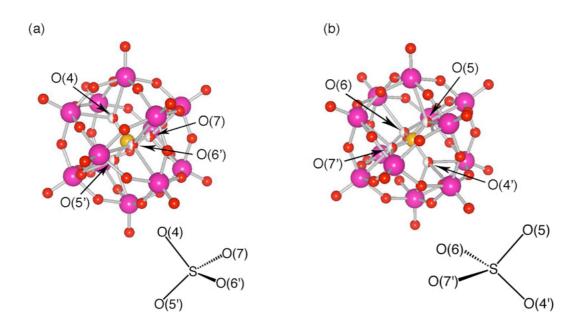
Electronic Supplementary Information

for

Enclosure of a Keggin-type heteropolyoxometalate into a tubular π -space *via* hydrogen bonds with a nonplanar Mo(V)-porphyrin complex forming a supramolecular assembly

Atsutoshi Yokoyama, Takahiko Kojima* and Shunichi Fukuzumi*

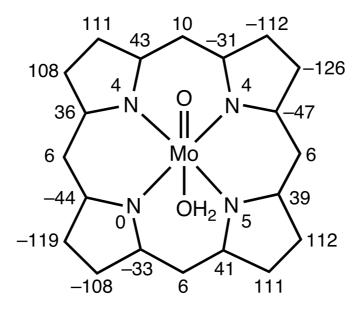
Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, ALCA, Japan Science and Technology Agency (JST), Suita, Osaka 565-0871, Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571 and Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea

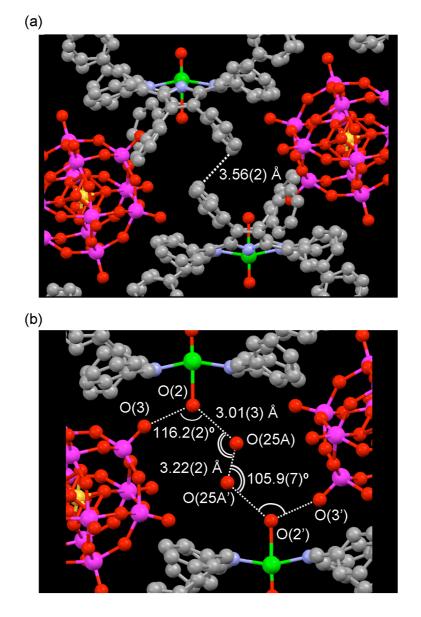

* To whom correspondence should be addressed.

E-mail: kojima@chem.tsukuba.ac.jp, fukuzumi@chem.eng.osaka-u.ac.jp

X-ray Crystallography. X-ray crystallography on 1. A single crystal of **1** was coated in liquid paraffin and mounted on a glass fiber with silicon grease. X-ray diffraction data were collected on a Rigaku Mercury CCD at 170 ± 2 K. All calculations for structure refinements were carried out on a personal computer using *CrystalStructure* (Rigaku Corp., Japan)¹ and SHELXL programs.²

Structure Refinements for 1 and 3. Refinements on F^2 were performed for all reflections. The weighted *R* factor (R_w) and goodness of fit (*S*) are based on F^2 , and the conventional *R* factor (*R*) on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ was used only for calculating *R* factors (gt) etc. and was not relevant to the choice of reflections for refinement. *R* factors based on F^2 are statistically about twice as large as those based on *F*, and *R* factors based on all data are even larger. As for **3**, the restraint program "ISOR S1" was used for the refinement.


- CrystalStructure 3.7.0: Crystal Structure Analysis Package, Rigaku and Rigaku/MSC (2000-2005), The Woodlands, TX 77381, USA.
- (2) SIR 97 and SHELX 97: G. M. Sheldrick, Program for Crystal Structures Refinement, University of Göttingen, Germany, 1997.


Fig. S1 Disordered two tetrahedrons around the sulfur atom in the Keggin structure. Red, oxygen; red and white, disordered oxygen; pink, tungsten; orange, sulfur.

	3	
assignment	distance (Å)	angle (deg)
Mo(1)-O(1)	1.671(6)	_
Mo(1)-O(2)	2.371(6)	_
O(2)-O(3)	2.87(1)	_
O(2)-O(25A)	3.01(3)	_
O(25A)-O(25A')	3.22(2)	_
W(1)-O(3)	1.679(6)	_
S(1)-O(4)	1.52(1)	-
S(1)-O(5)	1.48(1)	-
S(1)-O(6)	1.46(1)	-
S(1)-O(7)	1.40(1)	_
Mo(1)-O(2)-O(3)	_	112.9(2)
O(2)-O(3)-W(1)	_	152.5(4)
O(3)-O(2)-O(25A)	_	116.2(2)
O(2)-O(25A)-O(25A')	_	105.9(7)

Table S1. Selected bond distances (Å), interatomic distances (Å) and bond angles (deg)for **3**.

