## **Supporting Information:**

Relative quantum yield measurement:

The quantum yields of sensor  $H_3L^1$  in Tris–HCl buffer solution (pH = 7.13, EtOH/H<sub>2</sub>O = 8:2 v/v) were determined according to the following equation:  $\Phi_X = (\Phi_R \times F_X \times A_R)/(F_R \times A_X)$ . Where  $\Phi$  is quantum yield; *F* is integrated area under the corrected emission spectra; *A* is absorbance at the excitation wavelength; the subscripts X and R refer to the unknown and the standard, respectively. Coumarin 153 in Tris–HCl buffer solution (pH = 7.13, EtOH/H<sub>2</sub>O = 8:2 v/v) was used as the standard, which has a quantum yield of 0.64. The quantum yield value of H<sub>2</sub>L<sup>2</sup> change from 0.00297 to 0.01728 after the addition of Zn<sup>2+</sup> ion in ethanol.

(1) J. Olmsted, J. Phys. Chem., 1979, 83, 2581-2584

## Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ the Royal Society of Chemistry 2011



Fig. S1. <sup>1</sup>H NMR chart of H<sub>3</sub>L<sup>1</sup> in CDCl<sub>3</sub> (300 MHz)



Fig. S2.  $^{13}\text{C}$  NMR chart of  $H_3L^1$  in CDCl\_3 (300 MHz)



Fig. S3. <sup>1</sup>H NMR chart of  $H_2L^2$  in DMSO-d<sub>6</sub> (300 MHz)



Fig. S4.  $^{13}C$  NMR chart of  $H_2L^2$  in DMSO-d\_6 (300 MHz)



Fig. S5. Job's plot for  $H_3L^1$  and  $Zn^{2+}$  indicating the formation of 1:1 complexes. The total  $[Zn^{2+}] = 1.0 \times 10^{-5}$  M. Excitation wavelength was 336 nm.

Supplementary Material (ESI) for Dalton Transactions This journal is © the Royal Society of Chemistry 2011



**Fig. S6** Fluorescent emission changes of  $H_3L^1 + Zn^{2+}$  (1.0 × 10<sup>-5</sup> mol L<sup>-1</sup>) upon addition of 1, blank; 2, Ag<sup>+</sup>; 3, Cd<sup>2+</sup>; 4, Co<sup>2+</sup>; 5, Cr<sup>3+</sup>; 6, Cu<sup>2+</sup>; 7, Fe<sup>3+</sup>; 8, Hg<sup>2+</sup>; 9, Li<sup>+</sup>; 10, Mg<sup>2+</sup>; 11, Mn<sup>2+</sup>; 12, Ni<sup>2+</sup>; 13, Ca<sup>2+</sup> (10 equiv) in Tris–HCl buffer solution (pH = 7.13, EtOH/H<sub>2</sub>O = 8:2 v/v) at room temperature. Excitation wavelength was 336 nm.



Fig. S7. Room-temperature emission spectrum for  $Zn^{2+}$  complex of ligand  $H_3L^1$  and  $H_2L^2$  excited at 421 nm (excitation and emission passes = 2.5 nm).



Fig. S8. UV–vis spectra changes of  $H_3L^1$  (10 µM) upon addition of Mg<sup>2+</sup> (a) and Cd<sup>2+</sup> (b) in Tris–HCl buffer solution (pH = 7.13, EtOH/H<sub>2</sub>O = 8:2 v/v) at room temperature. ([M<sup>2+</sup>] = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 µM)



Fig. S9 UV-vis spectra changes of  $H_2L^2$  (10  $\mu$ M) upon addition of Zn<sup>2+</sup> in ethanol at room temperature. ([Zn<sup>2+</sup>] = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10  $\mu$ M)

