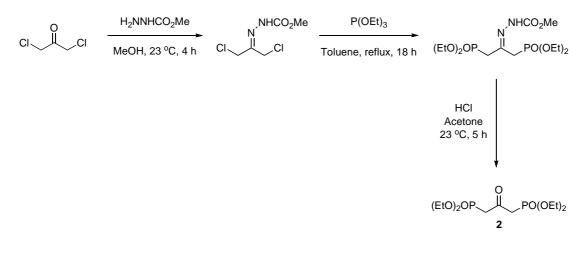
Electronic Supporting Information:

Cu(I) complexes containing a multidentate and conformationally flexible dibenzylidene acetone ligand (dbathiophos): application in catalytic alkene cyclopropanation

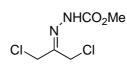
Amanda G. Jarvis, Adrian C. Whitwood and Ian J. S. Fairlamb*

Contents

1		1
1.	General information	1
2.	Synthesis of the ligand	2
3.	Synthesis of copper complexes 4 and 6	7
4.	NMR Spectra	
	i. Dbathiophos 1	9
	ii. Complex 4	15
	iii. Complex 6	18
5.	NMR spectroscopic experiments	
	i. Chloride doping of Complex 4	24
	ii. Addition of $AgPF_6$ to Complex 6	26
6.	Catalysis experiments	28
7.	References	32

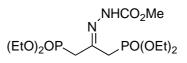

1. General information

NMR spectra were obtained in the solvent indicated, using a JEOL ECX400 or JEOL ECS400 spectrometer (400MHz for ¹H, 100 MHz for ¹³C and 162 MHz for ³¹P respectively), a Bruker 500 (500 MHz, 126 MHz and 202 MHz for ¹H, ¹³C and ³¹P respectively) and low temperature NMR studies were carried out on a Bruker AV700 (700 MHz and 283 MHz for ¹H and ³¹P respectively). Chemical shifts were referenced to the residual solvent of the deuterated solvent used (CHCl₃ δ = 7.26 and 77.16, CDHCl₂ δ = 5.31 and 53.80, ¹H and ¹³C respectively). NMR spectra were processed using MestrNova software. Melting points were recorded using a Stuart digital SMP3 machine. TLC analysis was carried out on Merck TLC aluminium sheets (silica gel 60 F254) and flash chromatography run on silica gel 60. IR spectroscopy was undertaken using a Jasco/MIRacle FT/IR-4100 type A spectrometer in the solvent stated. MS spectra were measured using a Bruker Daltronics micrOTOF machine with electrospray ionisation (ESI) or on a Thermo LCQ using electrospray ionisation. UV-visible spectra were recorded using a JASCO V-560. Elemental


analysis was carried out on an Exeter Analytical CE-440 Elemental Analyser. Dry and degassed toluene, DCM and hexane were obtained from a Pure Solv MD-7 solvent purification system. THF and ether were either obtained from a Pure Solv MD-7 solvent purification system and degassed by the freeze-pump-thaw method, or dried over sodium-benzophenone ketyl and collected by distillation. Benzene was dried over sodium-benzophenone ketyl, and ethanol was dried and distilled from magnesium-iodine. Nitrogen gas was oxygen free and was dried immediately prior to use by passage through a column containing sodium hydroxide pellets and silica. Commercial chemicals were purchased from Sigma-Aldrich or Alfa Aesar.

2. Synthesis of the ligand

The synthetic route to compound **2** is shown below:



Methyl 2-[2-chloro-1-(chloromethyl)ethylidene]-1-hydrazinecarboxylate¹

To a solution of methyl 1-hydrazinecarboxylate (4.90 g, 1 eq., 0.054 mol) in MeOH (100 mL) was added 1,3-dichloroacetone (6.97 g, 0.055 mol) in 2 parts. The reaction was stirred at 23 °C for 4 h and then left in the fridge overnight. The solvent was removed *in vacuo* until ~20 mL remained and the white product had precipitated. The product was isolated by filtration and washed with ether to afford a white powder (5.80 g, 54%). No further purification was carried out, before taking on in the following experiment. ¹H NMR (400 MHz, CDCl₃) δ 8.37 (s, 1H), 4.32 (s, 2H), 4.18 (s, 2H), 3.88 (s, 3H); HRMS (ESI) m/z 220.9854 [*M*Na]⁺ (calculated for C₅H₈Cl₂N₂NaO₂ = 220.9854).

Methyl 2-2-(diethoxyphosphoryl)-1-[(diethoxyphosphoryl)methyl]ethylidene-1hydrazinecarboxylate¹

To a suspension of the hydrazinecarboxylate (5.8 g, 1 eq., 0.029 mol) in toluene (50 mL), triethylphosphite (11.15 mL, 2.2 eq., 0.064 mol) was added portion wise. The resulting mixture was refluxed for 18 h. The toluene was removed *in vacuo*, and the residue taken up in water (40 mL) and extracted with ethyl acetate (3x 20 mL). Solvent and excess triethylphosphite were removed *in vacuo* to give the crude product (12.8 g). No further purification was carried out. ¹H NMR (400 MHz, CDCl₃) δ 9.48 (s, 1H), 4.20-4.07 (m, 9H), 3.80 (s, 3H), 3.15 (dd, *J* = 22.5, 2.5 Hz, 2H), 3.00 (dd, *J* = 21.5, 2.5 Hz, 2H), 1.33 (td, *J* = 7.0, 3.0 Hz, 13H); ³¹P NMR (162 MHz, CDCl₃) δ 23.86–23.58 (m, br), 23.50 (d, *J* = 11.0 Hz); HRMS (ESI) m/z 425.1225 [*M*Na]⁺ (calculated for C₁₃H₂₈N₂NaO₈P₂ = 425.1213).

[3-(Diethoxy-phosphoryl)-2-oxo-propyl]-phosphonic acid diethyl ester, (1,3-Bis(diethoxy-phosphonato)-acetone)¹ (2)

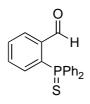
To a solution of the crude phosphoryl hydrazinecarboxylate (12.8 g) in acetone (20 mL) was added 3M HCl (20 mL). The reaction mixture was stirred at 23 °C for 5 h. Water (40 mL) was added and the acetone removed. Extraction with chloroform (3x 20 mL), followed by drying over Na₂SO₄, filtration and removal of the solvent *in vacuo*, gave the product as yellow oil (10.15 g, 94% purity by ¹H NMR, 99% yield). B.p. 200 °C, 1.5 mbar (*Lit.*¹ 185 °C, 0.03 mbar); ¹H NMR (400 MHz, CDCl₃) δ 4.18-4.04 (m, 9H), 3.31 (dd, *J* = 23.0, 1.0 Hz, 4H), 1.31 (td, *J* = 7.0, 1.0 Hz, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 193.9, 62.9-62.7 (m), 43.3 (d, *J* = 127 Hz), 16.5-16.2 (m); ³¹P NMR (162 MHz, CD-Cl₃) δ 19.48 (s); HRMS (ESI) m/z 331.1076 [*M*H]⁺ (calculated for C₁₁H₂₅O₇P₂ = 331.1070).

