Electronic Supporting Information for 'Synthesis and characterisation of group nine transition metal complexes containing new mesityl and naphthyl based azaindole scorpionate ligands'

Gareth R. Owen, Nikolaos Tsoureas, Rebecca F. Hope, Yu-Ying Kuo and Mairi F. Haddow

The School of Chemistry, University of Bristol, Cantock's Close, Bristol, UK, BS8 1TS

Additional experimental details

General considerations

The solvents toluene, THF, DCM and acetonitrile were dried using a Grubbs' alumina system, and were kept in flame-dried Young's ampoules under N₂ over molecular sieves (4 Å). Dry n-pentane (<0.05 ppm H₂O) was purchased from Fluka and was kept in a flame-dried Young's ampoule under N₂ over molecular sieves (4 Å). Deuterated toluene and C₆D₆ were degassed by three freeze-thaw cycles, dried by refluxing over Na or Na/benzophenone respectively for 12 hours, vacuum distilled and kept in a flame-dried Young's ampoule over 4 Å molecular sieves under N₂. Deuterated DCM was degassed by three freeze-thaw cycles, dried by refluxing over CaH₂ for 12 hours, vacuum distilled and kept in a Young's ampoule over 4 Å molecular sieves under N₂. ¹H-NMR, ¹¹B¹H}-NMR, ¹¹B-NMR and ⁷Li{¹H}-NMR spectra were recorded on a JEOL ECP300 spectrometer operating at 300 MHz (¹H). ¹³C{¹H}-NMR spectra and correlation experiments were recorded on a Varian VNMR S500 or JEOL ECP400 spectrometers. The spectra were referenced to an internal standard, to the residual protic solvent (¹H) or the signals of the solvent (¹³C). ¹¹B{¹H}-NMR and ¹¹B-NMR and ¹¹B-NMR spectra were referenced to BF₃·OEt₂. ⁷Li{¹H}-NMR spectra were referenced externally relative to BF₃·OEt₂. ⁷Li{¹H}-NMR spectra were referenced externally to LiCl in D₂O.

Further characterisation of Li(MeCN)₂[^{Naphth}Bai]

Small quantities of the coordinated acetonitrile were found to dissociate in solution leading to two observable species in solution (in a ratio of *ca*. 85:15). See manuscript for further details. NMR δ ppm: ¹H (CDCl₃), 1.92 (s, 6 H, coordinated CH₃CN), 5.30–5.80 (v. br., 1H, BH), 6.38 (d, ³J_{HH} = 3.4 Hz, 2H, aza-CH(3)], 6.84 [dd, ³J_{HH} = 7.3 Hz, ³J_{HH} = 4.9 Hz, 2H, aza-CH(5)], 7.11 [τ , J_{HH} = 7.9 Hz, 1H, nap-CH(6)], 7.23 [br., 2H, aza-CH(2)], 7.28 [br, 1H, nap-CH(2)], 7.32 [τ d, J_{HH} = 7.9 Hz, ⁴J_{HH} = 1.2 Hz, 1H, nap-CH(7)], 7.39 [τ , J_{HH} = 7.3 Hz, 1H, nap-CH(3)], 7.73 [br., 2H, aza-CH(4)], 7.77 [two overlapping doublets, J_{HH} = 8.1 Hz, 2H, nap-CH(5) and -CH(4)], 7.82 [d, ³J_{HH} = 7.9 Hz, 1H, nap-CH(8)], 7.88 [dd, ³J_{HH} = 8.2 Hz, ⁴J_{HH} = 1.2 Hz, 2H, aza-CH(6)]; ¹¹B{¹H}, (CD₂Cl₂), -8.9 (85%, $\Delta v_{1/2}$ = 97 Hz) and -4.0 (15%, $\Delta v_{1/2}$ = 94 Hz); ¹¹B, -8.9 (d, ¹J_{BH} = 74 Hz, $\Delta v_{1/2}$ = 194 Hz) and -4.0 (d, ¹J_{BH} = 92 Hz, $\Delta v_{1/2}$ = 194 Hz); ⁷Li{¹H} (CD₂Cl₂), 5.3 (s, 85%) and 3.8 (s, 15%).