**Table S1.** Selected Bond Distances (Å) and Angles (deg) for  $[Zn(HL^1)C_2H_5OH]_{\infty}$  (1),  $[Cu(HL^1)(H_2O)]\cdot CH_3OH$  (2),

|                    |                        | $[Cu(HL^1)(H_2O)] \cdot CH_3OH$ |
|--------------------|------------------------|---------------------------------|
| Zn1-O2 1.924(9)    | Zn2-O5(#1) 1.945(9)    | Cu1-O3 1.854(3)                 |
| Zn1-O6 1.965(8)    | Zn2-O3 1.955(9)        | Cu1-N2 1.898(3)                 |
| Zn1-O7 2.025(10)   | Zn2-O8 2.025(13)       | Cu1-O1 1.953(3)                 |
| Zn1-N4 2.054(11)   | Zn2-N2 2.067(12)       | Cu1-O4 1.984(3)                 |
| Zn1-O4 2.197(10)   | Zn2-O1 2.249(11)       |                                 |
| O2-Zn1-O6 103.8(4) | O5(#1)-Zn2-O3          | O3-Cu1-N2 94.10(13)             |
| O2-Zn1-O7 104.1(4) | O5(#1)-Zn2-O8 104.9(4) | O3-Cu1-O1 173.21(13)            |
| O6-Zn1-O7 109.6(4) | O3-Zn2 O8 106.5(5)     | N2-Cu1-O1 81.78(12)             |
| O2-Zn1-N4 149.2(4) | O5(#1)-Zn2-N2 147.0(4) | O3- Cu1-O4 90.80(12)            |
| O6-Zn1-N4 85.0(4)  | O3-Zn2-N2 85.6(4)      | N2-Cu1-O4 166.71(13)            |
| O7-Zn1-N4 100.3(4) | O8-Zn2-N2 102.2(5)     | O1-Cu1-O4 94.40(11)             |
| O2-Zn1-O4 83.2(4)  | O5(#1)-Zn2-O1 81.7(4)  |                                 |
| O6-Zn1-O4 143.6(4) | O3-Zn2-O1 149.2(4)     |                                 |
| O7-Zn1-O4 102.8(5) | O8-Zn2-O1 100.9(5)     |                                 |
| N4-Zn1-O4 73.2(4)  | N2-Zn2-O1 74.9(4)      |                                 |

Symmetry transformations used to generate equivalent atoms: #1 = x, y-1, z

Table S2. Selected Bond Distances (Å) and Angles (deg) for [Zn<sub>2</sub>(HL<sup>2</sup>)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(C<sub>2</sub>H<sub>5</sub>OH)]