2-(o-Bromophenyl)-1,3-dioxolane²

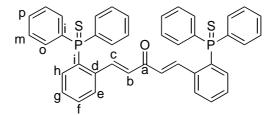
2-Bromobenzaldehyde (15.0 g, 1 eq., 0.08 mol), ethylene glycol (6.7 ml, 1.33 eq., 0.12 mol) and *p*-toluenesulfonic acid (63 mg) were dissolved in toluene (100 mL) and refluxed while the evolved water was collected in a Dean-Stark trap. After water is no longer evolved (ca. 24 h) the solution is

cooled and washed with a saturated solution of NaHCO₃ (40 mL), followed by a saturated solution of NaCl (20 mL). The solution is dried over MgSO₄, filtered, concentrated on a rotary evaporator and distilled at 100 °C, 0.5 mmHg (*Lit.*² 135-137 °C, 4 mmHg), to give the title compound as a colourless oil (16.33 g, 89%). ¹H NMR (400 MHz, CDCl₃) δ 7.60 (dd, *J* = 8.0, 2.0 Hz, 1H), 7.56 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.34 (ddd, *J* = 7.5, 7.5, 1.5 Hz, 1H), 7.22 (ddd, *J* = 7.5, 8.0, 2.0 Hz, 1H), 6.10 (s, 1H), 4.20 – 4.03 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ : 136.7, 133.1, 130.7, 127.9, 127.5, 123.0, 102.7, 65.6; HRMS (ESI) m/z 228.9859 [*M*H]⁺ (calculated for C₉H₁₀BrO₂ = 228.99); IR (neat, v cm⁻¹): 2955 (w, br), 2886 (m, br), 1730 (w), 1592 (w), 1571 (w), 1472 (w), 1443 (w), 1387 (m), 1270 (w), 1211 (m), 1124 (m), 1084 (s, br), 1042 (m), 1021 (m), 969 (m), 941 (m), 754 (s).

2-(o-Diphenylphosphinophenyl)-1,3-dioxolane³


A solution of 2-(*o*-bromophenyl)-1,3-dioxolane (20.95 g, 1 eq., 91 mmol) in dry THF (220 mL) was cooled to -78 °C and kept under an inert atmosphere. *n*-BuLi in hexane (40 mL, 1.03eq, 93 mmol) was added by syringe pump at a rate of 30 cc/h. After stirring for 2 h at -78 °C, diphenylphosphine chloride (16.3 mL, 1 eq., 91 mmol) was added by syringe pump at a rate of 40 cc/h. The reaction was allowed to warm up to 24 °C overnight, before the addition of water (240 mL). The organic phase was extracted with Et₂O, dried over anhydrous Na₂SO₄, decanted and the solvent removed. The resulting oily liquid was purified by recrystallisation from hot ethanol and cooled to -25 °C, to afford the title compound as a waxy white solid (21.24 g, 70%). M.p. 94-95 °C, (*Lit.* 96 °C)³; ¹H NMR (400 MHz, CDCl₃) δ 7.7 (dddd, *J* = 8.0, 4.0, 1.5, 0.5 Hz, 1H), 7.4 (ddd, *J* = 8.0, 7.5, 1.5 Hz, 1H), 7.35-7.30 (m, 6H), 7.30-7.22 (m, 5H), 6.96 (ddd, *J* = 8.0, 4.5, 1.5 Hz, 1H), 6.43 (d, *J* = 5.0 Hz, 1H), 4.14-3.92 (m, 4H); ¹³C NMR (100MHz, CDCl₃) δ 142.1 (d, *J* = 22 Hz), 137.1 (d, *J* = 10 Hz), 136.0 (d, *J* = 19 Hz), 134.2 (d, *J* = 1 Hz), 134.0, 133.8, 129.4 (d, *J* = 18 Hz), 128.7, 128.6 (d, *J* = 7 Hz), 126.6 (d, *J* = 6 Hz), 101.8 (d, *J* = 24 Hz), 65.5; ³¹P NMR (162 MHz, CDCl₃) δ -15.86 (s); LRMS (ESI) m/z (rel.%) 291.1 [*M*-C₂H₄O]⁺ (100), 273.1 (26), 261.1 (3), 242.1 (5), 213.0 (8).

2-(Diphenylphosphino)benzaldehyde²


2-(*o*-Diphenylphosphinophenyl)-1,3-dioxolane (21.24 g, 1 eq., 64 mmol) and para-toluenesulfonic acid (0.45 g) were dissolved in acetone (450 mL) and refluxed for 8 h. Whilst still warm, water (100 mL) was added and the volume reduced to ~125 mL by solvent evaporation. The resulting mixture was cooled to -25 °C overnight, and the precipitate filtered and dried *in vacuo* to afford the title compound as a bright yellow powder (15.88g, 85%). M.p. 114-117 °C, (*Lit.* 118-119 °C)²; ¹H NMR (400 MHz, CDCl₃) δ 10.50 (d, *J* = 5.5 Hz, 1H), 8.00 - 7.95 (m, 1H), 7.53 - 7.44 (m, 2H), 7.38 - 7.26 (m, 10H), 6.99-6.94 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 191.9 (d, *J* = 19 Hz), 141.4, 136.2 (d, *J* = 10 Hz), 134.3, 134.1, 134.0, 133.8, 130.9 (d, *J* = 4 Hz), 129.3, 129.0, 128.9 (d, *J* = 7 Hz); ³¹P NMR (162 MHz, CDCl₃) δ -11.03 (s); HRMS (ESI) m/z [*M*H]⁺ 291.0944, (calculated for C₁₉H₁₆OP: 291.1016); IR (solid, v cm⁻¹): 3057 (w, br), 2851 (w), 1696 (m), 1672 (m), 1583 (w), 1432 (m), 1198 (m), 843 (m), 751 (s), 744 (s), 696 (s), 670 (s).

2-(Diphenylthiophosphino)benzaldehyde⁴ (3)

The phosphine benzaldehyde (1.48 g, 1 eq., 5 mmol) and S₈ (1.31 g, 1 eq., 5 mmol) were stirred together in THF (60 mL) overnight. The resulting mixture was centrifuged (3000 rpm, 3 min) to remove the solid sulfur, and the solvent removed. Purification by column chromatography on silica gel eluting with petroleum ether to remove the remaining sulfur and then diethyl ether:pentane (1:4 to 3:7 v/v) afforded the title compound as a cream powder (1.31 g, 81%). M.p. 136-137 °C, (*Lit.*⁵ 131-132 °C); ¹H NMR (400 MHz, CDCl₃) δ 10.71 (s, 1H), 8.12 (ddd, *J* = 8.0, 4.0, 1.0 Hz, 1H), 7.85-7.77 (m, 4H), 7.66-7.61 (m, 1H), 7.60-7.44 (m, 7H), 7.03 (ddd, *J* = 14.5, 8.0, 1.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 190.3 (d, *J* = 8 Hz), 138.0 (d, *J* = 7 Hz), 137.9 (d, *J* = 79 Hz), 132.8 (d, *J* = 12 Hz), 132.7 (d, *J* = 10 Hz), 132.5 (d, *J* = 11 Hz), 132.3 (d, *J* = 3 Hz), 132.17 (d, *J* = 3 Hz), 132.13 (d, *J* = 85 Hz), 129.9 (d, *J* = 9 Hz), 129.0 (d, *J* = 13 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 40.74 (s); HRMS (ESI) m/z [*M*Na]⁺ 345.0478 (calculated for C₁₉H₁₅NaOPS: 345.0473); IR (solid, v cm⁻¹): 1685 (s), 1580 (w), 1435 (m), 1199 (m), 1099 (s), 822 (w), 749 (m), 711 (s), 691 (s), 640 (s), 633 (s), 613 (m).

