Supporting Information

Unprecedented Diastereoselective Generation of Chiral-at-Metal Half-Sandwich Ir(III) and Rh(III) Complexes via Anomeric Isomerism on "Sugar-Coated" N-Heterocyclic Carbene Ligands

Teppei Shibata, Hideki Hashimoto, Isamu Kinoshita, Shigenobu Yano, Takanori Nishioka*

Departments of Material Science and Physics, Graduate School of Science, Osaka City University

The OCU Advanced Research Institute for Natural Science and Technology (OCARINA),

CREST, Japan Science and Technology Agency

Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST)

General methods

Materials: All chemicals were purchased from Aldrich and Nacalai Tesque. $[IrCp*Cl_2]_2^{S1}$ and $[RhCp*Cl_2]_2^{S1}$ were prepared according to the reported procedures. All reagents and solvents were used without further purification.

Measurements: ¹H and ¹³C NMR spectra were recorded on a Bruker AVANCE 300 FT-NMR spectrometer. Chemical shifts are expressed in ppm upfield from SiMe₄ (¹H) and referenced to solvent peaks (¹³C). Electrospray mass spectrometry was performed on an Applied Biosystem Mariner spectrometer using HPLC grade solvents. Elemental analyses were performed by Analytical Research Center at Osaka City University on a J-Science Lab, JM-10 elemental analyzer.

X-ray Crystallographic analyses: Data were collected on a Rigaku AFC-7/Mercury CCD area-detector diffractomer with graphite monochromated Mo-K α radiation ($\lambda = 0.7107$ Å). The CrystalClear software^{S2} was used for data collections, processing, and corrections for Lorrentzian and polarization effects. Absorption corrections were applied by the Coppen's numerical or multi scan methods. The structures were solved by using the SIR97 direct method,^{S3} expanded using Fourier techniques, and refined by full matrix least-squares against F^2 using CRYSTALS software.^{S4} CrystalStructure^{S5} was used for a graphical interface.

DFT Calculations: DFT calculations were carried out using Gaussian03.^{S6} Atomic coordinates were optimized at B3LYP/LanL2DZ (for Ir)/6-31G(d) (for others) level. Structural optimization of R-[Ir4 β]⁺ was started from the structure based on the crystallographic analysis. For the other complexes, starting coordinates were generated by the modification of the structure of the optimized R-[Ir4 β]⁺.

1-(2,3,4,6-tetra-*O*-acetyl-α-D-glucopyranosyl)imidazole **Synthesis** of **(1α)** and **1-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)imidazole (1β):** These compounds were prepared by modified methods that previously reported.^{S7} A mixture of well-grinded D-glucose (20 g, 0.11 mol), acetic anhydride (73 g, 0.72 mol), and catalytic amount of I₂ (0.25 g, 1.0 mmol) was stirred in a 300 mL flask at room temperature followed by an exothermic reaction resulting in dissolving all the solids. After 1 h, the reaction mixture was cooled in an ice bath and then a 33% HBr/CH₃COOH solution (100 mL) was added. A drying tube with CaCl₂ was attached to the flask, and then the mixture was stirred overnight. The resulting mixture was poured into 300 g of ice and the resulting aqueous solution was extracted with 100 mL of CH₂Cl₂ three times. The separated organic phase was washed with 300 mL of water, 10% Na₂S₂O₃aq., cold saturated aqueous NaHCO₃, and brine. The organic phase was dried over MgSO₄ and concentrated under reduced pressure to give a viscous solid of 2,3,4,6-tetra-O-acetyl- α -D-glucopyranosyl bromide. Imidazole (17 g, 0.25 mol) and dioxane (300 mL) were added to the solid and the mixture was refluxed for 3 h. The dioxane layer was separated and the solvent was removed under reduced pressure. The residue was dissolved in CHCl₃ and the solution was washed with dilute aqueous ammonia, water, and brine. The organic phase was dried over MgSO₄ and the solvent was removed under reduced pressure. The residue with diethylether to give a mixture of was washed anomeric isomers of 1-(2,3,4,6-tetra-O-acetyl-D-glucopyranosyl)imidazole (1α : $1\beta = 1$: 3). Yield: 24 g (0.06 mol, 54%). Recrystallization from MeOH several times gave needle-shape microcrystals of pure 1β and a mother liquor mainly containing 1α with a small amount of 1β . The solvent of the separated mother liquor was

evaporated and the residue was purified by silica-gel column chromatography (eluent *n*-hexane : CH_2Cl_2 : MeOH = 5 : 5 : 1) several times to give pure 1α .

3-(2-picolyl)-1-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl)imidazolium chloride (2αHCl): A

mixture of 1α (2.0 g, 5.0 mmol), 2-(bromomethyl)pyridine hydrobromide (1.4 g, 6.0 mmol), and NaHCO₃ (0.85 g, 10.0 mmol) in acetonitrile (100 mL) were refluxed overnight. The resulting mixture was cooled to room temperature. After insoluble solids were filtered off, the solvent was evaporated to dryness. The resulting solid was dissolved in 200 mL of H₂O and the solution was washed with CHCl₃ twice and then with *n*-hexane. Dowex ion-exchange resin (Cl form, 10 g) was added to the separated aqueous phase. After the mixture was stirred for 10 min, Dowex was filtered off followed by the removal of the solvent to give a yellow oily material. The material was dissolved in CHCl₃ and the solution was dried over MgSO₄. The solvent of the solution was evaporated to give a yellow hygroscopic powder. Yield 2.1 g (4.0 mmol, 80%) ¹H NMR (300 MHz, CDCl₃): δ 10.46 (s, 1H, 2-imidazolium), 8.59 (d, 1H, 6-pyridine), 8.12 (d, 1H, 3-pyridine), 8.02 (s, 1H, 4-imidazolium), 7.95 (t, 1H, 4-pyridine), 7.66 (s, 1H, 3-imidazolium), 7.45 (dd, 1H, 5-pyridine), 6.64 (d, 1H, 1-glucose), 6.07 (d, 1H, py-CH₂-N), 6.05 (d, 1H, py-CH₂-N), 5.53 (dd, 1H, 2-glucose), 5.37 (t, 1H, 3-glucose), 5.10 (dd, 1H, 4-glucose), 4.44 (dd, 1H, 6-glucose), 4.33 (dd, 1H, 6-glucose), 4.25 (ddd, 1H, 5-glucose), 2.15 (s, 3H, AcO), 2.12 (s, 3H, AcO), 2.09 (s, 3H, AcO), 2.07 (s, 3H, AcO). ¹³C NMR (75 MHz, CDCl₃): δ170.6 (C=O), 169.6 (C=O), 169.4 (C=O), 168.9 (C=O), 151.5 (2-pyridine), 148.1 (6-pyridine), 140.0 (4-pyridine), 138.1 (2-imidazolium), 125.7 (3-pyridine), 124.9 (5-pyridine), 123.5 (3-imidazolium), 120.3 (4-imidazolium), 81.9 (1-glucose), 73.2 (5-glucose), 68.7 (3-glucose), 67.8 (2-glucose), 67.1 (4-glucose), 61.4 (6-glucose), 53.1 (py-CH₂-N), 20.9 (CH₃-Ac), 20.8 $(2C, CH_3-Ac), 20.7 (CH_3-Ac). ESI-MS: m/z 490 ([M - Cl]⁺).$

3-(2-picolyl)-1-(2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl)imidazolium chloride (2 β HCl): This material was synthesized in a similar manner for 2 α HCl using 1 β instead of 1 α . Yield: 2.35 g (4.5 mmol, 90%). ¹H NMR (300 MHz, CDCl₃): δ 11.47 (s, 1H, 2-imidazolium), 8.54 (d, 1H, 6-pyridine), 7.7–8.0 (m, 2H, 3,4-pyridine), 7.63 (s, 1H, 4-imidazolium), 7.46 (s, 1H, 5-imidazolium), 7.31 (m, 1H, 5-pyridine) 6.37

(d, 1H, 1-glucose), 5.81 (d, 2H, py-CH₂-N), 5.48, (t, 1H, 4-glucose) 5.26, 5.23 (t, 2H, 2,3-glucose), 4.33 (dd, 1H, 6-glucose), 4.23 (ddd, 1H, 5-glucose), 4.15 (dd, 1H, 6-glucose), 2.08, 2.06, 2.01, 2.00 (s, 12H, OAc) 13 C NMR (75 MHz, CDCl₃): δ 170.5 (C=O), 169.8 (C=O), 169.6 (C=O), 169.5 (C=O), 152.4 (2-pyridine), 150.0 (6-pyridine), 138.7 (2-imidazole), 137.9, 124.2, 124.1 (3,4,5-pyridine), 123.5 (4-imidazole), 118.7 (5-imidazole), 84.2 (1-glucose), 75.2 (5-glucose), 72.5 (4-glucose), 70.6, 67.6 (2,3-glucose), 61.4 (6-glucose), 54.4 (py-CH₂-N), 20.8 (CH₃), 20.6 (CH₃), 20.53 (CH₃), 20.51 (CH₃). ESI-MS: m/z 490 ([M – Cl]⁺)

[IrCp*Cl(α-pagi)]Cl (Ir4α): A mixture of 2αHCl (105 mg, 0.20 mmol) and Ag₂O (28 mg, 0.12 mmol) in 10 mL of CHCl₃ was stirred for 1 h at room temperature producing a silver NHC complex 3a quantitatively checked by *in-situ*¹H NMR measurement. [IrCp*Cl₂]₂ (80 mg, 0.10 mmol) was added to the mixture and the mixture was stirred for 1h. After addition of Celite, the mixture was stirred for additional 30 min. The mixture was filtered over Celite to remove AgCl and the solvent of the filtrate was removed under reduced pressure to give a red oily material, which was dissolved in 2 mL of CHCl₃. The solution was added dropwise to 40 mL of *n*-hexane with stirring to afford a yellow powder of the diastereomeric mixture of the product. Diastereometic ratio R: S = 1:9. The powder was collected by suction filtration and dried in *vacuo*. Yield: 164 mg (0.18 mmol, 92%). ¹H NMR (300 MHz, CDCl₃) for the major product (S form): δ 8.68 (d, 1H, pyridine), 8.36 (s, 1H, 4-imidazole), 8.33 (d, 1H, 3-pyridine), 7.88 (t, 1H, 4-pyridine), 7.39 (s, 1H, 3-imidazole), 7.33 (t, 1H, 5-pyridine), 6.86 (d, 1H, CH₂N), 6.48 (d, 1H, 1-glucose), 5.60 (t, 1H, 2-glucose), 5.34 (t, 1H, 3-glucose), 5.12 (dd, 1H, 4-glucose), 4.79 (d, 1H, CH₂N), 4.44 (dt, 1H, 5-glucose), 4.25 (d, 2H, 6-glucose), 2.15 (s, 3H, AcO), 2.10 (s, 3H, AcO), 2.07 (s, 3H, AcO), 1.98 (s, 3H, AcO) 1.69 (s, 15H, Cp*). ¹³C NMR (75 MHz, CDCl₃): δ170.4 (C=O), 169.4 (C=O), 169.1 (C=O), 168.2 (C=O), 157.8 (2-pyridine), 155.7 (6-pyridine), 155.6 (carbene) 140.5 (4-pyridine), 127.2 (3-pyridine), 126.3 (5-pyridine), 124.6 (4-imidazole), 120.1 (3-imidazole), 91.3 (C₅(CH₃)₅), 81.4 (1-glucose), 71.7 (5-glucose), 70.9 (3-glucose), 69.4 (2-glucose), 68.8 (4-glucose), 62.3 (6-glucose), 54.5 (CH₂-N), 20.92 (2CH₃-AcO), 20.90 (CH₃-AcO), 20.73 (CH₃-AcO), 9.2 (C₅(CH₃)). ESI-MS: m/z = 852 ([M – Cl]⁺).