Selected data for Li[BH₃(mesityl)]•(THF)_x(Et₂O)_y

NMR (C₆D₆) δ ppm: ¹H, 1.32 [v. br., 1.1.1.1 q, 3H, ¹J_{BH} = 75Hz, BH₃(mesityl)], 2.37 (s, 3H, 4-Me), 2.73 (s, 6H, 2,6-Me), 7.09 [s, 2H, C₆H₂(CH₃)₃], ¹¹B{¹H}, -32.9 (s); ¹¹B, -32.9 (q, ¹J_{BH} = 76.2).

Selected data for Li[BH₃(naphthyl)]•(THF)_x(Et₂O)_y

NMR δ ppm: ¹H (CD₃CN), 1.44 [1:1:1:1 q, ¹J_{BH} = 79.4 Hz, BH₃(naphthyl)], 7.17 [dd, ³J_{HH} = 8.3 Hz, ³J_{HH} = 6.8 Hz, 1H, naphthyl], 7.29 [two overlapping m, 2H, naphthyl)], 7.39 [br d, ³J_{HH} = 8.1 Hz, 1H, naphthyl], 7.49 [br m, 1H, naphthyl], 7.65 [m, 1H, naphthyl], 8.50 [unresolved dd, 1H, naphthyl-CH(8)]. ¹³C{¹H}(CD₃CN), 123.1, 123.6, 124.6, 126.4, 128.4, 131.8, 133.3, 134.1, 140.1, carbon *ipso* to boron not observed. ¹¹B{¹H} (CD₂Cl₂), -28.0 (s); ¹¹B (CD₂Cl₂), -28.0 (q, ¹J_{BH} = 79 Hz).

Full ¹³C{¹H} NMR assignments

Synthesis of Li[^{Mes}Bai]

NMR (CD₃CN) δ ppm: ¹³C{¹H}, 20.9 [C₆H₂(CH₃)₃-CH₃(4)], 22.8 [C₆H₂(CH₃)₃-CH₃(2,6)], 99.7 [aza-CH(3)], 114.6 [aza-CH(5)], 123.9 [aza-C(7a)], 129.3 [aza-CH(4)], 129.9 [C₆H₂(CH₃)₃-CH(3,5)], 134.6 [aza-CH(2)], 134.9 [C₆H₂(CH₃)₃-C(2,6)], 141.8 [aza-CH(6)], 143.2 [C₆H₂(CH₃)₃-C(4)], 151.9 [aza-C(3a)], the carbon *ipso* to boron was not observed.

Synthesis of Li[^{Naphth}Bai]

NMR (CD₃CN) δ ppm: ¹³C{¹H}, 99.9 [aza-CH(3)], 114.8 [aza-CH(5)], 123.8 [aza-C(3a)], 124.9 [nap-CH(6)], 125.3 [nap-CH(7)], 126.3 [nap-CH(3)], 127.0 [br., nap-CH(4)], 129.2 [nap-CH(5)], 129.3 [aza-CH(4)], 129.5 (B-^{Naphth}C_{ispo}), 130.0 [nap-CH(8)], 131.2 [br., nap-CH(2)], 134.1 [br., aza-CH(2)], 134.8 [nap-C(8a)], 138.5 [nap-C(4a)], 142.1 [aza-CH(6)], 152.4 [aza-C(7a)].

Rh(COD)(^{Mes}Bai) (4)

NMR (C₇D₈) δ ppm: ¹³C{¹H}, 21.1 [C₆H₂(CH₃)₃-CH₃(4)], 24.7 [C₆H₂(CH₃)₃-CH₃(2,6)], 31.5 (COD), 75.7 (br., COD), 101.2 [aza-CH(3)], 114.1 [d, ³J_{RhC} = 1.1 Hz, aza-CH(5)], 124.6 [aza-C(7a)], 128.5 [aza-CH(4)], 130.1 [aza-CH(2)], 133.6 [aza-CH(6)], 134.4 [C₆H₂(CH₃)₃-C(2,6)], 142.5 [C₆H₂(CH₃)₃-C(4)], 143.3 [C₆H₂(CH₃)₃-CH(3,5)], 151.9 [aza-C(3a)], carbon *ipso* to boron not observed.