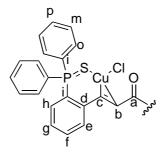
(1E,4E)-1,5-bis(2-diphenylphosphorothioyl)phenyl)pentan-1,4-dien-3-one, Dbathiophos (1)

1,3-Bis(phosphonato)acetone (2) (256 mg, 1 eq., 0.776 mmol) was added to a stirring solution of compound **3** (500 mg, 2 eq., 1.56 mmol) in THF (3 mL). To this NaOH (124 mg, 4 eq., 3.11 mmol) dissolved in H₂O (0.5 mL) and THF (1 mL) was added dropwise. The mixture was refluxed for 48 h. After cooling, the solution was washed with saturated NH₄Cl_(aq) (5 mL), extracted with ethyl acetate (5x 5 mL), dried over Na₂SO₃ and filtered. After removing the solvent *in vacuo* the product was recrystallised from DCM/Hexane (1:3 v/v) to afford the title compound as a yellow solid (435 mg, 84%). M.p. 133-138 °C_{dec}; ¹H NMR (400 MHz, CD₂Cl₂) δ 8.17 (d, J = 16.0 Hz, 2H, H_c), 7.84-7.69 (m, 10H, H_e and o-Ar), 7.64-7.57 (m, 2H, H_f), 7.56-7.49 (m, 4H, p-Ar), 7.49-7.41 (m, 8H, m-Ar), 7.34 (tdd, J = 7.5, 2.5, 1.5 Hz, 2H, H_g), 7.09 (ddd, J = 14.5, 8.0, 1.0 Hz, 2H, H_h), 6.48 (d, J = 16.0Hz. 2H. H_b); ¹³C NMR (100 MHz, CD₂Cl₂) δ 188.6 (C=O), 141.5 (d, J = 8 Hz, C_c), 138.9 (d, J = 7 Hz, C_d), 133.9 (d, J = 83 Hz, *ipso*-C), 133.4 (d, J = 11 Hz, C_h), 132.7 (d, J = 11 Hz, o-Ar), 132.5 (d, J = 85, ipso-C), 132.4 (d, J = 3 Hz, C_f), 132.2 (d, J = 3 Hz, p-Ar), 129.6 (d, J = 12 Hz, C_g), 129.0 (d, J = 13 Hz, m-Ar), 128.8 (d, J = 10 Hz, C_e), 126.8 (C_b); ³¹P NMR (162 MHz, CDCl₃) δ 42.07 (s); HRMS (ESI) m/z $[MNa]^+$ 689.1266 (calculated for C₄₁H₃₂NaOP₂S₂: 689.1262); LRMS (ESI) m/z (rel.%) 689.1 $[MNa]^+$ (100), 667.1 $[MH]^+$ (3); IR (solid, v cm⁻¹); 3053 (w), 1656 (w), 1619 (w), 1602 (w), 1460 (w), 1436 (m), 1184 (w), 1098 (m), 753 (m), 711 (s), 692 (s), 636 (s), 614 (m), 575 (m); UV-vis (CH₂Cl₂) λ_{max} nm: 318 ($\epsilon = 19513 \text{ mol}^{-1}\text{dm}^{3}\text{cm}^{-1}$); Anal. Calcd. for C-41H32OP2S2.1/10CH2Cl2 (675) C 73.10, H 4.81; Observed C 73.32, H 4.83. Elemental analysis conducted with crystals used for XRD analysis.

3. Synthesis of copper complexes 4 and 6

Tetrakis(acetonitrile)copper(I) hexafluorophosphate⁶

To a stirred suspension of Cu₂O (1g, 7 mmol) in MeCN (20 mL) was added 60 % HPF₆ (2.5 mL) in 0.5 mL portions. Heat is released, which helps dissolve the white solid formed. The hot solution was stirred for 3 min and filtered through a funnel with a sintered glass frit; any remaining white solid was washed through with a small amount of acetonitrile. The solution was cooled to -20 °C for 3 h and the resulting precipitate collected by filtration and washed with ether. The precipitate was then redissolved in acetonitrile (25 mL), filtered through a funnel with a sintered glass frit, ether (25 mL) added and cooled to -20 °C overnight. The white precipitate was filtered, washed with ether, dried *in vacuo* to afford the title compound as a white solid (4.17 g, 80%). The solid was stored in a glove-box. M.p. 147-152 °C (*Lit.*⁷ 160 °C_(dec)); ¹H NMR (400 MHz, CD₂Cl₂) δ 2.18 (s); ¹³C NMR (100 MHz, CD₂Cl₂) δ 117.0, 2.53; IR (solid, v cm⁻¹): 1419 (w, br), 1037 (w), 833 (s, br); Anal. Calcd. for C₈H₁₂CuF₆N₄P (372.72) C 25.78, H 3.25, N 15.03; Observed C 25.77, H 3.20, N 14.80.


Cu(dbathiophos)PF₆.(solvent), complex 4

A solution of Cu(MeCN)₄PF₆ (168 mg, 1 eq., 0.45 mmol) in dry, degassed CH₂Cl₂ (5 mL) was added by cannula to a solution of dbathiophos, (1), (300 mg, 1 eq., 0.45 mmol) in dry, degassed CH₂Cl₂ (10 mL).^{*} The resulting solution was stirred for 2 h at 20 °C. CH₂Cl₂ was removed *in vacuo* to give a concentrated solution (4 mL) and layered with dry, degassed toluene (5 mL) to afford yellow crystals (270 mg, 69 %) separated by filtration. M.p. 200 °C_(dec); ¹H NMR (400 MHz, CD₂Cl₂) δ 8.20-7.26 (br m, ~56H), 6.98 (dd, *J* = 15.0, 7.5 Hz, 4H), 6.52 (br s, 2H), 6.21 (br s, 2H); ³¹P NMR (162 MHz, CD₂Cl₂) δ 46.43 (br s), 40.59 (br s), -143.80 (hept, *J*_{PF} = 711 Hz); ¹³C NMR (126 MHz, CD₂Cl₂) δ 137.8 (d, *J* = 8 Hz), 136.4, 136.1, 134.8-134.3 (m), 134.0-132.1 (m), 131.1 (d, *J* = 14 Hz), 131.0-130.8 (m), 130.6-129.9 (m); HRMS (ESI) m/z 729.0708 (calculated for C₄₁H₃₂OP₂S₂Cu: 729.0660); IR (solid, v cm⁻¹): 1652 (m), 1457 (m), 1438 (m), 1312 (w), 1170 (w), 1103 (m), 836 (s), 691 (s); UV-vis (CH₂Cl₂) λ_{max} nm: 320 (ε = 18345 mol⁻¹dm³cm⁻¹); Anal. Calcd. for C₈₂H₆₄Cu₄F₁₂P₆ (Cu₂(dbathiophos)₂PF₆) C 56.26, H 3.69, N 0.00; Observed C 56.61, H 4.02, N 0.20.

^{*} The reaction was also carried out in THF. The product precipitated overnight and the resulting yellow crystals were collected by filtration (48%).

Crystals of $(Cu(dbathiophos)PF_6.H_2O)_2$ (complex 4) suitable for XRD were obtained by layering CH_2Cl_2 with Et_2O , along with crystals of $(Cu_2Cl(dbathiophos)PF_6)_2$ (complex 5), presumably formed by halide abstraction from HCl or CH_2Cl_2 .