[IrCp*Cl(β-pagi)]Cl (Ir4β): This complex was synthesized in a similar manner for **4α** using **2βHCl** instead of **2αHCl**. Yield: 170 mg (0.19 mmol, 96%). Diastereomeric ratio R : S = 9 : 1. ¹H NMR (300 MHz, CDCl₃) for the major product (*R* form): δ 8.74 (d, 1H, 6-pyridine), 8.41 (d, 1H, 3-pyridine), 8.22 (d, 1H, 5-imidazolium), 7.93 (t, 1H, 4-pyridine), 7.36 (t, 1H, 5-pyridine), 7.32 (d, 1H, 4-imidazolium), 7.04 (d, ²J = 16 Hz, CH₂N), 5.96 (d, 1H, 1-glucose), 5.43 (t, 1H, 2-glucose), 5.39 (t, 1H, 3-glucose), 5.18 (t, 1H, 4-glucose), 4.74 (d, 1H, CH₂N), 4.21 (d, 2H, 6-glucose), 3.95 (dt, 1H, 5-glucose), 2.08 (s, 3H, AcO), 2.07 (s, 3H, AcO), 2.00 (s, 3H, AcO) 1.69 (s, 15H, Cp*). ¹³C NMR (75 MHz, CDCl₃): δ 170.2 (C=O), 169.8 (C=O), 169.3 (C=O), 169.1 (C=O), 157.4 (2-imidazolium), 155.7 (2-pyridine), 155.3 (6-pyridine), 140.4 (4-pyridine), 127.3 (3-pyridine), 126.1 (5-pyridine), 124.4 (5-imidazolium), 119.3 (4-imidazolium), 91.1 (C₃(CH₃)₅), 84.5 (1-glucose), 74.2 (5-glucose), 72.8 (3-glucose), 68.9 (2-glucose), 68.2 (4-glucose), 62.4 (6-glucose), 54.5 (CH₂-N), 20.72 (CH₃-AcO), 20.56 (CH₃-AcO), 20.49 (CH₃-AcO), 20.45 (CH₃-AcO), 9.3 (C₅(CH₃)). ESI-MS: *m/z* = 852 ([M – Cl]⁺).

[IrCp*Cl(β-pagi)]PF₆ (Ir4β-PF₆): A mixture of Ir4β and an excess amount of KPF₆ in 5 mL of CH₂Cl₂ was stirred for 1h followed by filtration to remove insoluble solids. Et₂O was slowly diffused into the filtrate gave a yellow cotton-like solid of the product. Anal. Calcd for C₃₃H₄₂N₃O₉F₆PCIIr•0.20CH₂Cl₂: C, 39.31; H, 4.21; N, 4.14. Found: C, 39.28; H, 4.21; N, 4.30. ¹H NMR (300 MHz, CDCl₃) for the major product (*R* form): δ 8.77 (d, 1H, 6-pyridine), 7.95 (t, 1H, 4-pyridine), 7.84 (d, 1H, 3-pyridine), 7.50 (d, 1H, 4-imidazole), 7.40 (t, 1H, 5-pyridine), 7.38 (d, 1H, 5-imidazole), 5.95 (m, 1H, 1-glucose), 5.58 (d, 1H, CH₂-N), 5.40 (m, 2H, 2,3-glucose), 5.17 (m, 1H, 4-glucose), 4.86 (d, 1H, CH₂-N), 4.21 (d, 2H, 6-glucose), 3.96 (dt, 1H, 5-glucose), 2.08 (s, 6H, Ac), 2.01 (s, 3H, Ac), 1.69 (s, 15H, Cp*), 1.67 (s, 3H, Ac), ¹³C NMR (75 MHz, CDCl₃): *δ*170.3 (C=O), 169.8 (C=O), 169.5 (C=O), 158.7 (carbene), 155.9 (6-pyridine), 155.0 (2-pyridine), 140.7 (4-pyridine), 126.6, 126.4 (3,5-pyridine), 123.5 (4-imidazole), 120.1 (5-imidazole), 91.6 (Cp*), 84.8 (-glucose), 74.4 (5-glucose), 72.8, 69.4 (2,3-glucose), 68.4 (4-glucose), 62.6 (6-glucose), 55.3 (CH₂-N), 20.8 (CH₃-Ac), 20.7 (CH₃-Ac), 20.6 (CH₃-Ac), 9.3 (CH₃-Cp*).

[RhCp*Cl₍α-pagi)]Cl (Rh4α): This complex was synthesized in a similar manner for Ir4α using [RhCp*Cl₂]₂ (62 mg, 0.10 mmol) instead of [Cp*IrCl₂]₂. Yield: 162 mg (0.20 mmol, >99%). Diastereomeric ratio R : S = 1 : 9. ¹H NMR (300 MHz, CDCl₃) for the major product (*S* form): δ 8.76 (d, 1H, 6-pyridine), 8.37 (s, 1H, 4-imidazole), 8.23 (d, 1H, 3-pyridine), 7.92 (t, 1H, 4-pyridine), 7.42 (s, 1H, 3-imidazole), 7.40 (t, 1H, 5-pyridine), 6.86 (d, 1H, CH₂N), 6.52 (d, 1H, 1-glucose), 5.59 (t, 1H, 2-glucose), 5.35 (t, 1H, 3-glucose), 5.12 (dd, 1H, 4-glucose), 4.96 (d, 1H, CH₂N), 4.45 (dt, 1H, 5-glucose), 4.27 (d, 2H, 6-glucose), 2.16 (s, 3H, AcO), 2.11 (s, 3H, AcO), 2.08 (s, 3H, AcO), 1.96 (s, 3H, AcO) 1.68 (s, 15H, Cp*). ¹³C NMR (75 MHz, CDCl₃): δ 172.4 (d, ²J = 52 Hz, carbene) 170.4 (C=O), 169.5 (C=O), 169.2 (C=O), 168.2 (C=O), 155.8 (2-pyridine), 155.3 (6-pyridine), 140.3 (4-pyridine), 127.3 (3-pyridine), 125.9 (5-pyridine), 125.7 (4-imidazole), 121.0 (3-imidazole), 98.8 (*C*₅(CH₃)₅), 81.7 (1-glucose), 71.9 (5-glucose), 70.9 (3-glucose), 69.2 (2-glucose), 68.8 (4-glucose), 62.4 (6-glucose), 54.1 (CH₂-N), 21.0 (2CH₃-AcO), 20.8 (CH₃-AcO), 9.6 (C₅(CH₃)). ESI-MS: *m/z* = 762 ([M – Cl]⁺).

[RhCp*Cl(β-pagi)]Cl (Rh4β): This complex was synthesized in a similar manner for Ir4β using [RhCp*Cl₂]₂ (62 mg, 0.10 mmol) instead of [IrCp*Cl₂]₂. Yield: 156 mg (0.20 mmol, 98%). Diastereomeric ratio R : S = 9 : 1. ¹H NMR (300 MHz, CDCl₃) for the major product (*R* form): δ8.79 (d, 1H, 6-pyridine), 8.34 (d, 1H, 3-pyridine), 8.24 (d, 1H, 5-imidazolium), 7.94 (t, 1H, 4-pyridine), 7.39 (t, 1H, 5-pyridine), 7.32 (d, 1H, 4-imidazolium), 6.79 (d, CH₂N), 6.05 (m, 1H, 1-glucose), 5.42 (m, 2H, 2,3-glucose), 5.18 (m, 1H, 4-glucose), 4.99 (d, 1H, CH₂N), 4.21 (d, 2H, 6-glucose), 3.96 (dt, 1H, 5-glucose), 2.09 (s, 3H, AcO), 2.07 (s, 3H, AcO), 1.99 (s, 3H, AcO) 1.68 (s, 15H, Cp*), 1.61 (s, 3H, AcO).

[**RhCp*Cl(β-pagi)**]**PF**₆ (**Rh4β-PF**₆): This complex was synthesized in a similar manner for Ir4β-PF₆ using **Rh4β** instead of Ir4β. Anal. Calcd for C₃₃H₄₂N₃O₉F₆PClRh•0.20CH₂Cl₂: C, 43.11; H, 4.62; N, 4.54. Found: C, 43.03; H, 4.58; N, 4.65. ¹H NMR (300 MHz, CDCl₃) for the major product (*R* form): δ 8.84 (d, 1H, 6-pyridine), 7.97 (t, 1H, 4-pyridine), 7.80 (d, 1H, 3-pyridine), 7.54 (d, 1H, 4-imidazole), 7.45 (t, 1H, 5-pyridine), 7.41 (d, 1H, 5-imidazole), 6.04 (m, 1H, 1-glucose), 5.58 (d, 1H, CH₂-N), 5.42 (m, 2H, 2,3-glucose), 5.20 (m, 1H, 4-glucose), 5.05 (d, 1H, CH₂-N), 4.22 (d, 2H, 6-glucose),

3.98 (dt, 1H, 5-glucose), 2.08 (s, 6H, Ac), 2.00 (s, 3H, Ac), 1.67 (s, 15H, Cp*), 1.62 (s, 3H, Ac), ¹³C NMR (75 MHz, CDCl₃): δ173.8 (d, ²*J* = 52 Hz, carbene), 170.4 (C=O), 169.8 (C=O), 169.59 (C=O), 169.57 (C=O), 155.4 (6-pyridine), 155.1 (2-pyridine), 140.4 (4-pyridine), 126.5 (3-pyridine), 126.0 (5-pyridine), 124.6 (4-imidazole), 120.9 (5-imidazole), 99.0 (Cp*), 84.9 (1-glucose), 74.3 (5-glucose), 72.8, (3-glucose), 69.6 (2-glucose), 68.4 (4-glucose), 62.6 (6-glucose), 54.9 (CH₂-N), 20.8 (CH₃-Ac), 20.7 (CH₃-Ac), 20.6 (CH₃-Ac), 20.5 (CH₃-Ac), 9.6 (CH₃-Cp*).

REFERENCES

(S1) a) C. White, A. Yates, P. M. Maitlis, Inorg. Synth. 1992, 29, 228; b) R. G. Ball, W. A. G. Graham, D.

M. Heinekey, J. K. Hayano, A. D. McMaster, B. M. Mattson, S. T. Michel, Inorg. Chem. 1990, 29, 2023.

(S2) *CrystalClear*, Rigaku Corporation, **1999**; *CrystalClear Software User's Guide*, Molecular Structure Corporation, **2000**; J. W. Pflugrath, *Acta Cryst.* **1999**, *D55*, 1718.

