 0.028798 C -0.400180 3.518720 0.692445 C 0.814257 2.870690 1.371788 C -1.748460 -2.805510 1.372782 C 2.056048 -1.911850 -0.934629 C 3.342309 -2.473030 -1.024592 C 4.431553 -1.839473 -0.407691 C 4.256612 -0.627952 0.258826 C 2.914129 -0.104306 0.309603 C 2.655641 1.231888 0.998374 C 1.566742 2.350614 -0.910856 C 0.26	Ν	1.440974	1.851885	0.478487
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ν	1.852991	-0.745970	-0.252437
$\begin{array}{cccccc} -3.987895 & -2.067748 & 0.424103 \\ C & -4.752404 & -1.229497 & -0.402558 \\ C & -4.095348 & -0.217583 & -1.123466 \\ C & -2.710950 & -0.083283 & -0.980245 \\ C & -1.895894 & 0.937875 & -1.747728 \\ C & -1.423382 & 2.588126 & 0.028798 \\ C & -0.400180 & 3.518720 & 0.692445 \\ C & 0.814257 & 2.870690 & 1.371788 \\ C & -1.748460 & -2.805510 & 1.372782 \\ C & 2.056048 & -1.911850 & -0.934629 \\ C & 3.342309 & -2.473030 & -1.024592 \\ C & 4.431553 & -1.839473 & -0.407691 \\ C & 4.215612 & -0.627952 & 0.2588266 \\ C & 2.914129 & -0.104306 & 0.309603 \\ C & 2.655641 & 1.231888 & 0.998374 \\ C & 1.566742 & 2.350614 & -0.910856 \\ C & 0.286457 & 2.066187 & -1.737239 \\ C & 0.877047 & -2.577344 & -1.586203 \\ H & -4.470292 & -2.875712 & 0.995789 \\ H & -5.842984 & -1.367715 & -0.477574 \\ H & -4.640539 & 0.466492 & -1.792721 \\ H & -1.385005 & 0.453085 & -2.605428 \\ H & -2.546363 & 1.742461 & -2.159594 \\ H & -2.037461 & 2.048531 & 0.778364 \\ H & -2.107293 & 3.215161 & -0.587725 \\ H & -0.055564 & 4.268386 & -0.050870 \\ H & -0.940540 & 4.108162 & 1.465520 \\ H & 0.544432 & 2.349278 & 2.311182 \\ H & 1.550080 & 3.675469 & 1.616764 \\ H & -1.050952 & -2.241883 & 2.027278 \\ H & -1.30551 & -3.460962 & 0.719501 \\ H & -2.404493 & -3.440418 & 2.003846 \\ H & 3.485822 & -3.409171 & -1.584697 \\ H & 5.432584 & -2.295011 & -0.472075 \\ H & 5.033808 & -0.066525 & 0.736042 \\ H & 3.485822 & -3.409171 & -1.584697 \\ H & 2.530258 & 1.066665 & 2.087786 \\ H & 2.438841 & 1.865799 & -1.392672 \\ H & 1.792432 & 3.440273 & -0.915224 \\ \end{array}$	С	-2.595424	-1.884041	0.526700
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	-3.987895	-2.067748	0.424103
$\begin{array}{cccccc} -4.095348 & -0.217583 & -1.123466 \\ C & -2.710950 & -0.083283 & -0.980245 \\ C & -1.895894 & 0.937875 & -1.747728 \\ C & -1.423382 & 2.588126 & 0.028798 \\ C & -0.400180 & 3.518720 & 0.692445 \\ C & 0.814257 & 2.870690 & 1.371788 \\ C & -1.748460 & -2.805510 & 1.372782 \\ C & 2.056048 & -1.911850 & -0.934629 \\ C & 3.342309 & -2.473030 & -1.024592 \\ C & 4.431553 & -1.839473 & -0.407691 \\ C & 4.215612 & -0.627952 & 0.258826 \\ C & 2.914129 & -0.104306 & 0.309603 \\ C & 2.655641 & 1.231888 & 0.998374 \\ C & 1.566742 & 2.350614 & -0.910856 \\ C & 0.286457 & 2.066187 & -1.737239 \\ C & 0.877047 & -2.577344 & -1.586203 \\ H & -4.470292 & -2.875712 & 0.995789 \\ H & -5.842984 & -1.367715 & -0.477574 \\ H & -4.640539 & 0.466492 & -1.792721 \\ H & -1.385005 & 0.453085 & -2.605428 \\ H & -2.546363 & 1.742461 & -2.159594 \\ H & -2.037461 & 2.048531 & 0.778364 \\ H & -2.107293 & 3.215161 & -0.587725 \\ H & -0.055564 & 4.268386 & -0.050870 \\ H & -0.940540 & 4.108162 & 1.465520 \\ H & 0.544432 & 2.349278 & 2.311182 \\ H & 1.550080 & 3.675469 & 1.616764 \\ H & -1.050952 & -2.241883 & 2.027278 \\ H & -1.130551 & -3.460962 & 0.719501 \\ H & -2.404493 & -3.440418 & 2.003846 \\ H & 3.485822 & -3.409171 & -1.584697 \\ H & -2.438841 & 1.865799 & -1.392672 \\ H & 2.438841 & 1.865799 & -1.392672 \\ H & 2.438841 & 1.865799 & -1.392672 \\ H & 2.438841 & 1.865799 & -1.392672 \\ H & 1.792432 & 3.440273 & -0.915224 \\ \end{array}$	С	-4.752404	-1.229497	-0.402558
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	-4.095348	-0.217583	-1.123466
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	-2.710950	-0.083283	-0.980245
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	-1.895894	0.937875	-1.747728
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	-1.423382	2.588126	0.028798