Cu₂Cl₂(dbathiophos), complex 6

In a glovebox, dbathiophos, (1), (125 mg, 1 eq., 0.188 mmol) was dissolved in dry, degassed CH₂Cl₂ (7 mL) and CuCl (37 mg, 2 eq., 0.375 mmol) was added. After stirring for 1 h at 23 °C, more CH₂Cl₂ (2 mL) was added to dissolve the last traces of CuCl and the reaction stirred overnight, until no solid remained. Half the solvent was removed in vacuo, and the concentrated solution left overnight. The precipitate was filtered, washed with pentane (5 mL) and dried in vacuo to give a yellow crystalline product (119 mg, 73%). The solid was stored in a glove-box. M.p. 223 °C_(dec); ¹H NMR (400 MHz, CD₂Cl₂) δ 7.83-7.79 (m, 2H, H_e), 7.79-7.67 (m, 12H, Ar), 7.66-7.54 (m, 10H, H_f and Ar), 7.37-7.31 (m, 2H, H_g), 6.92 (ddd, J = 14.5, 7.5, 1.0 Hz, 2H, H_h), 6.07 (d, J = 14.0 Hz, 2H, H_c), 5.83 (d (br), J = 14.0 Hz, 2H, H_b); ¹³C NMR (100 MHz, CD₂Cl₂) δ 184.2 (C=O), 139.8 (d, J = 8Hz, C_d), 134.4 (d, J = 2 Hz, C_f), 133.9 (d, J = 3 Hz, p-Ar), 133.1 (d, J = 11 Hz, Ar), 132.9 (d, J = 11Hz, $C_{\rm h}$), 131.8 (d, J = 85 Hz, *ipso-C*), 131.6 (d, J = 9 Hz, $C_{\rm e}$), 129.6 (d, J = 13 Hz, Ar), 128.6 (d, J = 13 Hz, Ar), 1 13 Hz, C_g), 127.2 (d, J = 86 Hz, *ipso*-C), 95.3 (br, C=C), 94.4 (br, C=C); ³¹P NMR (162 MHz, CD_2Cl_2) δ 40.78 (s); LRMS (ESI) m/z (rel.%) 1397.2 [Cu(dbathiophos)₂]⁺ (29), 829.0 [*M*-Cl]⁺ (100), 729.1 $[M-CuCl_2]^+$ (87), 667.1 $[dbathiophos+H]^+$ (4); HRMS (ESI) m/z 826.9623 (calculated for $C_{41}H_{32}ClCu_2OP_2S_2 = 826.9645$; IR (solid, v cm⁻¹): 1653 (w), 1537 (w), 1455 (w), 1433 (m), 1312 (m), 1247 (w), 1103 (m), 1084 (m), 1064 (m), 967 (m), 756 (s), 691 (s); IR (CH₂Cl₂, v cm⁻¹): 3046 (w), 1653 (w), 1539 (w), 1457 (w), 1439 (m), 1314 (w), 1271 (m), 1265 (m), 1261 (m), 1106 (w); UV-vis (CH₂Cl₂) λ_{max} nm: 396 ($\epsilon = 12199 \text{ mol}^{-1}\text{dm}^3\text{cm}^{-1}$) shoulders at 326 ($\epsilon = 10213 \text{ mol}^{-1}\text{dm}^3\text{cm}^{-1}$) ¹) and 258 ($\varepsilon = 34000 \text{ mol}^{-1} \text{dm}^{3} \text{cm}^{-1}$); Anal. Calcd. for C₄₁Cl₂Cu₂H₃₂OP₂S₂.CH₂Cl₂ (949) C 53.12, H 3.61; Observed C 53.17, H 3.58.

Crystals of Cu_2Cl_2 (dbathiophos) suitable for XRD were obtained by from a solution of CH_2Cl_2 in an atmosphere of Et_2O .

4. <u>NMR Spectra</u>

4.i. Dbathiophos (1)

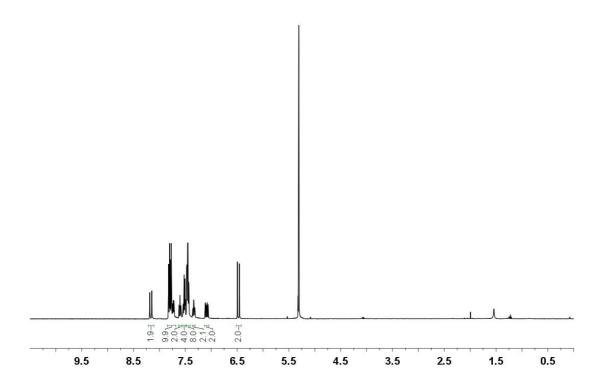


Figure 1: ¹H NMR spectrum of dbathiophos (1) (400 MHz, CD₂Cl₂, 298 K).

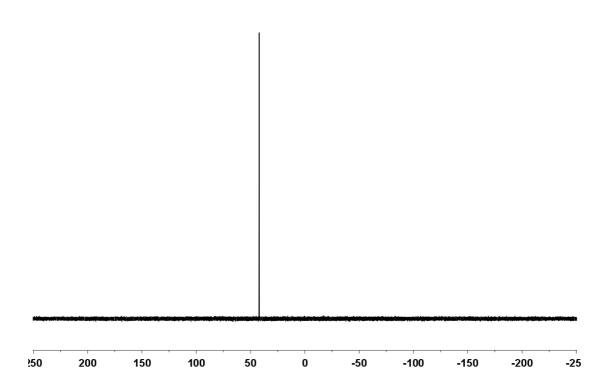


Figure 2: ³¹P NMR spectrum of dbathiophos (1) (162 MHz, CD₂Cl₂, 298 K).

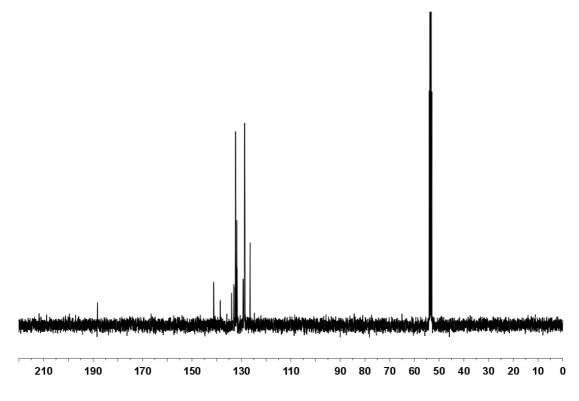


Figure 3: ¹³C NMR spectrum of dbathiophos (1) (100 MHz, CD₂Cl₂, 298 K).

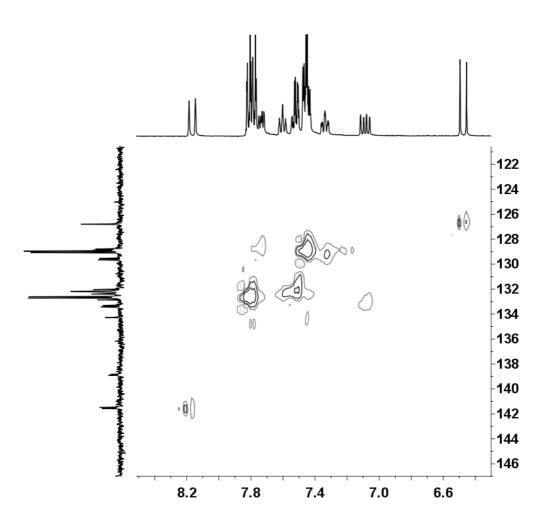


Figure 4: ¹H-¹³C HSQC spectrum of dbathiophos (1) (400 MHz, CD₂Cl₂, 298 K).