(S3) A. Altomare, M. C. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R. Spagna, *J. Appl. Cryst.* **1999**, *32*, 115.

(S4) *CRYSTALS Issue 11*, J. R. Carruthers, J. S. Rollett, P. W. Betteridge, D. Kinna, L. Pearce, A. Larsen,E. Gabe, Chemical Crystallography Laboratory, Oxford, UK. (1999).

(S5) *CrystalStructure 3.8, Crystal Structure Analysis Package*, Rigaku and Rigaku Americas (2000-2007). 9009 New Trails Dr. The Woodlands TX 77381 USA.

(S6) Gaussian 03 (Revision B.05), M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J.
Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada,
M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M.
Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E.

Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G.

A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O.

Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S.

Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J.

Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson,

W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2003.

(S7) a) B. Mukhopadhyay, K. P. R. Kartha, D. A. Russell, R. A. Field, J. Org. Chem. 2004, 69,

7758-7760: C. C. Lin, L. C. Huang, P. H. Liang, C. Y. Liu, J. Carbohydr. Chem. 2006, 25, 303-313; b) E. J.

Bourne, P. Finch, A. G. Nagpukar, J. Chem. Soc., Perkin Trans. 1 1972, 2202-2205; c) K. Smiataczowa, J.

Kosmalski, A. Nowacki, M. Czaja, Z. Warnke, Carbohydr. Res. 2004, 339, 1439-1445.

Fig. S1 Proposed Skew Structure of *S*- α -Complexes, *S*-[M4 α]⁺, (M = Ir, Rh; R = OAc).

Fig. S2 CD spectra of $Rh4\beta$ with isosbestic point.

Fig. S3 ORTEP of $Ir4\beta$ -PF₆ (left) and Rh4\beta-PF₆ (right) with 50% probability of thermal ellipsoids. Hydrogen atoms, counter ions, and solvent molecules were omitted for clarity.

Fig. S4 ¹H NMR spectra of $Ir4\beta$ in D₂O showing isomerization of the complex.

Fig. S5 Absorption spectra of the compelxes. Left: $Ir4\alpha$ (dashed line) and $Ir4\beta$ (solid line) in H₂O. Right: Rh4 α (dashed line) and Rh4 β (solid line) in CH₂Cl₂. Each sample was a crude diastereomeric mixture with the ratio of the major and minor diastereomers was 9 : 1.

Fig. S6 Optimized structure of *S*-[Ir4α]

	<i>R</i> -Ir4β-PF ₆ •2CH ₃ OH•H ₂ O	<i>R</i> -Rh4β-PF ₆ •CH ₂ Cl ₂
formula	C ₃₅ H ₅₂ ClF ₆ IrN ₃ O ₁₂ P	$C_{34}H_{44}Cl_3F_6N_3O_9PRh$
fw	1079.44	992.96
cryst system	Orthorhombic	Orthorhombic
space group	<i>P</i> 2 ₁ 2 ₁ 2 ₁ (No. 19)	<i>P</i> 2 ₁ 2 ₁ 2 ₁ (No. 19)
<i>a</i> (Å)	12.6224(13)	12.5638(7)
<i>b</i> (Å)	15.2989(18)	15.2175(9)
<i>c</i> (Å)	22.254(3)	22.2295(14)
$V(\text{\AA}^3)$	4297.4(9)	4250.0(4)
Ζ	4	4
D_{calcd} (g/cm ³)	1.668	1.552
diffractometer	AFC-7/Mercury CCD	AFC-7/Mercury CCD
temp (K)	193(1)	193(1)
reflens colled	42049	41443
indpdt reflens	9707 ($R_{int} = 0.069$)	9654 ($R_{int} = 0.043$)
$\mu (\mathrm{mm}^{-1})$	3.302	0.706
T _{min} –T _{max}	0.413-0.517	0.843-0.900
data/para	9707/ 574	9654/559
$R_{I} [I > 2\sigma(I)]$	0.0455	0.0454
wR_2 (all data)	0.0968	0.1062
GOF on F^2	1.002	1.021
Flack Para.	0.051(7)	0.00(2)

Table S1 Crystallographic Data for Complexes *R*-Ir4β-PF₆ and *R*-Rh4β-PF₆

	<i>R</i>-[Ir4β] ⁺ (X-ray)	R -[Ir4 β] ⁺	<i>S</i> -[Ir4β] ⁺	R -[Ir4 α] ⁺	S-[Ir4 α] ⁺	R -[Ir4 α] ⁺	S-[Ir4 α] ⁺
Conformation of D-Glc	Chair	Chair	Chair	Chair	Chair	Skew	Skew
Ir–Cl	2.4510(16)	2.4494	2.4524	2.4396	2.4600	2.4470	2.4470
Ir–C _{im}	2.035(7)	2.0238	2.0264	2.0370	2.0264	2.0310	2.0310
Ir–N _{py}	2.100(5)	2.1619	2.1667	2.1795	2.1684	2.1669	2.1669
Ir–C _{Cp*}	2.170(7)	2.2217	2.2244	2.2132	2.2170	2.2477	2.2251
	2.175(8)	2.2414	2.2244	2.2363	2.2326	2.2251	2.2243
	2.166(8)	2.2279	2.2105	2.2293	2.2138	2.2243	2.2936
	2.248(7)	2.3108	2.3278	2.3122	2.3178	2.2936	2.2902
	2.214(8)	2.3105	2.3224	2.3208	2.3140	2.2902	2.2477
GlcH-ImH ^a				2.06	2.08		
Ir– $C_{Cp*} av$	2.262(30)	2.2625	2.2619	2.2624	2.2590	2.2562	2.2562
C _{im} -Ir-N _{py}	85.3(2)	83.7	84.1	85.1	84.6	83.6	84.4
C _{im} -Ir-Cl	90.5(2)	92.0	90.6	90.7	89.2	89.9	89.4
Cl-Ir-N _{py}	86.52(19)	86.4	85.7	83.8	85.1	85.6	84.5
N_{im} - C_{br} - C_{py}	112.3(6)	111.7	111.7	111.9	111.8	111.2	112.1
G/Hartree		-2688.242	-2688.254	-2688.238	-2688.247	-2688.311	-2688.320
⊿G/kcal		7.53 ^b	_	51.5 ^c	45.8 ^c	5.65 ^c	_

 Table S2
 Selected Bond Lengths and Angles for Optimized Structures of Ir Complexes

^aShortest distance between methyne proton of glucopyranosyl group and imidazolylidene backbone proton

^bEnergy difference between chair *S*-[Ir4 β]⁺. ^cEnergy difference between skew *S*-[Ir4 α]⁺.

 Table S3
 Selected Bond Lengths and Angles for Ir and Rh Complexes

	Ir4β-PF ₆	Rh4β-PF ₆	$[IrCp^*Cl(mpim)]^+$	[RhCp [*] Cl ₂ (dmim)]
M–Cl	2.4510(16)	2.4003(10)	2.441(3)	2.424 (4)
M–C _{im}	2.035(7)	2.036(3)	2.02(1)	2.050(3)
$M-N_{py}$	2.100(5)	2.112(3)	2.10(1)	
$M-C_{Cp^*}$	2.166(8)	2.155(3)	2.16(1)	2.139(4)
	-2.248(7)	-2.225(3)	-2.22(1)	-2.230(3)
$M-C_{Cp^*} av$	2.262(30)	2.185(29)	2.19(2)	2.152(33)
C_{im} -M- N_{py}	85.3(2)	84.87(14)	85.4(5)	90.0(2)
C _{im} -M-Cl	91.55(11)	90.5(2)	88.4(4)	87.9(1)
Cl-M-N _{py}	88.56(9)	86.52(19)	84.7(3)	86.9(1)
$N_{im}\!\!-\!\!C_{br}\!\!-\!\!C_{py}$	113.4(3)	112.3(6)	114(1)	

DFT Calculations:

number	atom	X	У	Z
1	Ir	2.479909	-0.1017	-0.313242
2	Cl	1.248784	-2.190042	-0.586988
3	Ν	1.4342	0.861015	2.294007
4	Ν	-0.271654	0.775736	0.970936
5	Ν	3.35226	-1.124634	1.403437
6	С	1.084199	0.565611	1.01145
7	С	0.333067	1.231185	3.053066
8	С	-0.73255	1.180758	2.222878
9	С	2.810316	0.81304	2.781859
10	С	3.416164	-0.560986	2.629531
11	С	4.01992	-1.210491	3.70377
12	С	4.581703	-2.473095	3.514714
13	С	4.500397	-3.054938	2.252774
14	С	3.868515	-2.357866	1.22756
15	С	-1.112536	0.581051	-0.239763
16	С	2.333101	0.815385	-2.321702
17	С	3.315312	-0.260907	-2.472431
18	С	4.398766	-0.004634	-1.599671
19	С	4.139066	1.262078	-0.909342
20	С	2.902922	1.795039	-1.418729
21	С	1.148536	0.994566	-3.226868
22	С	3.146505	-1.418092	-3.405014
23	С	5.652253	-0.814494	-1.447298
24	С	5.137824	1.985467	-0.053688
25	С	2.370236	3.168378	-1.144251
26	Н	0.40927	1.506402	4.093491
27	Н	-1.759581	1.435676	2.410661
28	Н	3.402947	1.547366	2.226314
29	Н	2.804066	1.107118	3.832888
30	Н	4.045816	-0.729404	4.676244
31	Н	5.060502	-2.992285	4.339131
32	Н	4.906063	-4.041137	2.054856
33	Н	3.741368	-2.785289	0.241884
34	Н	0.588421	0.060849	-3.334452
35	Н	1.487495	1.293821	-4.227847
36	Н	0.466999	1.770411	-2.870895
37	Н	3 924232	-2 172486	-3 268093
38	Н	3 197492	-1 064016	-4 442542
39	Н	2 176564	-1 901379	-3 25556
40	Н	5.996055	-0.840431	-0.408771
41	Н	6.459887	-0.37427	-2.046423
42	Н	5.516034	-1.844438	-1.785746
43	Н	4 669634	2 77846	0 535973
44	Н	5 903628	2 457656	-0 683264
45	Н	5.655059	1.305791	0.630383