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	-0.400180	3.518720	0.692445
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	0.814257	2.870690	1.371788
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	-1.748460	-2.805510	1.372782
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	2.056048	-1.911850	-0.934629
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	3.342309	-2.473030	-1.024592
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	4.431553	-1.839473	-0.407691
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	4.215612	-0.627952	0.258826
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	2.914129	-0.104306	0.309603
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	2.655641	1.231888	0.998374
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	1.566742	2.350614	-0.910856
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	0.286457	2.066187	-1.737239
H -4.470292 -2.875712 0.995789 H -5.842984 -1.367715 -0.477574 H -4.640539 0.466492 -1.792721 H -1.385005 0.453085 -2.605428 H -2.546363 1.742461 -2.159594 H -2.037461 2.048531 0.778364 H -2.037461 2.048531 0.778364 H -2.007293 3.215161 -0.587725 H -0.055564 4.268386 -0.050870 H -0.940540 4.108162 1.465520 H 0.544432 2.349278 2.311182 H 1.550080 3.675469 1.616764 H -1.050952 -2.241883 2.027278 H -1.130551 -3.460962 0.719501 H -2.404493 -3.440418 2.003846 H 3.485822 -3.409171 -1.584697 H 5.033808 -0.066525 0.736042 H 3.556036 1.874714 0.844743 H 2.530258 1.066665 2.087786 H 2.438841 1.865799 -1.392672 H 1.792432 3.440273 -0.915224	C	0.877047	-2.577344	-1.586203
H -5.842984 -1.367715 -0.477574 H -4.640539 0.466492 -1.792721 H -1.385005 0.453085 -2.605428 H -2.546363 1.742461 -2.159594 H -2.037461 2.048531 0.778364 H -2.037461 2.048531 0.778364 H -2.107293 3.215161 -0.587725 H -0.055564 4.268386 -0.050870 H -0.940540 4.108162 1.465520 H 0.544432 2.349278 2.311182 H 1.550080 3.675469 1.616764 H -1.050952 -2.241883 2.027278 H -1.130551 -3.460962 0.719501 H -2.404493 -3.440418 2.003846 H 3.485822 -3.409171 -1.584697 H 5.033808 -0.066525 0.736042 H 3.556036 1.874714 0.844743 H 2.530258 1.066665 2.087786 H 2.438841 1.865799 -1.392672 H 1.792432 3.440273 -0.915224	H	-4.470292	-2.875712	0.995789
H -4.640539 0.466492 -1.792721 H -1.385005 0.453085 -2.605428 H -2.546363 1.742461 -2.159594 H -2.037461 2.048531 0.778364 H -2.107293 3.215161 -0.587725 H -0.055564 4.268386 -0.050870 H -0.940540 4.108162 1.465520 H 0.544432 2.349278 2.311182 H 1.550080 3.675469 1.616764 H -1.050952 -2.241883 2.027278 H -1.130551 -3.460962 0.719501 H -2.404493 -3.440418 2.003846 H 3.485822 -3.409171 -1.584697 H 5.033808 -0.066525 0.736042 H 3.556036 1.874714 0.844743 H 2.530258 1.066665 2.087786 H 2.438841 1.865799 -1.392672 H 1.792432 3.440273 -0.915224	H	-5.842984	-1.367715	-0.477574
H-1.3850050.453085-2.605428H-2.5463631.742461-2.159594H-2.0374612.0485310.778364H-2.1072933.215161-0.587725H-0.0555644.268386-0.050870H-0.9405404.1081621.465520H0.5444322.3492782.311182H1.5500803.6754691.616764H-1.050952-2.2418832.027278H-1.130551-3.4609620.719501H-2.404493-3.4404182.003846H3.485822-3.409171-1.584697H5.033808-0.0665250.736042H2.5302581.0666652.087786H2.4388411.865799-1.392672H1.7924323.440273-0.915224	H	-4.640539	0.466492	-1.792721
H-2.5463631.742461-2.159594H-2.0374612.0485310.778364H-2.1072933.215161-0.587725H-0.0555644.268386-0.050870H-0.9405404.1081621.465520H0.5444322.3492782.311182H1.5500803.6754691.616764H-1.050952-2.2418832.027278H-1.130551-3.4609620.719501H-2.404493-3.4404182.003846H3.485822-3.409171-1.584697H5.033808-0.0665250.736042H3.5560361.8747140.844743H2.5302581.0666652.087786H2.4388411.865799-1.392672H1.7924323.440273-0.915224	H	-1.385005	0.453085	-2.605428