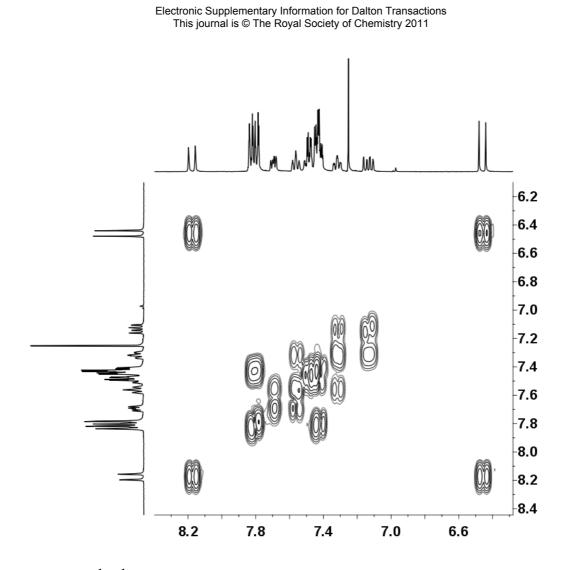


Figure 5: ¹H-¹H COSY spectrum of dbathiophos (1) (400 MHz, CD₂Cl₂, 298 K).

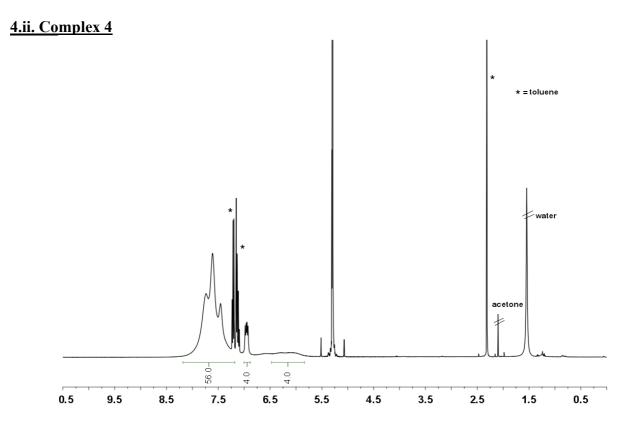


Figure 6: ¹H NMR spectrum of complex 4 at 298 K (400 MHz, CD₂Cl₂).

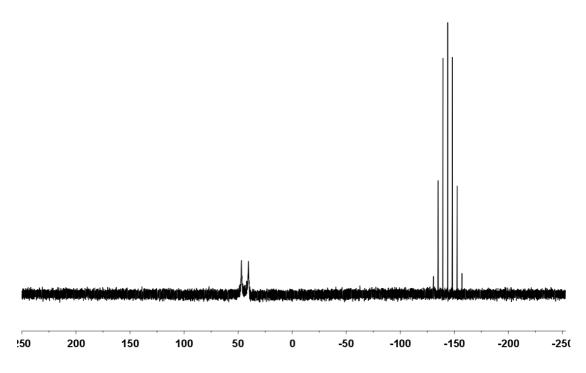


Figure 7: ³¹P NMR spectrum of complex 4 at 298 K (162 MHz, CD₂Cl₂).

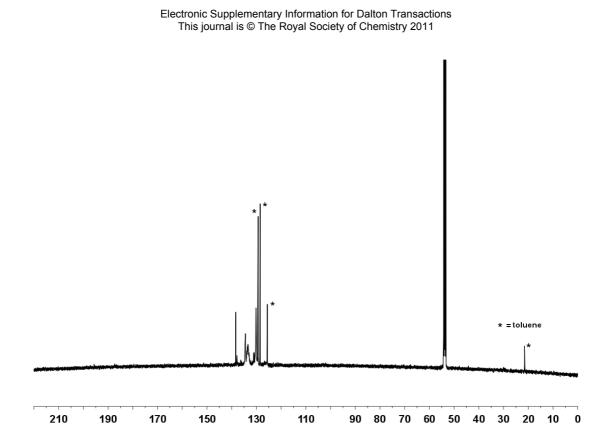


Figure 8: ¹³C NMR spectrum of complex 4 at 298 K (126 MHz, CD₂Cl₂).

Shift, ppm	Mutiplicity	Coupling	Assignment	Coupling
- OFF	F · · · J	Constant,	0	to
		Hz		
5.94	d	13.7	a	b
5.99	d	13.7	b	a
6.60	d	16.4	c	m
6.95	dd	7.7, 15.2	d	h
7.01	dd	7.7,14.4	e	i
7.07-7.05	m	-	f, Ar	0
7.36-7.28	m	-	Ar	
7.48-7.38	m	-	h, Ar	d, k
7.60-7.49	m	-	i, Ar	<i>e</i> , <i>o</i>
7.67-7.60	m	-	Ar	
7.75-7.67	m	-	k, Ar	h, l
7.85-7.77	m	-	l, Ar	k
7.83	d	16.4	m	c
7.92-7.87	m	-	Ar	
7.93	d	7.3	0	<i>f</i> , <i>i</i>
7.96	d	9.2	Ar	
8.03	app. t	6.7	Ar	



Figure 9: Assignment of peaks (Italicised means less certain; Only half the dimer shown for clarity).

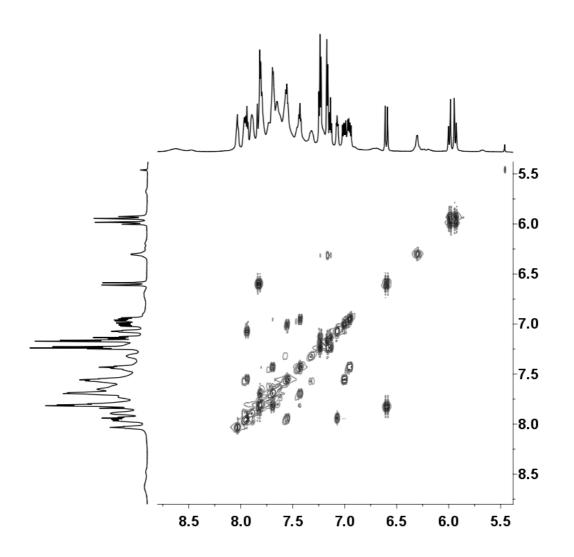


Figure 10: ¹H-¹H COSY spectrum of complex 4 at 230 K (700 MHz, CD₂Cl₂).

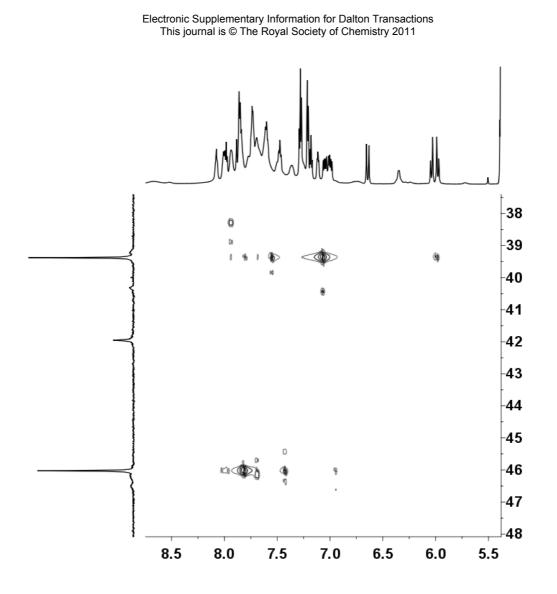


Figure 11: ¹H-³¹P HMQC spectrum of complex 4 at 230 K (700 MHz, CD₂Cl₂).