Table S4 Optimized atomic coordinates of R-[Ir4 α]⁺ with chair conformation

46	Н	1.29736	3.238334	-1.327746
47	Н	2.863533	3.883698	-1.815758
48	Н	2.574535	3.488752	-0.118257
49	С	-2.326486	1.548433	-0.339482
50	С	-3.613791	1.070989	0.354005
51	С	-3.86526	-0.414662	0.098029
52	С	-2.595299	-1.207047	0.435783
53	С	-2.71152	-2.711561	0.234823
54	Ο	-2.072764	2.870141	0.166861
55	Ο	-4.669015	1.850635	-0.201032
56	Ο	-4.937179	-0.847144	0.945086
57	Ο	-1.54349	-0.732387	-0.416584
58	Ο	-3.247216	-3.015976	-1.059221
59	Н	-0.440131	0.77648	-1.070564
60	Н	-2.543401	1.620497	-1.40809
61	Н	-3.549297	1.228568	1.433194
62	Н	-4.13861	-0.578377	-0.945911
63	Н	-2.320819	-1.050697	1.490986
64	Н	-1.710653	-3.147357	0.293644
65	Н	-3.354692	-3.14305	1.003817
66	С	-1.485047	3.757279	-0.684458
67	С	-5.5074	2.653957	0.539777
68	С	-6.076389	-1.321018	0.323137
69	С	-4.360151	-3.80899	-1.096471
70	С	-1.550149	5.159125	-0.141831
71	Ο	-0.994154	3.421001	-1.740697
72	С	-5.455296	2.557323	2.051927
73	Ο	-6.24964	3.384887	-0.059188
74	С	-7.040186	-1.884889	1.329392
75	Ο	-6.224549	-1.308326	-0.873753
76	С	-4.834634	-4.003805	-2.510882
77	Ο	-4.894123	-4.254673	-0.104379
78	Н	-1.287875	5.180784	0.919823
79	Н	-2.577603	5.52978	-0.235487
80	Н	-0.885262	5.806189	-0.714749
81	Н	-5.55163	1.522831	2.395766
82	Н	-6.27853	3.15274	2.447253
83	Н	-4.514271	2.963907	2.441115
84	Н	-6.803506	-2.949102	1.448305
85	Н	-8.057765	-1.798365	0.944624
86	Η	-6.950871	-1.396624	2.302147
87	Η	-5.502556	-3.17074	-2.759398
88	Η	-5.400257	-4.934573	-2.578829
89	Н	-4.001208	-4.003731	-3.216674

number	atom	X	у	Z
1	Ir	-2.330119	0.369939	-0.198442
2	Cl	-1.510489	-1.26718	-1.84255
3	Ν	-1.516428	-0.902457	2.361373
4	Ν	0.279632	-0.653614	1.187295
5	Ν	-3.667484	-1.213855	0.437097
6	С	-1.064168	-0.410142	1.178034
7	С	-0.483902	-1.463694	3.101741
8	С	0.640308	-1.305921	2.365359
9	С	-2.925796	-0.870707	2.743428
10	С	-3.796528	-1.58169	1.732471
11	С	-4.698586	-2.568779	2.123183
12	С	-5.492687	-3.195174	1.162816
13	С	-5.340329	-2.826043	-0.170841
14	С	-4.411618	-1.842667	-0.4959
15	С	1.180266	-0.24805	0.086119
16	С	-1.666434	2.216249	-1.22947
17	С	-2.951264	1.87041	-1.852146
18	С	-3.946929	1.892597	-0.849655
19	С	-3.315322	2.257753	0.422052
20	С	-1.92129	2.536124	0.151716
21	С	-0.400504	2.459408	-1.995072
22	С	-3.121913	1.57091	-3.309007
23	С	-5.414743	1.641253	-1.026785
24	С	-4.060563	2.606651	1.677992
25	С	-0.941489	3.127336	1.11821
26	Н	-0.638913	-1.913912	4.069921
27	Н	1.646413	-1.623087	2.576319
28	Н	-3.239592	0.173825	2.83952
29	Н	-3.021409	-1.345613	3.721405
30	Н	-4.773215	-2.84247	3.170682
31	Н	-6.203937	-3.962741	1.451648
32	Н	-5.919491	-3.29371	-0.959617
33	Н	-4.22788	-1.549171	-1.521304
34	Н	-0.241294	1.681421	-2.747266
35	Н	-0.466272	3.422355	-2.518907
36	Н	0.47139	2.505305	-1.340112
37	Н	-4.126793	1.207305	-3.536738
38	Н	-2.954151	2.481322	-3.898312
39	Н	-2.403	0.81539	-3.640225
40	Н	-5.839845	1.102089	-0.174924
41	Н	-5.950307	2.596011	-1.107529
42	Н	-5.625487	1.067601	-1.932575
43	Н	-3.405219	2.597446	2.553487
44	Н	-4.484104	3.616962	1.601105
45	Н	-4.892892	1.920054	1.861791
46	Н	0.087356	2.866762	0.868282

Table S5 Optimized atomic coordinates of S-[Ir4 α]⁺ with chair conformation

47	Н	-1.016764	4.221791	1.080798
48	Н	-1.149061	2.815431	2.145916
49	С	2.158255	-1.35322	-0.380324
50	С	3.482281	-1.412886	0.399893
51	С	4.065674	-0.021492	0.700046
52	С	2.965655	0.891522	1.271963
53	С	3.438156	2.320321	1.515739
54	0	1.484108	-2.611127	-0.287415
55	0	4.398357	-2.315118	-0.246176
56	0	5.052778	-0.17951	1.719973
57	0	1.851891	0.954903	0.369225
58	0	4.016926	2.893436	0.332865
59	Н	0.505494	-0.025815	-0.736352
60	Н	2.385644	-1.142385	-1.42661
61	Н	3.320488	-1.908139	1.361216
62	Н	4.465479	0.424302	-0.206716
63	Н	2.644908	0.499838	2.248705
64	Н	2.604635	2.939123	1.85163
65	Н	4.225724	2.313354	2.271844
66	С	1.536908	-3.440019	-1.380704
67	С	4.902027	-2.014439	-1.480253
68	С	6.395983	0.113411	1.55923
69	С	3.26001	3.770142	-0.38718
70	С	0.638143	-4.62955	-1.179198
71	0	2.206901	-3.205629	-2.357305
72	С	5.640942	-3.192015	-2.053496
73	Ο	4.74983	-0.939439	-2.021207
74	С	6.843385	0.781103	0.277654
75	Ο	7.124563	-0.157218	2.475996
76	С	4.026832	4.271267	-1.583527
77	Ο	2.132691	4.090802	-0.081228
78	Н	-0.402804	-4.295322	-1.257481
79	Н	0.780887	-5.061832	-0.184647
80	Н	0.840896	-5.373562	-1.950113
81	Н	6.316342	-2.850899	-2.839329
82	Н	4.901123	-3.871478	-2.492205
83	Н	6.188329	-3.734659	-1.27895
84	Н	6.630477	0.170264	-0.604865
85	Н	7.918616	0.945118	0.351967
86	Н	6.336761	1.742697	0.140469
87	Н	4.966071	4.733272	-1.262994
88	Н	3.421687	4.998526	-2.125228
89	Н	4.282241	3.434893	-2.243063

number	atom	Х	у	Z
1	Ir	-2.12756	-0.431257	-0.253313
2	Cl	-0.834487	0.897062	-1.859075
3	Ν	-1.784845	1.090056	2.283304
4	Ν	0.196781	0.713395	1.539664
5	Ν	-3.404073	1.297426	-0.102711
6	С	-1.118217	0.46528	1.275467
7	С	-0.909896	1.747066	3.143111
8	С	0.336321	1.507979	2.674493
9	С	-3.242648	1.154173	2.333149
10	С	-3.803806	1.802109	1.087563
11	С	-4.686441	2.876588	1.162033
12	С	-5.172356	3.451411	-0.012049
13	С	-4.736451	2.94333	-1.23213
14	С	-3.845124	1.875501	-1.239228
15	С	1.320319	0.32549	0.692167
16	С	-1.596823	-2.37927	-1.269533
17	С	-2.883025	-1.935922	-1.806303
18	С	-3.813902	-1.906534	-0.730491
19	С	-3.122774	-2.267832	0.498405
20	С	-1.753994	-2.610097	0.135567
21	С	-0.39894	-2.66566	-2.119229
22	С	-3.143394	-1.673683	-3.258576
23	С	-5.271581	-1.57477	-0.829016
24	С	-3.774358	-2.590251	1.811804
25	С	-0.754659	-3.248588	1.051907
26	Н	-1.250147	2.309799	3.997738
27	Н	1.30366	1.829648	3.017297
28	Н	-3.636541	0.139329	2.440849
29	Н	-3.528591	1.727331	3.21611
30	Н	-4.98307	3.259145	2.132892
31	Н	-5.862984	4.287463	0.029058
32	Н	-5.064268	3.368059	-2.174195
33	Н	-3.441434	1.474195	-2.159689
34	Н	-0.144653	-1.800109	-2.736669
35	Н	-0.633577	-3.500224	-2.791469
36	Н	0.476159	-2.951807	-1.53596
37	Н	-4.099704	-1.16986	-3.415924
38	Н	-3.171909	-2.61722	-3.816448
39	Н	-2.353549	-1.052356	-3.688705
40	Н	-5.640554	-1.088091	0.07692
41	Н	-5.849823	-2.496541	-0.965391
42	Н	-5.485799	-0.92407	-1.679073
43	Н	-3.088701	-2.441503	2.649958
44	Н	-4.090263	-3.640927	1.832764
45	Н	-4.66734	-1.984001	1.985839
46	Η	0.255586	-3.202142	0.644473

Table S6 Optimized atomic coordinates of R-[Ir4 α]⁺ with skew conformation

47	Н	-1.00184	-4.310291	1.173067
48	Н	-0.764078	-2.796101	2.047028
49	С	2.269717	-0.680664	1.34293
50	С	3.312717	-1.10495	0.279232
51	С	3.569557	0.007112	-0.749174
52	С	3.345849	1.397144	-0.125065
53	С	3.561798	2.534474	-1.113535
54	0	2.900132	-0.04892	2.472589
55	0	2.766534	-2.228186	-0.419371
56	0	4.92931	-0.130064	-1.189802
57	0	1.990373	1.518545	0.354723
58	0	3.557309	3.769555	-0.381605
59	Н	0.871078	-0.149171	-0.186944
60	Н	1.733631	-1.569685	1.678837
61	Н	4.250459	-1.354475	0.776449
62	Н	2.902753	-0.121623	-1.606529
63	Н	4.030801	1.526166	0.723861
64	Н	4.54137	2.439436	-1.588784
65	Н	2.778177	2.545797	-1.873106
66	С	3.453787	-0.892606	3.398337
67	С	3.159233	-3.531522	-0.205193
68	С	5.151549	-0.128782	-2.549207
69	С	2.679612	4.735216	-0.782678
70	С	4.037249	-0.1251	4.553273
71	0	3.4476	-2.095753	3.267099
72	С	4.492055	-3.783155	0.454753
73	0	2.40736	-4.394549	-0.586609
74	С	6.611278	-0.351503	-2.842
75	0	4.273682	0.035695	-3.359611
76	С	2.814733	5.955104	0.095266
77	0	1.925306	4.619582	-1.718627
78	Н	3.237583	0.375367	5.108603
79	Н	4.71941	0.648855	4.19114
80	Н	4.563189	-0.812412	5.214555
81	Н	5.288398	-3.196133	-0.012144
82	Н	4.715214	-4.845168	0.361516
83	Н	4.444199	-3.519245	1.516213
84	Н	7.218357	0.403008	-2.333624
85	Н	6.774447	-0.300977	-3.917595
86	Н	6.924282	-1.329873	-2.465143
87	Н	2.727787	5.679411	1.149718
88	Н	2.04657	6.679795	-0.172015
89	Н	3.803942	6.402026	-0.044499