Fig. S2 The displacement of each atom from the least-squares mean plane of 24 atoms of the DPP^{2–} moiety in **3** (in unit of 0.01 Å).

Fig. S3 (a) Intermolecular π - π interaction between peripheral phenyl groups of two Mo(V)-porphyrin units. (b) A hydrogen bonding network involving water molecules of crystallization (O(25)). Gray, carbon; blue, nitrogen; red, oxygen; green, molybdenum; pink, tungsten; orange, sulfur.

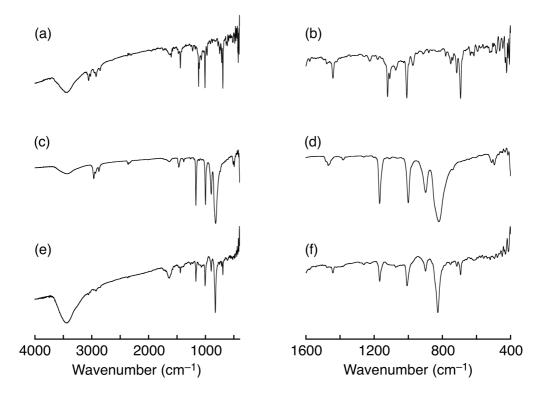
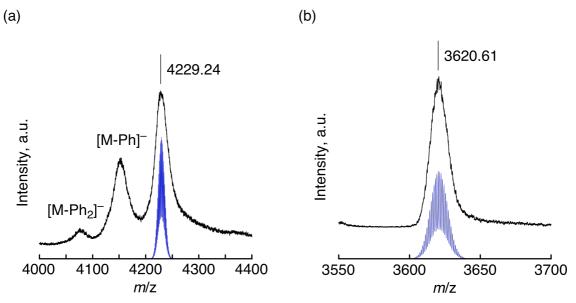
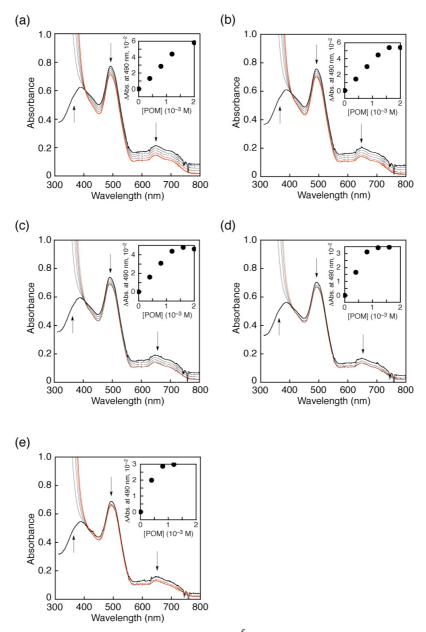
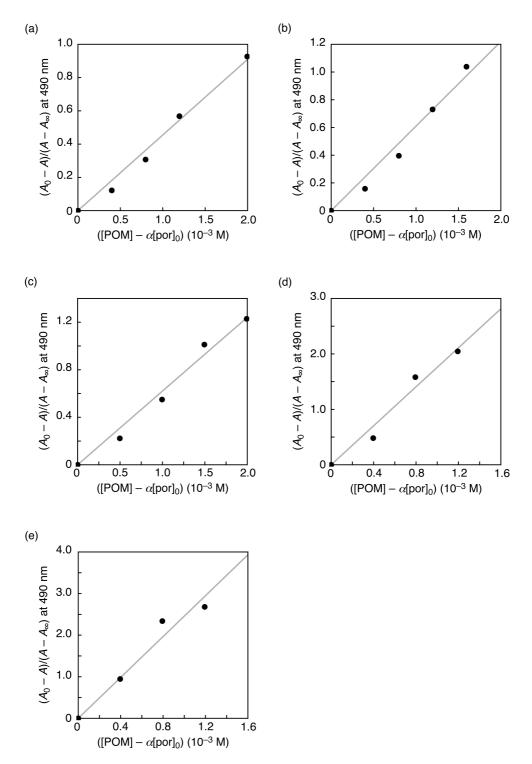
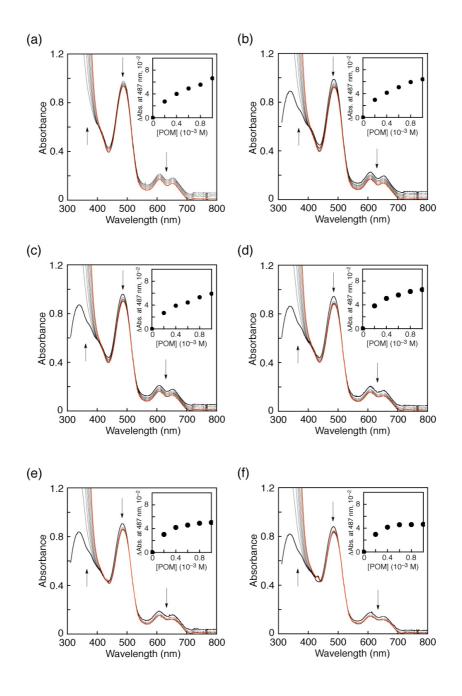


Fig. S4 IR spectra (KBr) of 1 ((a), (b)), 2 ((c), (d)) and 3 ((e), (f)).