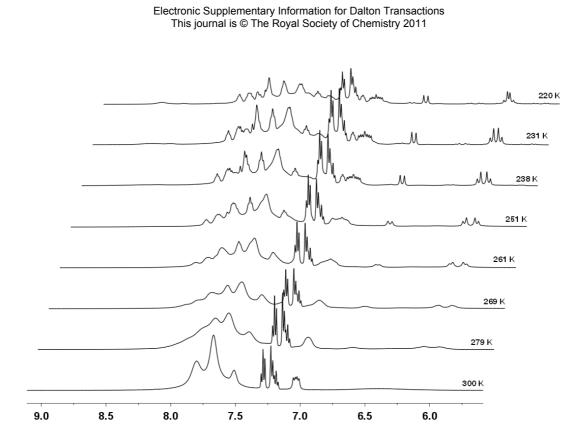
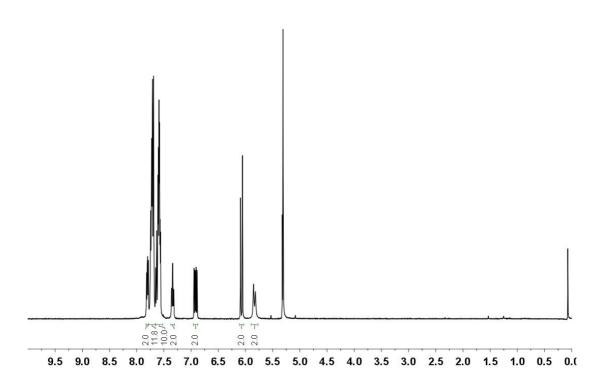




Figure 12: Variable temperature ¹H NMR spectra of complex 4 (500 MHz, CD₂Cl₂).

4.iii. Complex 6

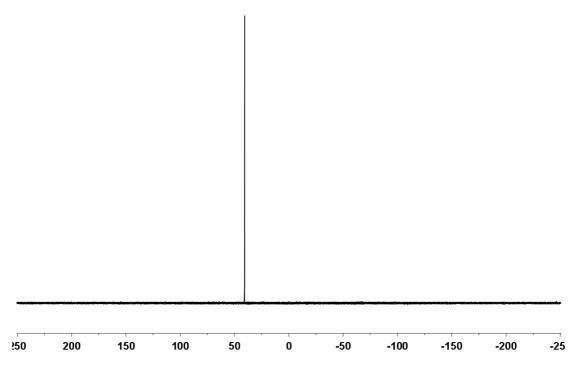


Figure 14: ³¹P NMR spectrum of complex 6 at 298 K (162 MHz, CD₂Cl₂).

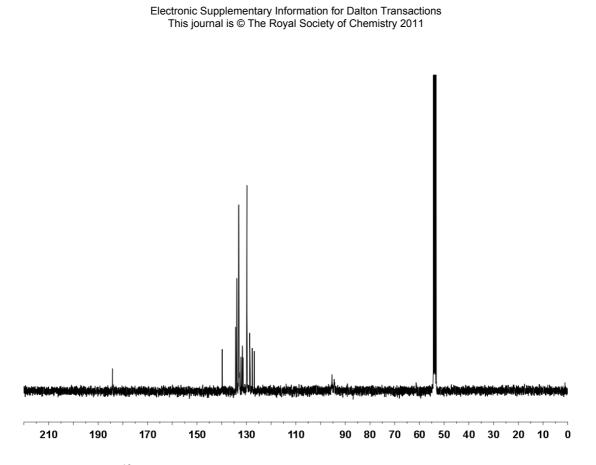


Figure 15: ¹³C NMR spectrum of complex 6 at 298 K (100 MHz, CD₂Cl₂).

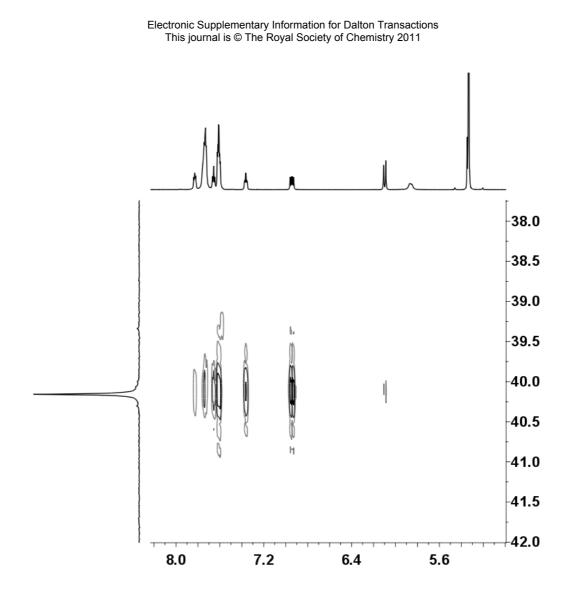


Figure 16: ¹H-³¹P HMBC spectrum of complex 6 at 298 K (700 MHz, CD₂Cl₂).

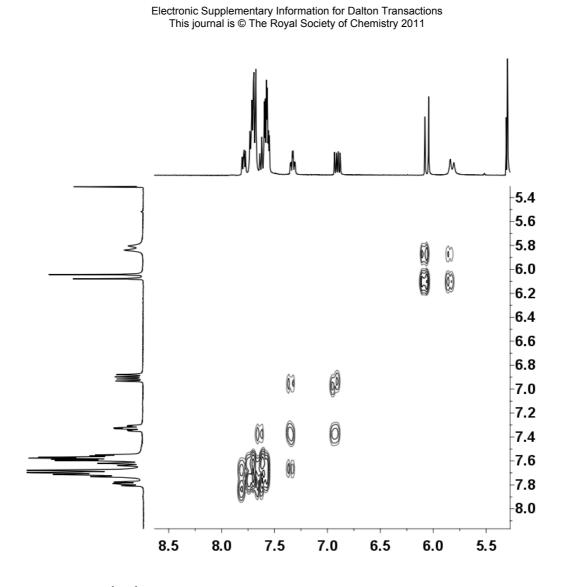


Figure 17: ¹H-¹H COSY spectrum of complex 6 at 298 K (400 MHz, CD₂Cl₂).

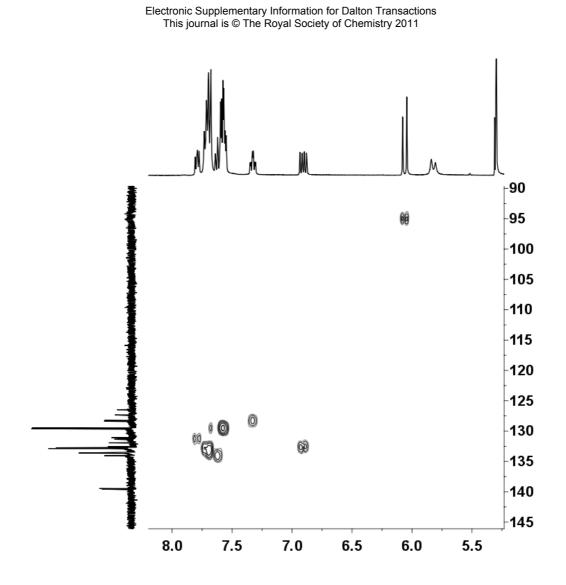


Figure 18: ¹H-¹³C HSQC spectrum of complex 6 at 298 K (400 MHz, CD₂Cl₂).