number	atom	Х	у	Z
1	Ir	-2.368573	-0.397881	-0.28792
2	Cl	-1.562463	-0.7694	1.99065
3	Ν	-1.558038	2.410081	-0.793267
4	Ν	0.238542	1.311393	-0.335495
5	Ν	-3.706212	1.040348	0.637321
6	С	-1.110817	1.173714	-0.449879
7	С	-0.500719	3.303399	-0.941529
8	С	0.627434	2.608712	-0.66702
9	С	-2.971631	2.709855	-1.000366
10	С	-3.818914	2.311086	0.187468
11	С	-4.693296	3.217433	0.783453
12	С	-5.47539	2.811709	1.864316
13	С	-5.342802	1.506941	2.330323
14	С	-4.440794	0.655744	1.700542
15	С	1.186578	0.238018	0.015714
16	С	-1.609752	-2.140137	-1.427611
17	С	-2.746	-2.656068	-0.662809
18	С	-3.908803	-1.947988	-1.050247
19	С	-3.529876	-0.991304	-2.096207
20	С	-2.126596	-1.164812	-2.364252
21	С	-0.253984	-2.778342	-1.478175
22	С	-2.636011	-3.743501	0.358069
23	С	-5.311179	-2.167262	-0.565451
24	С	-4.505744	-0.198757	-2.915248
25	С	-1.337303	-0.515636	-3.461238
26	Н	-0.645707	4.329827	-1.238684
27	Н	1.660963	2.905692	-0.698337
28	Н	-3.319765	2.184113	-1.895453
29	Н	-3.066409	3.781652	-1.180022
30	Н	-4.755079	4.23139	0.402813
31	Н	-6.163101	3.505385	2.337172
32	Н	-5.914794	1.145072	3.17724
33	Н	-4.269192	-0.353747	2.050736
34	Н	0.073691	-3.115539	-0.494923
35	Н	-0.282462	-3.647334	-2.148407
36	Н	0.505711	-2.092618	-1.860537
37	Н	-3.548299	-3.845761	0.947886
38	Н	-2.447989	-4.69997	-0.144266
39	Н	-1.80655	-3.549532	1.042371
40	Н	-5.859679	-1.225952	-0.472659
41	Н	-5.863725	-2.797343	-1.273024
42	Н	-5.330565	-2.666959	0.405034
43	Н	-4.014446	0.597259	-3.479699
44	Н	-4.998604	-0.853556	-3.644537
45	Н	-5.291427	0.246988	-2.299406
46	Н	-0.29944	-0.347866	-3.165405

Table S7 Optimized atomic coordinates of S-[Ir4 α]⁺ with skew conformation

47	Н	-1.330177	-1.1674	-4.343183
48	Н	-1.766078	0.442648	-3.7627
49	С	1.843629	0.452419	1.397774
50	С	3.135148	-0.389923	1.618013
51	С	3.835067	-0.788198	0.310713
52	С	3.494659	0.253623	-0.762667
53	С	4.2005	0.069604	-2.110353
54	Ο	2.211465	1.843799	1.516686
55	Ο	2.976548	-1.486874	2.537508
56	Ο	5.247148	-0.800518	0.578167
57	0	2.094961	0.129168	-1.062369
58	0	5.526677	0.625066	-2.09609
59	Η	0.601468	-0.676344	0.088175
60	Η	1.110976	0.213361	2.170023
61	Η	3.822255	0.264365	2.156045
62	Η	3.520275	-1.771552	-0.039288
63	Η	3.713108	1.261859	-0.394558
64	Η	4.326939	-0.984327	-2.358712
65	Η	3.599351	0.573362	-2.87043
66	С	2.094212	2.402726	2.768944
67	С	2.144816	-2.505112	2.22252
68	С	5.979436	-1.809585	0.0144
69	С	5.604462	1.978833	-2.203662
70	С	2.474281	3.859518	2.733709
71	Ο	1.729065	1.777704	3.732879
72	С	2.107342	-3.535009	3.318242
73	Ο	1.508665	-2.545942	1.187909
74	С	7.432195	-1.679046	0.385131
75	Ο	5.498347	-2.665925	-0.691398
76	С	7.039272	2.43512	-2.257967
77	Ο	4.62799	2.697466	-2.247454
78	Н	1.758872	4.412592	2.116889
79	Н	3.462431	3.985983	2.283022
80	Н	2.469397	4.257941	3.747412
81	Н	1.627208	-4.441019	2.95016
82	Н	1.532417	-3.137319	4.161051
83	Н	3.11482	-3.752983	3.679382
84	Н	7.846092	-0.790451	-0.101846
85	Η	7.97278	-2.562564	0.048043
86	Η	7.545636	-1.548703	1.464218
87	Η	7.562253	2.137	-1.344214
88	Η	7.07189	3.518591	-2.365235
89	Н	7.553446	1.959422	-3.097884

number	atom	X	У	Z
1	Ir	2.197683	0.348436	-0.368771
2	Cl	0.993464	-1.097062	-1.935327
3	Ν	-1.942478	0.718762	1.117434
4	Ν	-1.439885	-2.755315	0.183554
5	Ν	-4.282859	-2.392819	-0.211314
6	С	-4.996386	0.293414	-0.89545
7	С	-2.450092	3.378444	0.618559
8	С	1.904788	-0.879559	2.310659
9	С	-0.093446	-0.609812	1.5527
10	С	3.536745	-1.318957	-0.066441
11	С	1.2205	-0.435058	1.221696
12	С	1.044197	-1.291003	3.320563
13	С	-0.210225	-1.109587	2.8489
14	С	3.36475	-0.951922	2.351338
15	С	3.921552	-1.714719	1.169492
16	С	4.802654	-2.777881	1.350594
17	С	5.306272	-3.452842	0.238497
18	С	4.893594	-3.05013	-1.02803
19	С	4.000965	-1.989007	-1.140904
20	С	-1.223315	-0.412079	0.658574
21	С	-2.171655	-1.632622	0.644523
22	С	-3.342264	-1.317096	-0.296948
23	С	-4.027847	-0.007367	0.11718
24	С	-2.981797	1.119319	0.214585
25	С	-3.524431	2.439272	0.743007
26	Н	1.454871	2.256842	-1.232007
27	Н	2.642127	1.904136	-2.020104
28	Н	3.752055	1.873306	-1.144465
29	Н	3.290537	2.203995	0.205608
30	Н	1.876858	2.512528	0.11757
31	Н	0.11282	2.555862	-1.827039
32	Н	2.626473	1.663223	-3.498081
33	Н	5.179283	1.591829	-1.508542
34	Н	4.193757	2.525469	1.36165
35	Н	1.013426	3.054094	1.216617
36	Н	1.398189	-1.656353	4.272056
37	Η	-1.163921	-1.263068	3.325748
38	Η	3.769975	0.064144	2.37052
39	Н	3.648712	-1.44817	3.281074
40	Н	5.085879	-3.074486	2.355307
41	Н	5.994628	-4.282826	0.363507
42	Н	5.239443	-3.552137	-1.924974
43	Н	3.615535	-1.66678	-2.099564
44	Н	-0.807047	-0.258547	-0.341077
45	Н	-2.563903	-1.791229	1.653526
46	Н	-2.985011	-1.245903	-1.328633