H-2.0374612.0485310.778364H-2.1072933.215161-0.587725H-0.0555644.268386-0.050870H-0.9405404.1081621.465520H0.5444322.3492782.311182H1.5500803.6754691.616764H-1.050952-2.2418832.027278H-1.130551-3.4609620.719501H-2.404493-3.4404182.003846H3.485822-3.409171-1.584697H5.033808-0.0665250.736042H3.5560361.8747140.844743H2.5302581.0666652.087786H2.4388411.865799-1.392672H1.7924323.440273-0.915224	H	-2.546363	1.742461	-2.159594
H-2.10/2933.215161-0.587/25H-0.0555644.268386-0.050870H-0.9405404.1081621.465520H0.5444322.3492782.311182H1.5500803.6754691.616764H-1.050952-2.2418832.027278H-1.130551-3.4609620.719501H-2.404493-3.4404182.003846H3.485822-3.409171-1.584697H5.033808-0.0665250.736042H3.5560361.8747140.844743H2.5302581.0666652.087786H2.4388411.865799-1.392672H1.7924323.440273-0.915224	H	-2.037461	2.048531	0.778364
H-0.0555644.268386-0.050870H-0.9405404.1081621.465520H0.5444322.3492782.311182H1.5500803.6754691.616764H-1.050952-2.2418832.027278H-1.130551-3.4609620.719501H-2.404493-3.4404182.003846H3.485822-3.409171-1.584697H5.432584-2.295011-0.472075H5.033808-0.0665250.736042H3.5560361.8747140.844743H2.5302581.0666652.087786H2.4388411.865799-1.392672H1.7924323.440273-0.915224	H	-2.107293	3.215161	-0.587725
H-0.9405404.1081621.465520H0.5444322.3492782.311182H1.5500803.6754691.616764H-1.050952-2.2418832.027278H-1.130551-3.4609620.719501H-2.404493-3.4404182.003846H3.485822-3.409171-1.584697H5.432584-2.295011-0.472075H5.033808-0.0665250.736042H3.5560361.8747140.844743H2.5302581.0666652.087786H2.4388411.865799-1.392672H1.7924323.440273-0.915224	H	-0.055564	4.268386	-0.050870
H0.5444322.3492782.311182H1.5500803.6754691.616764H-1.050952-2.2418832.027278H-1.130551-3.4609620.719501H-2.404493-3.4404182.003846H3.485822-3.409171-1.584697H5.432584-2.295011-0.472075H5.033808-0.0665250.736042H3.5560361.8747140.844743H2.5302581.0666652.087786H2.4388411.865799-1.392672H1.7924323.440273-0.915224	H	-0.940540	4.108162	1.465520
H1.5500803.6754691.616764H-1.050952-2.2418832.027278H-1.130551-3.4609620.719501H-2.404493-3.4404182.003846H3.485822-3.409171-1.584697H5.432584-2.295011-0.472075H5.033808-0.0665250.736042H3.5560361.8747140.844743H2.5302581.0666652.087786H2.4388411.865799-1.392672H1.7924323.440273-0.915224	H	0.544432	2.349278	2.311182
H-1.050952-2.2418832.027278H-1.130551-3.4609620.719501H-2.404493-3.4404182.003846H3.485822-3.409171-1.584697H5.432584-2.295011-0.472075H5.033808-0.0665250.736042H3.5560361.8747140.844743H2.5302581.0666652.087786H2.4388411.865799-1.392672H1.7924323.440273-0.915224	H	1.550080	3.6/5469	1.616/64
H-1.130551-3.4609620.719501H-2.404493-3.4404182.003846H3.485822-3.409171-1.584697H5.432584-2.295011-0.472075H5.033808-0.0665250.736042H3.5560361.8747140.844743H2.5302581.0666652.087786H2.4388411.865799-1.392672H1.7924323.440273-0.915224	H	-1.050952	-2.241883	2.02/2/8
H-2.404493-3.4404182.003846H3.485822-3.409171-1.584697H5.432584-2.295011-0.472075H5.033808-0.0665250.736042H3.5560361.8747140.844743H2.5302581.0666652.087786H2.4388411.865799-1.392672H1.7924323.440273-0.915224	H	-1.130551	-3.460962	0./19501
H3.485822-3.409171-1.584697H5.432584-2.295011-0.472075H5.033808-0.0665250.736042H3.5560361.8747140.844743H2.5302581.0666652.087786H2.4388411.865799-1.392672H1.7924323.440273-0.915224	H	-2.404493	-3.440418	2.003846
H5.432584-2.295011-0.472075H5.033808-0.0665250.736042H3.5560361.8747140.844743H2.5302581.0666652.087786H2.4388411.865799-1.392672H1.7924323.440273-0.915224	H	3.485822	-3.4091/1	-1.58469/
H 5.033808 -0.066525 0.736042 H 3.556036 1.874714 0.844743 H 2.530258 1.066665 2.087786 H 2.438841 1.865799 -1.392672 H 1.792432 3.440273 -0.915224	H	5.432584	-2.295011	-0.4/20/5
H 3.556036 1.874714 0.844743 H 2.530258 1.066665 2.087786 H 2.438841 1.865799 -1.392672 H 1.792432 3.440273 -0.915224	H U	5.033808	-0.066525	0./36042
H 2.330238 1.000003 2.08/786 H 2.438841 1.865799 -1.392672 H 1.792432 3.440273 -0.915224	П U	3.330030	1.8/4/14	U.844/43
H 1.792432 3.440273 -0.915224	п u	2.330238	1.000000	2.08//80 1.202672
11 1./72452 5.4402/5 -0.915224	п U	2.430041 1 702422	1.003/99	-1.3920/2
H = 0.054208 - 2.000217 - 2.257225	л Ц	1./92432	3.4402/3 2.000217	-0.913224