Rh(COD)(^{Naphth}Bai) (5)

NMR (CD_2Cl_2) δ ppm: ¹³C{¹H}, 31.7 (COD), 77.1 (br., COD), 101.2 [aza-CH(3)], 115.0 [aza-CH(5)], 124.5 [aza-CH(7a), 124.7 [nap-CH(6)], 125.1 [nap-CH(3)], 125.8 [nap-CH(7)], 127.2 [nap-CH(4)], 129.1 [two overlapping peaks, aza-CH(4) and nap-CH(5)], 129.5 [nap-CH(8)], 131.9 [nap-CH(2)], 133.5 [aza-CH(2)], 134.8 and 138.0 [nap-C(4a) and -C(8a)], 144.3 [aza-CH(6)], 144.7 [br., tentitively assigned as carbon *ipso* to boron], 152.8 [aza-C(3a)].

Ir(COD)(^{Mes}Bai) (6)

NMR (C₇D₈) δ ppm: ¹³C{¹H}, 20.8 [C₆H₂(CH₃)₃-CH₃(4)], 24.1 [C₆H₂(CH₃)₃-CH₃(2,6)], 32.6 (COD), 57.5 (br., COD), 102.1 [aza-CH(3)], 114.3 [aza-CH(5)], 124.3 [aza-C(7a)], 128.4 [aza-CH(4), overlapping with solvent peaks observed in DEPT-135 experiment], 130.0 [aza-CH(2)], 132.2 [aza-CH(6)], 134.9 [C₆H₂(CH₃)₃-C(2,6)], 142.5 [C₆H₂(CH₃)₃-C(4)], 143.6 [C₆H₂(CH₃)₃-CH(3,5)], 153.0 [aza-C(3a)], carbon *ipso* to boron not observed; ¹¹B{¹H}, -0.8 ($\Delta v_{1/2} = 122$ Hz).

Ir(COD)(^{Naphth}Bai) (7)

NMR (C_6D_6) δ ppm: ¹³C{¹H}, 33.0 (COD), 59.0 (br., COD), 103.0 [aza-CH(3)], 115.4 [aza-CH(5)], 125.0 [aza-CH(7a)], 125.4 [nap-CH(6)], 125.6 [nap-CH(7)], 126.0 [nap-CH(3)], 128.6 [nap-CH(4)], 129.3 [aza-CH(4)], 129.6 [nap-CH(8)], 129.7 [nap-CH(5)], 132.7 [nap-CH(2)], 133.0 [aza-CH(2)], 135.4 and 138.3 [nap-C(4a) and -C(8a)], 144.2 [aza-CH(6)], 154.4 [aza-C(3a)], carbon *ipso* to boron not observed.

Rh(NBD)(^{Mes}Bai) (8)

NMR (C₇D₈) δ ppm: ¹³C{¹H}, 21.1 [C₆H₂(CH₃)₃-CH₃(4)], 24.2 [C₆H₂(CH₃)₃-CH₃(2,6)], 41.6 [d, ¹J_{RhC} = 10.8 Hz, NBD], 48.4 [d, ²J_{RhC} = 3.1 Hz, NBD], 58.9 [d, ³J_{RhC} = 6.9 Hz, NBD], 101.5 [aza-CH(3)], 114.0 [aza-CH(5)], 124.1 [aza-C(7a)], 128.5 [aza-CH(4) overlapping with solvent observed by DEPT-135 experiment], 130.1 [C₆H₂(CH₃)₃-CH(3,5)], 133.1 [aza-CH(2)], 134.9 [C₆H₂(CH₃)₃-C(2,6)], 143.0 [aza-CH(6)], 142.7 [C₆H₂(CH₃)₃-C(4)], 152.1 [aza-C(3a)], carbon *ipso* to boron not observed.

Rh(NBD)(^{Naphth}Bai) (9)

NMR (CD₂Cl₂) δ ppm: ¹³C{¹H}, 43.1 [d, ¹J_{RhC} = 10.1 Hz, NBD], 48.8 [d, ²J_{RhC} = 2.7 Hz, NBD], 59.5 [d, ³J_{RhC} = 6.2 Hz, NBD], 101.5 [aza-CH(3)], 114.9 [aza-CH(5)], 124.1 [aza-C(7a), 125.0 [nap-CH(7)], 125.2 [nap-CH(6)], 125.8 [nap-CH(3)], 127.7 [nap-CH(4)], 128.9 [nap-CH(8)], 129.1 [aza-CH(4)], 129.2 [nap-CH(5)], 132.0 [nap-CH(2)], 133.0 [aza-CH(2)], 134.8 [nap-C(4a)], 137.8 [naphthyl–C(8a)], 142.6 [tentitively assigned as carbon *ipso* to boron], 142.8 [aza-CH(6)], 152.9 [aza-C(3a)].