Table S8 Optimized atomic coordinates of R-[Ir4 β]⁺ with chair conformation

48H-2.5562471.290417-0.78480249C-3.8314272.3258211.78780650C-4.388262.7563690.15355451C-0.2182631.745878-2.4841452C0.1772143.470519-2.43133153C-0.6388692.73144-1.05523254O3.5899731.2982-3.86209955O2.4023612.59804-4.02736656O1.859980.928978-3.76509457O5.6893631.012582-0.73299158O5.7279772.535252-1.62592459H5.2600671.043792-2.45034660H3.6694282.4617582.31927661H4.574523.5515351.27065662H5.0637971.8623131.39856663H0.0179662.6064161.21029164H0.8703284.1331661.08364365H1.4639622.8875582.19887766C-1.495838-4.0054240.76237867C-2.465324-4.2376371.90488171O-0.760347-4.8508120.32724272C-5.699318-4.054372-1.13250473O-4.427832-2.491625-2.48121774C-7.1516570.905087-1.64888575O-6.4381931.081870.666423<	48 49 50	H C C	-2.556247 -3.831427	1.290417	-0.784802
49C -3.831427 2.325821 1.787806 50C -4.38826 2.756369 0.153554 51C -0.218263 1.745878 -2.48414 52C 0.177214 3.470519 -2.431331 53C -0.638869 2.73144 -1.055232 54O 3.589973 1.2982 -3.862099 55O 2.402361 2.59804 -4.027366 56O 1.85998 0.928978 -3.765094 57O 5.689363 1.012582 -0.732991 58O 5.727977 2.535252 -1.625924 59H 5.260067 1.043792 -2.450346 60H 3.669428 2.461758 2.319276 61H 4.57452 3.551535 1.270656 62H 5.063797 1.862313 1.398566 63H 0.017966 2.606416 1.210291 64H 0.870328 4.133166 1.083643 65H 1.463962 2.887558 2.198877 66C -1.495838 -4.005424 0.762378 67C -2.465324 -4.237637 1.904881 71O -0.760347 -4.850812 0.327242 72C -5.699318 -4.054372 -1.132504 73O -4.427832 -2.491625 -2.481217 74C -7.151657 0.905087 -1.648885 75 <t< td=""><td>49 50</td><td>C C</td><td>-3.831427</td><td>2 225021</td><td></td></t<>	49 50	C C	-3.831427	2 225021	
50C-4.388262.7563690.15355451C-0.2182631.745878-2.4841452C0.1772143.470519-2.43133153C-0.6388692.73144-1.05523254O3.5899731.2982-3.86209955O2.4023612.59804-4.02736656O1.859980.928978-3.76509457O5.6893631.012582-0.73299158O5.7279772.535252-1.62592459H5.2600671.043792-2.45034660H3.6694282.4617582.31927661H4.574523.5515351.27065662H5.0637971.8623131.39856663H0.0179662.6064161.21029164H0.8703284.1331661.08364365H1.4639622.8875582.19887766C-1.495838-4.0054240.76237867C-2.465324-4.2376371.90488170C-2.465324-4.2376371.90488171O-0.760347-4.8508120.32724272C-5.699318-4.054372-1.13250473O-4.427832-2.491625-2.48121774C-7.1516570.905087-1.64888575O-6.4381931.081870.66642376C-3.8771715.1354011.607067<	50	C		2.323821	1.787806
51C -0.218263 1.745878 -2.48414 52C 0.177214 3.470519 -2.431331 53C -0.638869 2.73144 -1.055232 54O 3.589973 1.2982 -3.862099 55O 2.402361 2.59804 -4.027366 56O 1.85998 0.928978 -3.765094 57O 5.689363 1.012582 -0.732991 58O 5.727977 2.535252 -1.625924 59H 5.260067 1.043792 -2.450346 60H 3.669428 2.461758 2.319276 61H 4.57452 3.551535 1.270656 62H 5.063797 1.862313 1.398566 63H 0.017966 2.606416 1.210291 64H 0.870328 4.133166 1.083643 65H 1.463962 2.887558 2.198877 66C -1.495838 -4.005424 0.762378 67C -2.549239 4.674854 1.04985 70C -2.465324 -4.237637 1.904881 71O -0.760347 -4.850812 0.327242 72C -5.699318 -4.054372 -1.132504 73O -4.427832 -2.491625 -2.481217 74C -7.151657 0.905087 -1.648885 75O -6.438193 1.08187 0.666423 76 <td< td=""><td>50</td><td>C</td><td>-4.38826</td><td>2.756369</td><td>0.153554</td></td<>	50	C	-4.38826	2.756369	0.153554
52C 0.177214 3.470519 -2.431331 53 C -0.638869 2.73144 -1.055232 54 O 3.589973 1.2982 -3.862099 55 O 2.402361 2.59804 -4.027366 56 O 1.85998 0.928978 -3.765094 57 O 5.689363 1.012582 -0.732991 58 O 5.727977 2.535252 -1.625924 59 H 5.260067 1.043792 -2.450346 60 H 3.669428 2.461758 2.319276 61 H 4.57452 3.551535 1.270656 62 H 5.063797 1.862313 1.398566 63 H 0.017966 2.606416 1.210291 64 H 0.870328 4.133166 1.083643 65 H 1.463962 2.887558 2.198877 66 C -1.495838 -4.005424 0.762378 67 C -2.549239 4.674854 1.04985 70 C -2.465324 -4.237637 1.904881 71 O -0.760347 -4.850812 0.327242 72 C -5.699318 -4.054372 -1.132504 73 O -4.427832 -2.491625 -2.481217 74 C -7.151657 0.905087 -1.648885 75 O -6.438193 1.08187 0.666423 76 C -3.877171 5.135401 <	51	C	-0.218263	1.745878	-2.48414
53C -0.638869 2.73144 -1.055232 54O 3.589973 1.2982 -3.862099 55O 2.402361 2.59804 -4.027366 56O 1.85998 0.928978 -3.765094 57O 5.689363 1.012582 -0.732991 58O 5.727977 2.535252 -1.625924 59H 5.260067 1.043792 -2.450346 60H 3.669428 2.461758 2.319276 61H 4.57452 3.551535 1.270656 62H 5.063797 1.862313 1.398566 63H 0.017966 2.606416 1.210291 64H 0.870328 4.133166 1.083643 65H 1.463962 2.887558 2.198877 66C -1.495838 -4.005424 0.762378 67C -2.549239 4.674854 1.04985 70C -2.465324 -4.237637 1.904881 71O -0.760347 -4.850812 0.327242 72C -5.699318 -4.054372 -1.132504 73O -4.427832 -2.491625 -2.481217 74C -7.151657 0.905087 -1.648885 75O -6.438193 1.08187 0.666423 76C -3.877171 5.135401 1.607067 77O -1.568733 5.372062 0.955426 78 <td< td=""><td>52</td><td>С</td><td>0.177214</td><td>3.470519</td><td>-2.431331</td></td<>	52	С	0.177214	3.470519	-2.431331
54O 3.589973 1.2982 -3.862099 55 O 2.402361 2.59804 -4.027366 56 O 1.85998 0.928978 -3.765094 57 O 5.689363 1.012582 -0.732991 58 O 5.727977 2.535252 -1.625924 59 H 5.260067 1.043792 -2.450346 60 H 3.669428 2.461758 2.319276 61 H 4.57452 3.551535 1.270656 62 H 5.063797 1.862313 1.398566 63 H 0.017966 2.606416 1.210291 64 H 0.870328 4.133166 1.083643 65 H 1.463962 2.887558 2.198877 66 C -1.495838 -4.005424 0.762378 67 C -4.755292 -2.91116 -1.401148 68 C -6.206131 0.785031 -0.483424 69 C -2.549239 4.674854 1.04985 70 C -2.465324 -4.237637 1.904881 71 O -0.760347 -4.850812 0.327242 72 C -5.699318 -4.054372 -1.132504 73 O -4.427832 -2.491625 -2.481217 74 C -7.151657 0.905087 -1.648885 75 O -6.438193 1.08187 0.666423 76 C -3.877171 5.135401	53	С	-0.638869	2.73144	-1.055232
55O 2.402361 2.59804 -4.027366 56O 1.85998 0.928978 -3.765094 57O 5.689363 1.012582 -0.732991 58O 5.727977 2.535252 -1.625924 59H 5.260067 1.043792 -2.450346 60H 3.669428 2.461758 2.319276 61H 4.57452 3.551535 1.270656 62H 5.063797 1.862313 1.398566 63H 0.017966 2.606416 1.210291 64H 0.870328 4.133166 1.083643 65H 1.463962 2.887558 2.198877 66C -1.495838 -4.005424 0.762378 67C -4.755292 -2.91116 -1.401148 68C -6.206131 0.785031 -0.483424 69C -2.549239 4.674854 1.04985 70C -2.465324 -4.237637 1.904881 71O -0.760347 -4.850812 0.327242 72C -5.699318 -4.054372 -1.648885 75O -6.438193 1.08187 0.666423 76C -3.877171 5.135401 1.607067 77O -1.568733 5.372062 0.955426 78H -2.15207 -3.694235 2.804744 79H -2.455992 -5.304273 2.130587 80<	54	Ο	3.589973	1.2982	-3.862099
56O 1.85998 0.928978 -3.765094 57 O 5.689363 1.012582 -0.732991 58 O 5.727977 2.535252 -1.625924 59 H 5.260067 1.043792 -2.450346 60 H 3.669428 2.461758 2.319276 61 H 4.57452 3.551535 1.270656 62 H 5.063797 1.862313 1.398566 63 H 0.017966 2.606416 1.210291 64 H 0.870328 4.133166 1.083643 65 H 1.463962 2.887558 2.198877 66 C -1.495838 -4.005424 0.762378 67 C -4.755292 -2.91116 -1.401148 68 C -6.206131 0.785031 -0.483424 69 C -2.549239 4.674854 1.04985 70 C -2.465324 -4.237637 1.904881 71 O -0.760347 -4.850812 0.327242 72 C -5.699318 -4.054372 -1.132504 73 O -4.427832 -2.491625 -2.481217 74 C -7.151657 0.905087 -1.648885 75 O -6.438193 1.08187 0.666423 76 C -3.877171 5.135401 1.607067 77 O -1.568733 5.372062 0.955426 78 H -2.15207 -3.094	55	Ο	2.402361	2.59804	-4.027366
57O 5.689363 1.012582 -0.732991 58 O 5.727977 2.535252 -1.625924 59 H 5.260067 1.043792 -2.450346 60 H 3.669428 2.461758 2.319276 61 H 4.57452 3.551535 1.270656 62 H 5.063797 1.862313 1.398566 63 H 0.017966 2.606416 1.210291 64 H 0.870328 4.133166 1.083643 65 H 1.463962 2.887558 2.198877 66 C -1.495838 -4.005424 0.762378 67 C -4.755292 -2.91116 -1.401148 68 C -6.206131 0.785031 -0.483424 69 C -2.549239 4.674854 1.04985 70 C -2.465324 -4.237637 1.904881 71 O -0.760347 -4.850812 0.327242 72 C -5.699318 -4.054372 -1.132504 73 O -4.427832 -2.491625 -2.481217 74 C -7.151657 0.905087 -1.648885 75 O -6.438193 1.08187 0.666423 76 C -3.877171 5.135401 1.607067 77 O -1.568733 5.372062 0.955426 78 H -2.15207 -3.694235 2.804744 79 H -2.455992 -5.3	56	Ο	1.85998	0.928978	-3.765094
58O 5.727977 2.535252 -1.625924 59 H 5.260067 1.043792 -2.450346 60 H 3.669428 2.461758 2.319276 61 H 4.57452 3.551535 1.270656 62 H 5.063797 1.862313 1.398566 63 H 0.017966 2.606416 1.210291 64 H 0.870328 4.133166 1.083643 65 H 1.463962 2.887558 2.198877 66 C -1.495838 -4.005424 0.762378 67 C -4.755292 -2.91116 -1.401148 68 C -6.206131 0.785031 -0.483424 69 C -2.549239 4.674854 1.04985 70 C -2.465324 -4.237637 1.904881 71 O -0.760347 -4.850812 0.327242 72 C -5.699318 -4.054372 -1.132504 73 O -4.427832 -2.491625 -2.481217 74 C -7.151657 0.905087 -1.648885 75 O -6.438193 1.08187 0.666423 76 C -3.877171 5.135401 1.607067 77 O -1.568733 5.372062 0.955426 78 H -2.153207 -3.694235 2.804744 79 H -2.455992 -5.304273 2.130587 80 H -3.479275 -3	57	Ο	5.689363	1.012582	-0.732991
59H 5.260067 1.043792 -2.450346 60H 3.669428 2.461758 2.319276 61H 4.57452 3.551535 1.270656 62H 5.063797 1.862313 1.398566 63H 0.017966 2.606416 1.210291 64H 0.870328 4.133166 1.083643 65H 1.463962 2.887558 2.198877 66C -1.495838 -4.005424 0.762378 67C -4.755292 -2.91116 -1.401148 68C -6.206131 0.785031 -0.483424 69C -2.549239 4.674854 1.04985 70C -2.465324 -4.237637 1.904881 71O -0.760347 -4.850812 0.327242 72C -5.699318 -4.054372 -1.132504 73O -4.427832 -2.491625 -2.481217 74C -7.151657 0.905087 -1.648885 75O -6.438193 1.08187 0.666423 76C -3.877171 5.135401 1.607067 77O -1.568733 5.372062 0.955426 78H -2.153207 -3.694235 2.804744 79H -2.455992 -5.304273 2.130587 80H -3.479275 -3.919899 1.648654 81H -6.198464 -4.334419 -2.060572 <td< td=""><td>58</td><td>Ο</td><td>5.727977</td><td>2.535252</td><td>-1.625924</td></td<>	58	Ο	5.727977	2.535252	-1.625924
60H 3.669428 2.461758 2.319276 61 H 4.57452 3.551535 1.270656 62 H 5.063797 1.862313 1.398566 63 H 0.017966 2.606416 1.210291 64 H 0.870328 4.133166 1.083643 65 H 1.463962 2.887558 2.198877 66 C -1.495838 -4.005424 0.762378 67 C -4.755292 -2.91116 -1.401148 68 C -6.206131 0.785031 -0.483424 69 C -2.549239 4.674854 1.04985 70 C -2.465324 -4.237637 1.904881 71 O -0.760347 -4.850812 0.327242 72 C -5.699318 -4.054372 -1.132504 73 O -4.427832 -2.491625 -2.481217 74 C -7.151657 0.905087 -1.648885 75 O -6.438193 1.08187 0.666423 76 C -3.877171 5.135401 1.607067 77 O -1.568733 5.372062 0.955426 78 H -2.153207 -3.694235 2.804744 79 H -2.455992 -5.304273 2.130587 80 H -3.479275 -3.919899 1.648654 81 H -6.198464 -4.334419 -2.060572 84 H -6.735974	59	Н	5.260067	1.043792	-2.450346
61H 4.57452 3.551535 1.270656 62 H 5.063797 1.862313 1.398566 63 H 0.017966 2.606416 1.210291 64 H 0.870328 4.133166 1.083643 65 H 1.463962 2.887558 2.198877 66 C -1.495838 -4.005424 0.762378 67 C -4.755292 -2.91116 -1.401148 68 C -6.206131 0.785031 -0.483424 69 C -2.549239 4.674854 1.04985 70 C -2.465324 -4.237637 1.904881 71 O -0.760347 -4.850812 0.327242 72 C -5.699318 -4.054372 -1.132504 73 O -4.427832 -2.491625 -2.481217 74 C -7.151657 0.905087 -1.648885 75 O -6.438193 1.08187 0.666423 76 C -3.877171 5.135401 1.607067 77 O -1.568733 5.372062 0.955426 78 H -2.153207 -3.694235 2.804744 79 H -2.455992 -5.304273 2.130587 80 H -3.479275 -3.919899 1.648654 81 H -6.198464 -4.334419 -2.060572 84 H -6.735974 1.584439 -2.400694 85 H -8.113773 <t< td=""><td>60</td><td>Н</td><td>3.669428</td><td>2.461758</td><td>2.319276</td></t<>	60	Н	3.669428	2.461758	2.319276