Cartesian coordinates for DFT	optimized model of [Mn ^{II}	$[(O_2)(L^7 p y_2^{6-Me})]^+$
--------------------------------------	--------------------------------------	-------------------------------

Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2011

Н	0.482937	1.287316	-2.498476
Н	0.134737	-2.917651	-0.831608
Н	1.200277	-3.463907	-2.168069
Н	0.340955	-1.889571	-2.275607

Atoms	X	У	Z
Mn	-0.469549	2.634620	1.182838
0	-0.956405	4.398556	0.781838
0	-0.841302	4.156933	2.200683
Ν	-2.492751	1.846130	0.743326
Ν	-0.149251	1.726470	-0.810429
Ν	1.783775	2.613029	0.783718
Ν	0.317168	1.512035	2.769293
С	-3.591431	2.197368	1.446931
С	-4.875042	2.215736	0.889940
С	-5.050996	1.880034	-0.469302
С	-3.892410	1.523062	-1.195500
С	-2.642529	1.509732	-0.563662
С	-1.389496	1.022023	-1.261995
С	-6.404388	1.912006	-1.130775
Н	-3.423776	2.482705	2.498462
Н	-5.734074	2.502201	1.516954
Н	-3.964287	1.249262	-2.260635
Н	-1.274765	-0.054768	-1.012237
Н	-1.502009	1.084712	-2.367630
Н	-6.615525	0.951417	-1.651092
Н	-6.441991	2.711638	-1.905824
Н	-7.214089	2,103240	-0.396669
C	0.156418	2.897320	-1.714091
C	1.574764	3.471854	-1.547624
C	2.063717	3.761537	-0.118743
С	2.149525	1.314621	0.164349
С	1.006517	0.779608	-0.743802
Н	0.050717	2.559023	-2.772356
Н	-0.622487	3.666675	-1.531657
Н	1.611762	4.422447	-2.122173
Н	2.297525	2.796482	-2.054432
Н	1.555014	4.650022	0.309111
Н	3.161225	3.968781	-0.151680
Н	2.326072	0.586930	0.980220
Н	3.107650	1.409318	-0.394850
Н	1.373798	0.553968	-1.770489
Н	0.620294	-0.166867	-0.319831
С	-0.381628	0.676439	3.573144
С	0.167294	0.111074	4.725786
С	1.501567	0.407455	5.083860
С	2.219879	1.266758	4.224330
С	1.608836	1.808257	3.086836
С	2.326615	2.762686	2.146235
С	2.124667	-0.155513	6.333123
Н	-1.416191	0.458284	3.265744
Ħ	-0:448244	-0.589842	3.339493
Ħ	3.272397	-9: 380939	4:49894 4
Ħ	2:759089	-3:8087 88	2: 4 72848

Table S8. Cartesian coordinates for DFT optimized model for [Mn^{III}(O₂)(L⁷py₂^{4-Me})]⁺

Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2011

Н 1.856623 0.480314 7.208920