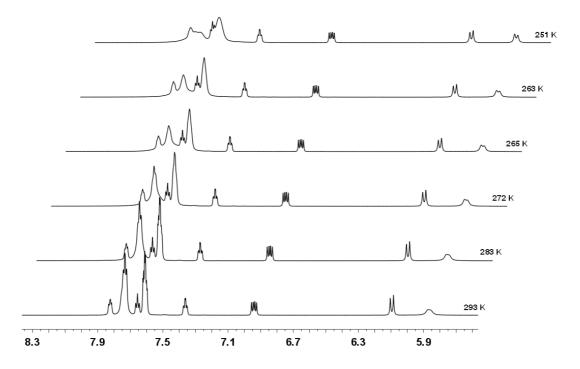


Figure 19: Variable temperature ¹H NMR spectrum of complex 6 (700 MHz, CD₂Cl₂).

5. <u>NMR spectroscopic experiments</u>

5.i. Chloride doping of complex 4:

To a solution of the complex **4** (15 mg, 0.01 mmol, 0.015 M) in CD_2Cl_2 was added aliquots of a solution of nBu_4NCl (0.01 ml, 0.25 eq., 0.25M) in CD_2Cl_2 . The ¹H and ³¹P NMR spectra were recorded after each aliquot was added.

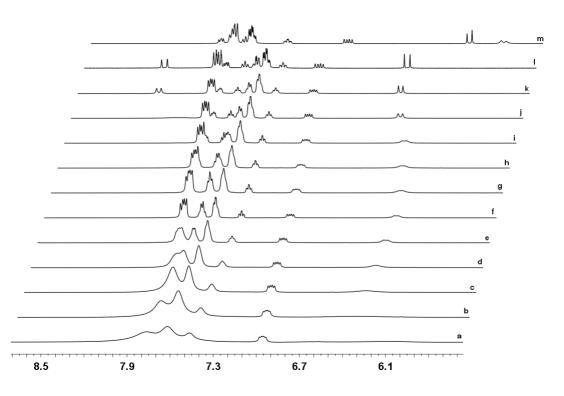


Figure 20: a) Complex 4; b) 0.3 eq. Cl⁻; c) 0.6 eq.; d) 0.9 eq.; e) 1.2 eq.; f) 1.5 eq.; g) 1.8 eq.; h) 2.1 eq.; i) 2.4 eq.; j) 3 eq.; k) 3.6 eq.; l) dbathiophos (1); m) Complex 6.

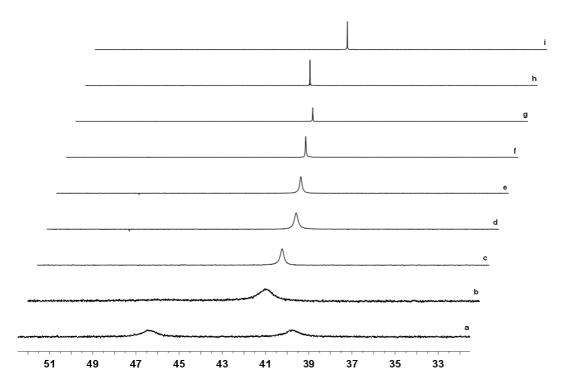


Figure 21: a) Complex 4; b) 0.6 eq. Cl⁻; c) 1.2 eq.; d) 1.8 eq.; e) 2.4 eq.; f) 3 eq.; g) 3.6 eq.; h) dbathiophos (1); i) Complex 6.

5.ii. Addition of AgPF₆ to complex 6:

To solutions of complex **6** (9.5 mg, 0.011 mmol) in CD_2Cl_2 (0.8 ml) was added AgPF₆, (0.5 eq., 1 eq. and 2 eq. respectively). The ¹H and ³¹P NMR spectra were recorded for each.

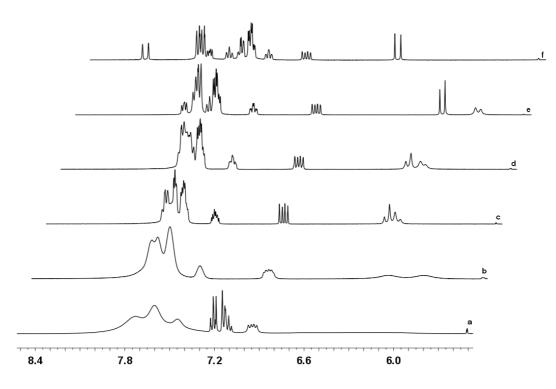


Figure 22: a) Complex 4 (contains trace toluene); b) 2 eq. AgPF₆; c) 1 eq. AgPF₆; d) 0.5 eq. AgPF₆; e) Complex 6; f) dbathiophos (1). (400 MHz, CD₂Cl₂).

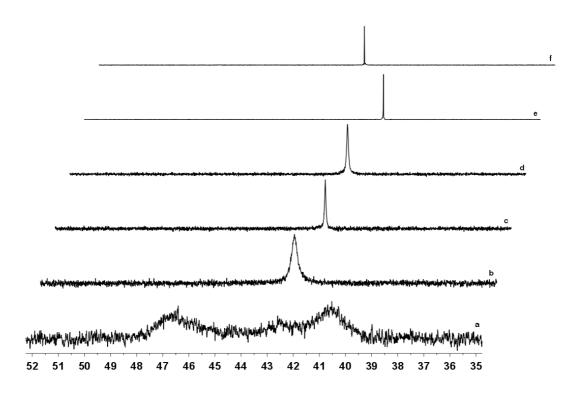
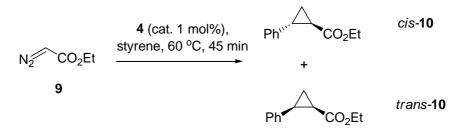



Figure 23: a) Complex 4; b) 2 eq. AgPF₆; c) 1 eq. AgPF₆; d) 0.5 eq. AgPF₆; e) Complex 6; f) dbathiophos (1). (400 MHz, CD₂Cl₂).

6. Catalysis

a. Cyclopropanation of styrene⁸

To a solution of Complex **4** (9.2 mg, 1 mol%, 0.0053 mmol) in distilled styrene (1 mL) at 60 °C was added ethyldiazoacetate **9**, EDA, (55 μ l, 0.53 mmol) in three portions over 20 min. The reaction was stirred for a further 25 min at 60 °C. The reaction was left to cool and an aliquot (40 μ l) measured into CDCl₃ (0.5 mL). ¹H NMR spectroscopic analysis determined that the product was formed in 85% conversion (not isolated) with a *cis:trans* ratio of 32:68 (*Figure 25*).

Control experiments were performed using CuBr and without the presence of Cu. When no Cu is present the reaction does not occur. When CuBr is used, after 45 min there is still EDA remaining, shown by the broad singlet at 4.7 ppm. ¹H NMR spectroscopy determined that the product was formed in 24% conversion (not isolated) with a *cis:trans* ratio of 40:60. In the case of complex **4**, a small amount of product (18% conversion) was observed by ¹H NMR spectroscopy after 90 min if the temperature was lowered to 40 °C with a *cis:trans* ratio of 50:50. See *Figure 24* for comparison by ¹H NMR spectroscopy.

The reaction was also carried out with complex **6** using the same procedure as above. ¹H NMR determined that the product was formed in 91% conversion (not isolated) with a *cis:trans* ratio of 30:70.