62 H 5.063797 1.862313 1.398566 63 H 0.017966 2.606416 1.210291 64 H 0.870328 4.133166 1.083643 65 H 1.463962 2.887558 2.198877 66 C -1.495838 -4.005424 0.762378 67 C -4.755292 -2.91116 -1.401148 68 C -6.206131 0.785031 -0.483424 69 C -2.549239 4.674854 1.04985 70 C -2.465324 -4.237637 1.904881 71 O -0.760347 -4.850812 0.327242 72 C -5.699318 -4.054372 -1.132504 73 O -4.427832 -2.491625 -2.481217 74 C -7.151657 0.905087 -1.648885 75 O -6.438193 1.08187 0.666423 76 C -3.877171 5.135401 1.607067 77 O -1.568733 5.372062 0.955426 <td>61</td> <td>Н</td> <td>4.57452</td> <td>3.551535</td> <td>1.270656</td>	61	Н	4.57452	3.551535	1.270656
63H 0.017966 2.606416 1.210291 64H 0.870328 4.133166 1.083643 65H 1.463962 2.887558 2.198877 66C -1.495838 -4.005424 0.762378 67C -4.755292 -2.91116 -1.401148 68C -6.206131 0.785031 -0.483424 69C -2.549239 4.674854 1.04985 70C -2.465324 -4.237637 1.904881 71O -0.760347 -4.850812 0.327242 72C -5.699318 -4.054372 -1.132504 73O -4.427832 -2.491625 -2.481217 74C -7.151657 0.905087 -1.648885 75O -6.438193 1.08187 0.666423 76C -3.877171 5.135401 1.607067 77O -1.568733 5.372062 0.955426 78H -2.153207 -3.694235 2.804744 79H -2.455992 -5.304273 2.130587 80H -3.479275 -3.919899 1.648654 81H -6.435585 -3.780647 -0.37112 82H -5.136514 -4.915954 -0.755467 83H -6.198464 -4.334419 -2.060572 84H -6.735974 1.580744 -1.300038 86H -7.277709 -0.068698 -2.132635 </td <td>62</td> <td>Н</td> <td>5.063797</td> <td>1.862313</td> <td>1.398566</td>	62	Н	5.063797	1.862313	1.398566
64 H 0.870328 4.133166 1.083643 65 H 1.463962 2.887558 2.198877 66 C -1.495838 -4.005424 0.762378 67 C -4.755292 -2.91116 -1.401148 68 C -6.206131 0.785031 -0.483424 69 C -2.549239 4.674854 1.04985 70 C -2.465324 -4.237637 1.904881 71 O -0.760347 -4.850812 0.327242 72 C -5.699318 -4.054372 -1.132504 73 O -4.427832 -2.491625 -2.481217 74 C -7.151657 0.905087 -1.648885 75 O -6.438193 1.08187 0.666423 76 C -3.877171 5.135401 1.607067 77 O -1.568733 5.372062 0.955426 78 H -2.153207 -3.694235 2.804744 79 H -2.455992 -5.304273 2.130587	63	Н	0.017966	2.606416	1.210291
65H 1.463962 2.887558 2.198877 66C -1.495838 -4.005424 0.762378 67C -4.755292 -2.91116 -1.401148 68C -6.206131 0.785031 -0.483424 69C -2.549239 4.674854 1.04985 70C -2.465324 -4.237637 1.904881 71O -0.760347 -4.850812 0.327242 72C -5.699318 -4.054372 -1.132504 73O -4.427832 -2.491625 -2.481217 74C -7.151657 0.905087 -1.648885 75O -6.438193 1.08187 0.666423 76C -3.877171 5.135401 1.607067 77O -1.568733 5.372062 0.955426 78H -2.153207 -3.694235 2.804744 79H -2.455992 -5.304273 2.130587 80H -3.479275 -3.919899 1.648654 81H -6.198464 -4.334419 -2.060572 84H -6.735974 1.584439 -2.400694 85H -8.113773 1.280744 -1.300038 86H -7.277709 -0.068698 -2.132635	64	Н	0.870328	4.133166	1.083643
66C -1.495838 -4.005424 0.762378 67 C -4.755292 -2.91116 -1.401148 68 C -6.206131 0.785031 -0.483424 69 C -2.549239 4.674854 1.04985 70 C -2.465324 -4.237637 1.904881 71 O -0.760347 -4.850812 0.327242 72 C -5.699318 -4.054372 -1.132504 73 O -4.427832 -2.491625 -2.481217 74 C -7.151657 0.905087 -1.648885 75 O -6.438193 1.08187 0.666423 76 C -3.877171 5.135401 1.607067 77 O -1.568733 5.372062 0.955426 78 H -2.153207 -3.694235 2.804744 79 H -2.455992 -5.304273 2.130587 80 H -3.479275 -3.919899 1.648654 81 H -6.198464 -4.334419 -2.060572 84 H -6.735974 1.584439 -2.400694 85 H -8.113773 1.280744 -1.300038 86 H -7.277709 -0.068698 -2.132635	65	Н	1.463962	2.887558	2.198877
67C -4.755292 -2.91116 -1.401148 68C -6.206131 0.785031 -0.483424 69C -2.549239 4.674854 1.04985 70C -2.465324 -4.237637 1.904881 71O -0.760347 -4.850812 0.327242 72C -5.699318 -4.054372 -1.132504 73O -4.427832 -2.491625 -2.481217 74C -7.151657 0.905087 -1.648885 75O -6.438193 1.08187 0.666423 76C -3.877171 5.135401 1.607067 77O -1.568733 5.372062 0.955426 78H -2.153207 -3.694235 2.804744 79H -2.455992 -5.304273 2.130587 80H -3.479275 -3.919899 1.648654 81H -6.435585 -3.780647 -0.37112 82H -5.136514 -4.915954 -0.755467 83H -6.198464 -4.334419 -2.400694 85H -8.113773 1.280744 -1.300038 86H -7.277709 -0.068698 -2.132635	66	С	-1.495838	-4.005424	0.762378
68C -6.206131 0.785031 -0.483424 69 C -2.549239 4.674854 1.04985 70 C -2.465324 -4.237637 1.904881 71 O -0.760347 -4.850812 0.327242 72 C -5.699318 -4.054372 -1.132504 73 O -4.427832 -2.491625 -2.481217 74 C -7.151657 0.905087 -1.648885 75 O -6.438193 1.08187 0.666423 76 C -3.877171 5.135401 1.607067 77 O -1.568733 5.372062 0.955426 78 H -2.153207 -3.694235 2.804744 79 H -2.455992 -5.304273 2.130587 80 H -3.479275 -3.919899 1.648654 81 H -6.136514 -4.915954 -0.755467 83 H -6.198464 -4.334419 -2.060572 84 H -6.735974 1.584439 -2.400694 85 H -8.113773 1.280744 -1.300038 86 H -7.277709 -0.068698 -2.132635	67	С	-4.755292	-2.91116	-1.401148
69C -2.549239 4.674854 1.04985 70C -2.465324 -4.237637 1.904881 71O -0.760347 -4.850812 0.327242 72C -5.699318 -4.054372 -1.132504 73O -4.427832 -2.491625 -2.481217 74C -7.151657 0.905087 -1.648885 75O -6.438193 1.08187 0.666423 76C -3.877171 5.135401 1.607067 77O -1.568733 5.372062 0.955426 78H -2.153207 -3.694235 2.804744 79H -2.455992 -5.304273 2.130587 80H -3.479275 -3.919899 1.648654 81H -6.198464 -4.334419 -2.060572 84H -6.735974 1.584439 -2.400694 85H -8.113773 1.280744 -1.300038 86H -7.277709 -0.068698 -2.132635	68	С	-6.206131	0.785031	-0.483424
70C -2.465324 -4.237637 1.904881 71O -0.760347 -4.850812 0.327242 72C -5.699318 -4.054372 -1.132504 73O -4.427832 -2.491625 -2.481217 74C -7.151657 0.905087 -1.648885 75O -6.438193 1.08187 0.666423 76C -3.877171 5.135401 1.607067 77O -1.568733 5.372062 0.955426 78H -2.153207 -3.694235 2.804744 79H -2.455992 -5.304273 2.130587 80H -3.479275 -3.919899 1.648654 81H -6.198464 -4.334419 -2.060572 84H -6.735974 1.584439 -2.400694 85H -8.113773 1.280744 -1.300038 86H -7.277709 -0.068698 -2.132635	69	С	-2.549239	4.674854	1.04985
71O -0.760347 -4.850812 0.327242 72 C -5.699318 -4.054372 -1.132504 73 O -4.427832 -2.491625 -2.481217 74 C -7.151657 0.905087 -1.648885 75 O -6.438193 1.08187 0.666423 76 C -3.877171 5.135401 1.607067 77 O -1.568733 5.372062 0.955426 78 H -2.153207 -3.694235 2.804744 79 H -2.455992 -5.304273 2.130587 80 H -3.479275 -3.919899 1.648654 81 H -6.136514 -4.915954 -0.755467 83 H -6.198464 -4.334419 -2.060572 84 H -6.735974 1.584439 -2.400694 85 H -8.113773 1.280744 -1.300038 86 H -7.277709 -0.068698 -2.132635	70	С	-2.465324	-4.237637	1.904881
72C -5.699318 -4.054372 -1.132504 73O -4.427832 -2.491625 -2.481217 74C -7.151657 0.905087 -1.648885 75O -6.438193 1.08187 0.666423 76C -3.877171 5.135401 1.607067 77O -1.568733 5.372062 0.955426 78H -2.153207 -3.694235 2.804744 79H -2.455992 -5.304273 2.130587 80H -3.479275 -3.919899 1.648654 81H -6.435585 -3.780647 -0.37112 82H -5.136514 -4.915954 -0.755467 83H -6.198464 -4.334419 -2.060572 84H -6.735974 1.584439 -2.400694 85H -8.113773 1.280744 -1.300038 86H -7.277709 -0.068698 -2.132635	71	Ο	-0.760347	-4.850812	0.327242
73O -4.427832 -2.491625 -2.481217 74C -7.151657 0.905087 -1.648885 75O -6.438193 1.08187 0.666423 76C -3.877171 5.135401 1.607067 77O -1.568733 5.372062 0.955426 78H -2.153207 -3.694235 2.804744 79H -2.455992 -5.304273 2.130587 80H -3.479275 -3.919899 1.648654 81H -6.435585 -3.780647 -0.37112 82H -5.136514 -4.915954 -0.755467 83H -6.198464 -4.334419 -2.060572 84H -6.735974 1.584439 -2.400694 85H -8.113773 1.280744 -1.300038 86H -7.277709 -0.068698 -2.132635	72	С	-5.699318	-4.054372	-1.132504
74C-7.151657 0.905087 -1.648885 75 O-6.438193 1.08187 0.666423 76 C-3.877171 5.135401 1.607067 77 O-1.568733 5.372062 0.955426 78 H-2.153207-3.694235 2.804744 79 H-2.455992-5.304273 2.130587 80 H-3.479275-3.919899 1.648654 81 H-6.435585-3.780647-0.37112 82 H-5.136514-4.915954-0.755467 83 H-6.198464-4.334419-2.060572 84 H-6.735974 1.584439 -2.400694 85 H-8.113773 1.280744 -1.300038 86 H-7.277709-0.068698-2.132635	73	Ο	-4.427832	-2.491625	-2.481217
75 O -6.438193 1.08187 0.666423 76 C -3.877171 5.135401 1.607067 77 O -1.568733 5.372062 0.955426 78 H -2.153207 -3.694235 2.804744 79 H -2.455992 -5.304273 2.130587 80 H -3.479275 -3.919899 1.648654 81 H -6.435585 -3.780647 -0.37112 82 H -5.136514 -4.915954 -0.755467 83 H -6.198464 -4.334419 -2.060572 84 H -6.735974 1.584439 -2.400694 85 H -8.113773 1.280744 -1.300038 86 H -7.277709 -0.068698 -2.132635	74	С	-7.151657	0.905087	-1.648885
76 C -3.877171 5.135401 1.607067 77 O -1.568733 5.372062 0.955426 78 H -2.153207 -3.694235 2.804744 79 H -2.455992 -5.304273 2.130587 80 H -3.479275 -3.919899 1.648654 81 H -6.435585 -3.780647 -0.37112 82 H -5.136514 -4.915954 -0.755467 83 H -6.198464 -4.334419 -2.060572 84 H -6.735974 1.584439 -2.400694 85 H -8.113773 1.280744 -1.300038 86 H -7.277709 -0.068698 -2.132635	75	Ο	-6.438193	1.08187	0.666423
77 O -1.568733 5.372062 0.955426 78 H -2.153207 -3.694235 2.804744 79 H -2.455992 -5.304273 2.130587 80 H -3.479275 -3.919899 1.648654 81 H -6.435585 -3.780647 -0.37112 82 H -5.136514 -4.915954 -0.755467 83 H -6.198464 -4.334419 -2.060572 84 H -6.735974 1.584439 -2.400694 85 H -8.113773 1.280744 -1.300038 86 H -7.277709 -0.068698 -2.132635	76	С	-3.877171	5.135401	1.607067
78 H -2.153207 -3.694235 2.804744 79 H -2.455992 -5.304273 2.130587 80 H -3.479275 -3.919899 1.648654 81 H -6.435585 -3.780647 -0.37112 82 H -5.136514 -4.915954 -0.755467 83 H -6.198464 -4.334419 -2.060572 84 H -6.735974 1.584439 -2.400694 85 H -8.113773 1.280744 -1.300038 86 H -7.277709 -0.068698 -2.132635	77	Ο	-1.568733	5.372062	0.955426
79 H -2.455992 -5.304273 2.130587 80 H -3.479275 -3.919899 1.648654 81 H -6.435585 -3.780647 -0.37112 82 H -5.136514 -4.915954 -0.755467 83 H -6.198464 -4.334419 -2.060572 84 H -6.735974 1.584439 -2.400694 85 H -8.113773 1.280744 -1.300038 86 H -7.277709 -0.068698 -2.132635	78	Η	-2.153207	-3.694235	2.804744
80 H -3.479275 -3.919899 1.648654 81 H -6.435585 -3.780647 -0.37112 82 H -5.136514 -4.915954 -0.755467 83 H -6.198464 -4.334419 -2.060572 84 H -6.735974 1.584439 -2.400694 85 H -8.113773 1.280744 -1.300038 86 H -7.277709 -0.068698 -2.132635	79	Н	-2.455992	-5.304273	2.130587
81 H -6.435585 -3.780647 -0.37112 82 H -5.136514 -4.915954 -0.755467 83 H -6.198464 -4.334419 -2.060572 84 H -6.735974 1.584439 -2.400694 85 H -8.113773 1.280744 -1.300038 86 H -7.277709 -0.068698 -2.132635	80	Н	-3.479275	-3.919899	1.648654
82 H -5.136514 -4.915954 -0.755467 83 H -6.198464 -4.334419 -2.060572 84 H -6.735974 1.584439 -2.400694 85 H -8.113773 1.280744 -1.300038 86 H -7.277709 -0.068698 -2.132635	81	Н	-6.435585	-3.780647	-0.37112
83 H -6.198464 -4.334419 -2.060572 84 H -6.735974 1.584439 -2.400694 85 H -8.113773 1.280744 -1.300038 86 H -7.277709 -0.068698 -2.132635	82	Н	-5.136514	-4.915954	-0.755467
84 H -6.735974 1.584439 -2.400694 85 H -8.113773 1.280744 -1.300038 86 H -7.277709 -0.068698 -2.132635	83	Н	-6.198464	-4.334419	-2.060572
85 H -8.113773 1.280744 -1.300038 86 H -7.277709 -0.068698 -2.132635	84	Н	-6.735974	1.584439	-2.400694
86 H -7 277709 -0 068698 -2 132635	85	Н	-8.113773	1.280744	-1.300038
00 II (.2///0) 0.0000/0 2.152055	86	Н	-7.277709	-0.068698	-2.132635
87 H -4.682672 5.010962 0.87486	87	Н	-4.682672	5.010962	0.87486
88 H -3.790337 6.189366 1.870979	88	Н	-3.790337	6.189366	1.870979
89 H -4 154085 4 562822 2 49953	89	Н	-4.154085	4.562822	2.49953

