Supplementary Information

ForHeteroscorpionate Rare-Earth Initiators for the Controlled Ring-

Opening Polymerization of Cyclic Esters

Antonio Otero, *^[a] Agustín Lara-Sánchez, *^[a] Juan Fernández-Baeza,^[a] Carlos Alonso-Moreno,^[a] Isabel Márquez-Segovia,^[a] Luis F. Sánchez-Barba,^[b] José A. Castro-Osma,^[a] and Ana M. Rodríguez^[a]

^aDepartamento de Química Inorgánica, Orgánica y Bioquímica, Universidad de Castilla-La Mancha, 13071-Ciudad Real, Spain. Fax: +34926295318 Tel: +34926295300.

E-mail: Antonio.Otero@uclm.es

^bDepartamento de Química Inorgánica y Analítica, Universidad Rey Juan Carlos, 28933 Móstoles,

Madrid, Spain.

Table of Contents

Figure S1. ¹ H NMR spectrum (500 MHz, CDCl ₃ , 293 K) of H-[poly(<i>rac</i> -LA)]-N(SiHMe ₂) ₂ precipitated
from MeOH and hexanes using 1 with a [rac-LA]:Nd ratio of 50:1
Figure S2. First-order kinetic plots of compound 1 for <i>rac</i> -LA polymerizations in toluene at 50 °C with
$[LA]/[Nd] = 100 \text{ and } [Nd] = 1 \times 10^{-3} \text{ mol } L^{-1}.$
Figure S3. First-order kinetic plots of compound 3 for <i>rac</i> -LA polymerizations in toluene at 50 °C with
$[LA]/[Nd] = 100 \text{ and } [Nd] = 1 \times 10^{-3} \text{ mol } L^{-1}.$ S4
Figure S4. First-order kinetic plots of compound 5 for <i>rac</i> -LA polymerizations in toluene at 50 °C with
$[LA]/[Nd] = 100 \text{ and } [Nd] = 1 \times 10^{-3} \text{ mol } L^{-1}.$ S4
Figure S5. First-order kinetic plots of compound 7 for <i>rac</i> -LA polymerizations in toluene at 50 °C with
$[LA]/[Nd] = 100 \text{ and } [Nd] = 1 \times 10^{-3} \text{ mol } L^{-1}.$
Figure S6. First-order kinetic plots of compound 3 for <i>rac</i> -LA polymerizations in toluene at 70 °C with
$[LA]/[Nd] = 100 \text{ and } [Nd] = 1 \times 10^{-3} \text{ mol } L^{-1}.$
Figure S7. First-order kinetic plots of compound 3 for <i>rac</i> -LA polymerizations in toluene at 60 °C with
$[LA]/[Nd] = 100 \text{ and } [Nd] = 1 \times 10^{-3} \text{ mol } L^{-1}.$
Figure S8. First-order kinetic plots of compound 3 for <i>rac</i> -LA polymerizations in toluene at 40 °C with
$[LA]/[Nd] = 100 \text{ and } [Nd] = 1 \times 10^{-3} \text{ mol } L^{-1}$
Figure S9. First-order kinetic plots of compound 3 for <i>rac</i> -LA polymerizations in toluene at 25 °C with
$[LA]/[Nd] = 100 \text{ and } [Nd] = 1 \times 10^{-3} \text{ mol } L^{-1}$
Figure S10. First-order kinetic plots of compound 3 for <i>rac</i> -LA polymerizations in toluene at 50 °C with
$[LA]/[Nd] = 100 \text{ and } [Nd] = 3.5 \times 10^{-4} \text{ mol } L^{-1}$
Figure S11. First-order kinetic plots of compound 3 for <i>rac</i> -LA polymerizations in toluene at 50 °C with
$[LA]/[Nd] = 100 \text{ and } [Nd] = 5 \times 10^{-4} \text{ mol } L^{-1}$
Figure S12. First-order kinetic plots of compound 3 for <i>rac</i> -LA polymerizations in toluene at 50 °C with
$[LA]/[Nd] = 100 \text{ and } [Nd] = 1.5 \times 10^{-3} \text{ mol } L^{-1}$
Figure S13. First-order kinetic plots of compound 3 for <i>rac</i> -LA polymerizations in toluene at 50 °C with
$[LA]/[Nd] = 100 \text{ and } [Nd] = 2 \times 10^{-3} \text{ mol } L^{-1}$
Figure S14. First-order kinetic plots of compound 3 for <i>rac</i> -LA polymerizations in toluene at 50 °C with
$[LA]/[Nd] = 100 \text{ and } [Nd] = 2.5 \times 10^{-3} \text{ mol } L^{-1}$
Figure S15. First-order kinetic plots of compound 3 for <i>rac</i> -LA polymerizations in toluene at 50 °C with
$[LA]/[Nd] = 100 \text{ and } [Nd] = 3 \times 10^{-3} \text{ mol } L^{-1}$
Figure S16. Some examples of ¹ H NMR spectrum (500 MHz, 298 K, CDCl ₃ ,) of the homodecoupled CH
resonance of poly(rac-lactide) prepared