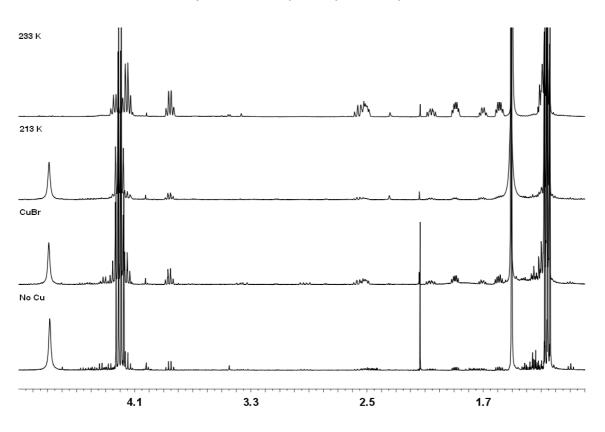


Figure 24: Comparison of catalysis with complex 4.

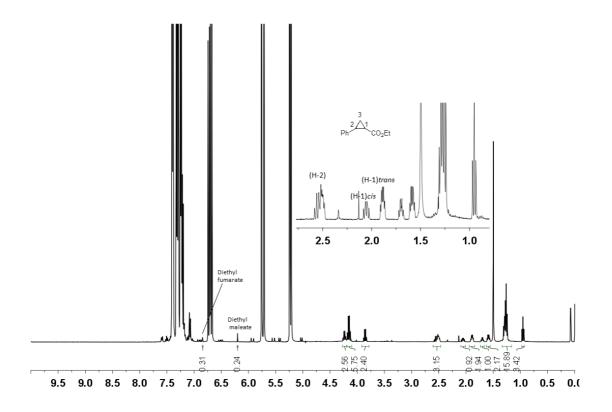


Figure 25: ¹H NMR spectrum (400 MHz, CDCl₃, referenced to TMS) of the crude reaction mixture of the cyclopropanation with complex 4.

b. Reaction of complex 4 plus EDA (catalytic amounts of Cu)

Complex 4 (4.6 mg, 1 mol%, 0.0026 mmol) was dissolved in CD_2Cl_2 (0.5 mL). EDA (28 μ L, 1 eq., 0.26 mmol) was added and the reaction monitored by ¹H NMR spectroscopy at room temperature. After ~1 h at room temperature over 80% conversion of the EDA to diethyl maleate and diethyl fumarate had occurred. After 24 h all the EDA had been converted.

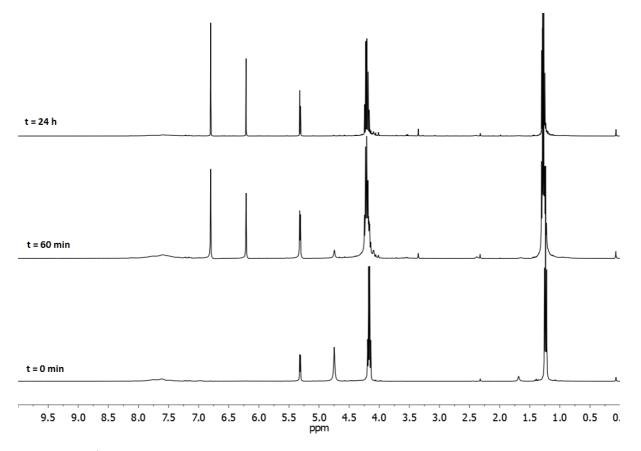


Figure 26: ¹H NMR spectrum (400 MHz, CD₂Cl₂) showing the conversion of EDA (δ 4.75 ppm) to diethyl maleate (δ 6.2 ppm) and diethyl fumarate (δ 6.8 ppm).

c. Reaction of complex 4 plus EDA (stoichiometric amounts of Cu)

Complex 4 (3.1 mg, 1 eq., 0.0017 mmol) was dissolved in CD₂Cl₂ (0.5 mL). EDA (3.7 μ L, 2 eq., 0.0035 mmol) was added and the reaction followed by ¹H and ³¹P NMR spectroscopy at room temperature. After 6 h no conversion to diethyl fumarate or diethyl maleate is observed. No changes are observed in the ³¹P NMR spectrum and only very minor new peaks have appeared in the ¹H NMR spectrum. After 24 h two small peaks in the ¹H NMR have appeared at δ 6.2 and 6.8 ppm, diethyl maleate and diethyl fumarate, however most of the EDA remains. Two new phosphorous signals also appeared in the ³¹P NMR spectrum at δ 42.21 and 41.55 ppm.

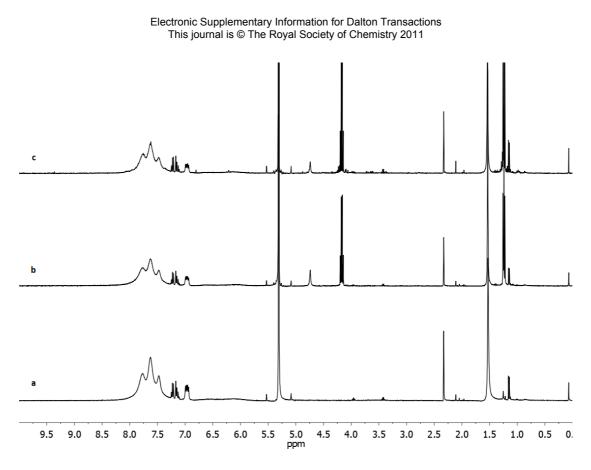


Figure 27: Reaction between EDA and stoichiometric amounts of complex 4: a) Complex 4; b) After addition of EDA and stirring for 1 h; c) After 24 h.

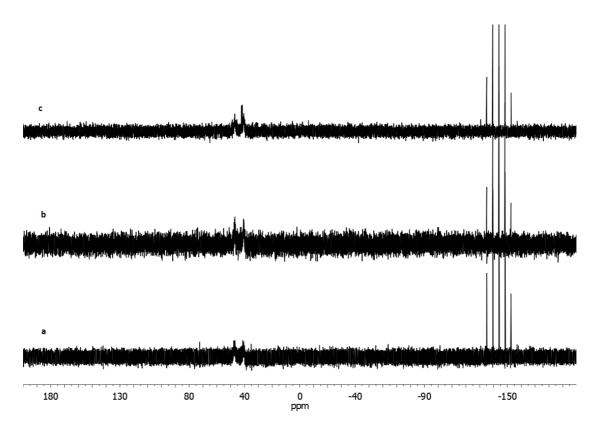


Figure 28: Reaction between EDA and stoichiometric amounts of complex 4: a) Complex 4; b) After addition of EDA and stirring for 1 h; c) After 24 h.

7. <u>References</u>

- 1. B. Corbel, L. Medinger, J. P. Haelters and G. Strutz, *Synthesis*, 1985, 1048-1051.
- 2. J. E. Hoots, T. B. Rauchfuss and D. A. Wrobleski, *Inorg. Synth.*, 1982, 21, 175-179.
- 3. M. Ahlmann and O. Walter, J. Organometallic Chem., 2004, 689, 3117-3131.
- 4. A. Maraval, G. Magro, V. Maraval, L. Vendier, A. M. Caminde, J.-P. Majoral, J. *Organometallic Chem.*, 2006, **691**, 1333-1340.
- 5. G. P. Schiemenz and H. Kaack, Justus Liebigs Ann. Chem., 1973, 9, 1480-1482.
- 6. G. J. Kubas, Inorg. Synth., 1979, 19, 90-92.
- 7. <u>www.sigmaaldrich.com</u> accessed on 1st November 2010.
- J. García-López, V. Yañez-Rodríguez, L. Roces, S. García-Granda, A. Martínez, A. Guevara-García, G. R. Castro, F. Jiménez-Villacorta, M. J. Iglesias, F. López-Ortiz, *J. Am. Chem. Soc.*, 2010, 132, 10665-10667.