number	atom	Х	У	Ζ
1	Ir	2.321991	-0.183014	-0.432809
2	Cl	0.988889	1.473114	-1.65566
3	Ν	1.897491	0.590686	2.40673
4	Ν	-0.051138	0.228195	1.56769
5	Ν	3.53766	1.50393	0.184125
6	С	1.278043	0.21426	1.258955
7	С	0.976053	0.858658	3.415915
8	С	-0.247675	0.631879	2.88677
9	С	3.346288	0.742111	2.503406
10	С	3.875488	1.71868	1.476851
11	C	4.683367	2.790737	1.848815
12	Ċ	5.162372	3.664217	0.872547
13	Č	4.798421	3.445533	-0.453185
14	Ċ	3 977073	2 364531	-0 756642
15	C	-1 132389	0.067583	0 606743
16	C	1 697483	-2.001013	-1 522214
17	C	2 721176	-1 390535	-2.379917
18	C	3 930698	-1 330402	-1 652191
19	C	3 704729	-1 923359	-0 329862
20	C	2 344033	-2 404806	-0 297445
20	C	0.330671	-2 400853	-1 995698
21	C	2 471016	-0.929759	-3 781808
22	C C	5 25363	-0.811907	-2 132456
23	C C	4 790566	-2 255007	0.652441
25	C C	1 728017	-3 239571	0.783193
25	н	1.723587	1 167680	0.705175 4 405721
20	н Н	-1 2281/2	0 700762	3 3 2 7 8 7 6
27	н Н	3 812725	-0.237000	2 361/2/
20	н Ц	3 583003	-0.237999	2.301424
29	11 Ц	1 0 2 0 7 4 2	1.089470	2 805221
21	11 Ц	5 705201	2.938128	1 146564
22	11 11	5 120459	4.302327	1.140304
22	11 11	3.129436	4.103334	-1.249391
24	п u	0.120562	2.170336	-1.703330
25	П	-0.129302	-1.005000	-2.360706
33 26	П	0.399/39	-3.289332	-2.0309/
30 27	П	-0.33910	-2.049114	-1.10801/
3/ 20	П	3.330996	-0.400075	-4.19/882
38 20	H	2.265378	-1./94291	-4.425611
39	H	1.606//4	-0.259813	-3.824003
40	H	5./8261/	-0.262201	-1.34/943
41	H	5.89//36	-1.64/2/1	-2.436099
42	H	5.143857	-0.150544	-2.995085
43	H	4.390623	-2.455862	1.650354
44	H	5.328957	-3.156811	0.331/18
45	H	5.527755	-1.450239	0.731903
46	Н	0.655698	-3.053789	0.86/614

Table S9 Optimized atomic coordinates of S-[Ir4 β]⁺ with chair conformation

47	Н	1.868388	-4.302473	0.546841
48	Н	2.190226	-3.052376	1.756556
49	С	-2.241085	-0.893616	1.065241
50	С	-3.265442	-0.985488	-0.072257
51	С	-3.79998	0.407682	-0.426519
52	С	-2.639531	1.396687	-0.653419
53	С	-3.098609	2.842492	-0.767458
54	Ο	-1.739077	-2.210881	1.33301
55	Ο	-4.36211	-1.799925	0.34703
56	Ο	-4.523086	0.326669	-1.664187
57	Ο	-1.718135	1.337854	0.439367
58	Ο	-3.790098	3.172756	0.435269
59	Н	-0.668034	-0.280333	-0.320685
60	Н	-2.716878	-0.505786	1.967895
61	Н	-2.805096	-1.447705	-0.950691
62	Н	-4.463263	0.766637	0.363193
63	Н	-2.114378	1.135306	-1.584373
64	Н	-2.216842	3.47883	-0.90071
65	Н	-3.747143	2.939459	-1.645663
66	С	-1.839467	-2.659708	2.629395
67	С	-4.478039	-3.045928	-0.208639
68	С	-5.89762	0.324385	-1.60293
69	С	-4.352923	4.407417	0.636512
70	С	-1.514248	-4.128719	2.718133
71	Ο	-2.138576	-1.944754	3.555436
72	С	-5.726617	-3.72051	0.297335
73	Ο	-3.679793	-3.506553	-0.991915
74	С	-6.475699	0.199623	-2.990405
75	Ο	-6.52012	0.408266	-0.574439
76	С	-4.306695	5.397445	-0.509264
77	Ο	-4.857142	4.632382	1.705833
78	Η	-1.930699	-4.673479	1.867106
79	Η	-1.903572	-4.523355	3.657729
80	Η	-0.427208	-4.268903	2.708818
81	Η	-5.68824	-3.81587	1.387603
82	Η	-5.822111	-4.705385	-0.160479
83	Η	-6.601716	-3.106236	0.061528
84	Η	-6.090044	0.992974	-3.638617
85	Н	-7.563007	0.257872	-2.935458
86	Н	-6.177648	-0.756308	-3.434417
87	Н	-4.785715	6.319526	-0.180055
88	Н	-4.837315	5.012491	-1.387676
89	Н	-3.276732	5.614486	-0.813722