CH*Me*

Figure S1. ¹H NMR spectrum (500 MHz, CDCl₃, 293 K) of H-[poly(*rac*-LA)]-N(SiHMe₂)₂ precipitated from MeOH and hexanes using **1** with a [*rac*-LA]:Nd ratio of 50:1.

Figure S2. First-order kinetic plots of compound 1 for *rac*-LA polymerizations in toluene at 50 °C with [LA]/[Nd] = 100 and $[Nd] = 1 \times 10^{-3} \text{ mol } L^{-1}$.

Figure S3. First-order kinetic plots of compound 3 for *rac*-LA polymerizations in toluene at 50 °C with [LA]/[Nd] = 100 and $[Nd] = 1 \times 10^{-3} \text{ mol } L^{-1}$.

Figure S4. First-order kinetic plots of compound 5 for *rac*-LA polymerizations in toluene at 50 °C with [LA]/[Nd] = 100 and $[Nd] = 1 \times 10^{-3} \text{ mol } L^{-1}$.

Figure S5. First-order kinetic plots of compound 7 for *rac*-LA polymerizations in toluene at 50 °C with [LA]/[Nd] = 100 and $[Nd] = 1 \times 10^{-3} \text{ mol } L^{-1}$.

Figure S6. First-order kinetic plots of compound 3 for *rac*-LA polymerizations in toluene at 70 °C with [LA]/[Nd] = 100 and $[Nd] = 1 \times 10^{-3} \text{ mol } L^{-1}$.

Figure S7. First-order kinetic plots of compound 3 for *rac*-LA polymerizations in toluene at 60 °C with [LA]/[Nd] = 100 and $[Nd] = 1 \times 10^{-3} \text{ mol L}^{-1}$

Figure S8. First-order kinetic plots of compound **3** for *rac*-LA polymerizations in toluene at 40 °C with [LA]/[Nd] = 100 and $[Nd] = 1 \times 10^{-3} \text{ mol } \text{L}^{-1}$

Figure S9. First-order kinetic plots of compound 3 for *rac*-LA polymerizations in toluene at 25 °C with [LA]/[Nd] = 100 and $[Nd] = 1 \times 10^{-3} \text{ mol L}^{-1}$

Figure S10. First-order kinetic plots of compound **3** for *rac*-LA polymerizations in toluene at 50 °C with [LA]/[Nd] = 100 and $[Nd] = 3.5 \times 10^{-4}$ mol L⁻¹

Figure S11. First-order kinetic plots of compound 3 for *rac*-LA polymerizations in toluene at 50 °C with [LA]/[Nd] = 100 and $[Nd] = 5 \times 10^{-4}$ mol L⁻¹

Figure S12. First-order kinetic plots of compound 3 for *rac*-LA polymerizations in toluene at 50 °C with [LA]/[Nd] = 100 and $[Nd] = 1.5 \times 10^{-3} \text{ mol } \text{L}^{-1}$

Figure S13. First-order kinetic plots of compound 3 for *rac*-LA polymerizations in toluene at 50 °C with [LA]/[Nd] = 100 and $[Nd] = 2 \times 10^{-3}$ mol L⁻¹

Figure S14. First-order kinetic plots of compound 3 for *rac*-LA polymerizations in toluene at 50 °C with [LA]/[Nd] = 100 and $[Nd] = 2.5 \times 10^{-3} \text{ mol } L^{-1}$

Figure S15. First-order kinetic plots of compound 3 for *rac*-LA polymerizations in toluene at 50 °C with [LA]/[Nd] = 100 and $[Nd] = 3 \times 10^{-3} \text{ mol } \text{L}^{-1}$

Figure S16. Some examples of ¹H NMR spectrum (500 MHz, 298 K, CDCl₃,) of the homodecoupled CH resonance of poly(rac-lactide) prepared.