| $[Zn_2(HL^2)_2(CH_3COO)_2(C_2H_5OH)]$ |                      | $[Co(L^2)_2][Co(DMF)_4(C_2H_5OH)(H_2O)]$ |                      |
|---------------------------------------|----------------------|------------------------------------------|----------------------|
| Zn1-O1 1.956(2)                       | Zn2-O7 1.944(3)      | Co1-O2 1.853(5)                          | Co1-N4 1.860(6)      |
| Zn1-O5 1.989(2)                       | Zn2-O4 1.980(3)      | Co1-O4 1.866(5)                          | Co1-N2 1.878(5)      |
| Zn1-O3 2.020(2)                       | Zn2-O9 2.010(3)      | Co1-O1 1.905(4)                          | Co1-O3 1.925(5)      |
| Zn1-N1 2.051(3)                       | Zn2-N3 2.045(3)      | Co2-O5 2.034(5)                          | Co2-O5A 2.034(5)     |
| Zn1-O2 2.214(3)                       | Zn2-O8 2.150(3)      | Co2-O8 2.043(6)                          | Co2-O7 2.095(13)     |
|                                       |                      | Co2-O6 2.118(6)                          | Co2-O6A 2.118(6)     |
| O1-Zn1-O5 97.79(10)                   | O7-Zn2-O4 106.20(12) | O2-Co1-N4 89.9(2)                        | O2-Co1-O4 90.5(2)    |
| O1-Zn1-O3 103.38(11)                  | O7-Zn2-O9 97.39(11)  | N4-Co1-O4 95.3(2)                        | O2-Co1-N2 94.3(2)    |
| O5-Zn1-O3 103.40(10)                  | O4-Zn2-O9 108.50(13) | N4-Co1-N2 174.8(2)                       | O4-Co1-N2 87.9(2)    |
| O1-Zn1-N1 87.67(10)                   | O7-Zn2-N3 88.77(12)  | O2-Co1-O1 176.87(19)                     | N4-Co-O1 93.2(2)     |
| O5-Zn1-N1 143.84(11)                  | O4-Zn2-N3 101.34(13) | O4-Co1-O1 88.89(19)                      | N2-Co1-O1 82.7(2)    |
| O3-Zn1-N1 110.05(11)                  | O9-Zn2-N3 146.32(12) | O2-Co1-O3 89.6(2)                        | N4-Co1-O3 81.4(2)    |
| O1-Zn1-O2 162.22(10)                  | O7-Zn2-O8 155.49(12) | O4-Co1-O3 176.69(19)                     | N2-Co1-O3 95.4(2)    |
| O5-Zn1-O2 96.51(10)                   | O4-Zn2-O8 95.40(12)  | O1-Co1-O3 91.20(19)                      | O5-Co2-O5A 178.2(4)  |
| O3-Zn1-O2 83.44(10)                   | O9-Zn2-O8 86.31(10)  | O5-Co2-O8 90.91(19)                      | O5A-Co2-O8 90.91(19) |
| N1-Zn1-O2 74.55(10)                   | N3-Zn2-O8 75.50(12)  | O5-Co2-O7 89.09(19)                      | O5A-Co2-O7 89.09(19) |
|                                       |                      | O8-Co2-O7 180.00(18)                     | O5-Co2-O6 90.9(2)    |
|                                       |                      | O5-Co2-O6 89.1(2)                        | O8-Co2-O6 88.22(19)  |
|                                       |                      | O7-Co2-O6 91.78(19)                      | O5A-Co2-O6 89.1(2)   |
|                                       |                      | O5A-Co2-O6 90.9(2)                       | O8-Co2-O6A 88.22(19) |
|                                       |                      | O7-Co2-O6A 91.78(19)                     | O6-Co2-O6A 176.4(4)  |

(**3**), [Co(L<sup>2</sup>)<sub>2</sub>][Co(DMF)<sub>4</sub>(C<sub>2</sub>H<sub>5</sub>OH)(H<sub>2</sub>O)] (**4**), [Fe(**HL**<sup>2</sup>)<sub>2</sub>]Cl<sup>2</sup>CH<sub>3</sub>OH (**5**)

Symmetry transformations used to generate equivalent atoms: A = y, x, -z

| Fe(1)-O(3) 1.872(2)       | Fe(1)-O(1) 1.886(2)       | Fe(1)-O(4) 2.040(2)        |
|---------------------------|---------------------------|----------------------------|
| Fe(1)-O(2) 2.093(2)       | Fe(1)-N(1) 2.106(3)       | Fe(1)-N(3) 2.125(3)        |
| O(3)-Fe(1)-O(1) 99.72(10) | O(3)-Fe(1)-O(4) 152.58(9) | O(1)-Fe(1)-O(4) 95.70(11)  |
| O(3)-Fe(1)-O(2) 86.74(10) | O(1)-Fe(1)-O(2) 157.13(9) | O(4)-Fe(1)-O(2) 87.77(10)  |
| O(3)-Fe(1)-N(1) 110.95(9) | O(1)-Fe(1)-N(1) 82.92(10) | O(4)-Fe(1)-N(1) 93.29(9)   |
| O(2)-Fe(1)-N(1) 74.31(10) | O(3)-Fe(1)-N(3) 82.86(9)  | O(1)-Fe(1)-N(3) 90.83(9)   |
| O(4)-Fe(1)-N(3) 74.34(9)  | O(2)-Fe(1)-N(3) 111.81(9) | N(1)-Fe(1)-N(3) 165.58(10) |