Fig. S5 (a) MALDI-TOF-MS spectrum of 4 (m/z = 4229.24) and computer simulation ([$\{Mo(DPP)(O)(H_2O)(SW_{12}O_{40})\}^-$, 4229.59 m/z] in CH₂Cl₂. (b) MALDI-TOF-MS spectrum of **6** (m/z = 3620.61) and computer simulation ([$\{Mo(TPP)(O)(H_2O)(SW_{12}O_{40})\}^-$, 3620.81 m/z] in CH₂Cl₂. (linear negative mode, matrix; α -cyano-4-hydroxycinnamic acid (CHCA)).

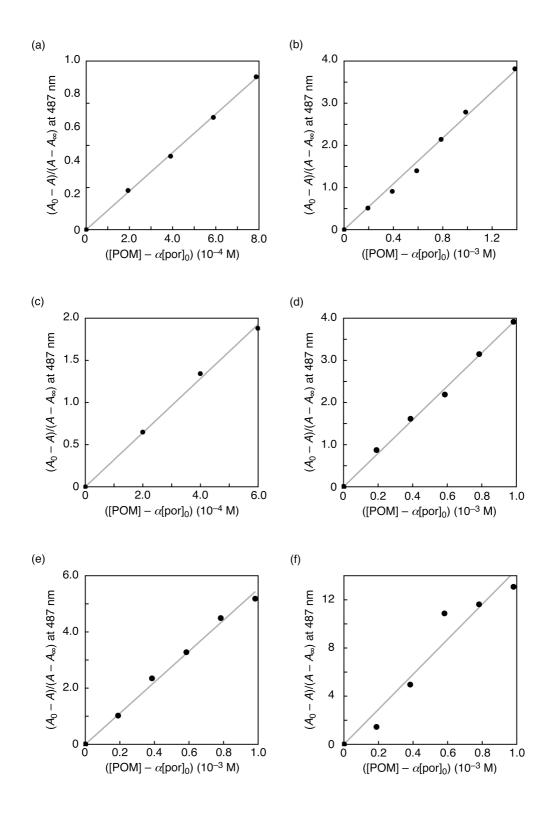

Fig. S6 UV-vis spectral titration of **1** $(1.0 \times 10^{-5} \text{ M})$ upon addition of **2** in PhCN at 265 K (a), 273 K (b), 283 K (c), 303 K (d) and 313 K (e). Each $\Delta Abs (A - A_0)$ at 490 nm was plotted as insets.

Fig. S7 Plots of $(A - A_0)/(A_{\infty} - A)$ versus ([POM] – α [por]₀) for the spectroscopic titration of **1** upon addition of **2** in PhCN using absorbance at 490 nm; (a) 265 K, (b) 273 K, (c) 283 K, (d) 303 K and (e) 313 K.

Fig. S8 UV-vis spectral titration of 4 (2.0×10^{-5} M) upon addition of 2 in PhCN at 265 K (a), 273 K (b), 283 K (c), 293 K (d), 303 K (e) and 313 K (f). Each Δ Abs ($A - A_0$) at 487 nm was plotted as insets.

Fig. S9 Plots of $(A - A_0)/(A_{\infty} - A)$ versus ([POM] – α [por]₀) for the spectroscopic titration of **4** upon addition of **2** in PhCN using absorbance at 487 nm; (a) 265 K, (b) 273 K, (c) 283 K, (d) 298 K, (e) 303 K and (f) 313 K.

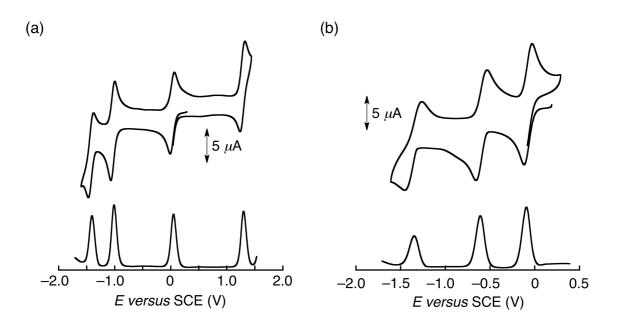


Fig. S10 Cyclic voltammograms (upper) and differential pulse voltammograms (bottom) for (a) 1 (1.0 mM) and (b) 2 (1.0 mM) under Ar in the presence of 0.1 M TBAPF₆ in PhCN at room temperature.