Dalton Trans.

Supplementary Information

Amido Analogues of Zincocenes and Cadmocenes

Alexander J. Blake, William Lewis, Jonathan McMaster, Rhiannon S. Moorhouse, Graeme J. Moxey and Deborah L. Kays*

Supplementary Information

Refinement Details and Structural Data for 1 and 2•C7H8 and Details of Calculations on 1, 1a and 2

Refinement Details and Structural data for **1** Refinement Details and Structural data for **2**•C₇H₈ Details of Calculations

Refinement Details and Structural data for 1

Crystallographic Method

Crystals of **1** were mounted on a dual-stage glass fiber using YR-1800 perfluoropolyether oil (Lancaster) and cooled rapidly to 90 K in a stream of cold nitrogen using an Oxford Cryosystems low-temperature device. Data for compound **1** were collected on a Bruker SMART1000 diffractometer, equipped with a graphite-monochromated Mo- K_{α} radiation source ($\lambda = 0.71073$ Å). Absorption corrections were applied using a multi-scan method (SADABS).¹ All non-H atoms were located using direct methods² and difference Fourier syntheses. All fully occupied non-H atoms were refined with anisotropic displacement parameters. CCDC 783804 contains the supplementary data for **1**. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif.

Refinement special details: We were unable to develop a split-atom disorder model for C52: the best description is a single atom with a prolate ellipsoid. We attribute the features which give rise to several validation Alerts to the existence of strong pseudosymmetry in the crystal structure. Although the space group indicated by analysis of systematic absences is $P2_12_12$, post-refinement analysis of the atomic positions indicates that 93% of these are compatible with *Pccn*, albeit within a wide agreement limit of 0.80 Angstroms.

Crystal data for 1: C₅₆H₈₀N₂Zn, $M_r = 846.59$, 0.31 x 0.23 x 0.15 mm³, orthorhombic, space group $P2_12_12$ (No. 19), a = 24.0248(12), b = 35.8255(17), c = 11.7851(6), V = 10143.4(9) Å³, Z = 8, $\rho_{calcd} = 1.109$ g cm⁻³; $\mu = 0.520$ mm⁻¹, Mo_{Ka} radiation, $\lambda = 0.71073$ Å, T = 90 K. 65071 reflections measured (23125 unique, $R_{int} = 0.070$, $\theta < 25^{\circ}$). Data were collected on a Bruker SMART1000 diffractometer and were corrected for absorption (transmission range 0.60-0.75). The structure was solved by direct methods and refined by full-matrix least-squares on F^2 to give $wR_2 = 0.114$ for all data and $R_1 = 0.0448$ for 15771 reflections with $I > 2\sigma(I)$, GooF = 1.04 for 1065 parameters. Min. and max. residual electron densities – 0.69 and 0.59 e/Å³.

Table S1. Crystal data and structure refinement for **1**.

Identification code	ZNRMLC	
Empirical formula	C56 H80 N2 Zn	
Formula weight	846.59	
Temperature	90(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P 21 21 2	
Unit cell dimensions	a = 24.0248(12) Å	$\alpha = 90^{\circ}$.
	b = 35.8255(17) Å	$\beta = 90^{\circ}$.
	c = 11.7851(6) Å	$\gamma = 90^{\circ}$.
Volume	10143.4(9) Å ³	
Z	8	
Density (calculated)	1.109 Mg/m ³	
Absorption coefficient	0.520 mm ⁻¹	
F(000)	3680	
Crystal size	0.31 x 0.23 x 0.15 mm ³	
Theta range for data collection	1.02 to 27.48°.	
Index ranges	-27<=h<=31, -46<=k<=30, -13<=l<=15	
Reflections collected	65071	
Independent reflections	23125 [R(int) = 0.070]	
Completeness to theta = 25.03°	99.9 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.746 and 0.595	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	17883 / 1100 / 1065	
Goodness-of-fit on F ²	1.04	
Final R indices [I>2sigma(I)]	R1 = 0.0448, $wR2 = 0.0947$	
R indices (all data)	R1 = 0.0782, $wR2 = 0.114$	
Absolute structure parameter	0.464(10)	
Largest diff. peak and hole	0.59 and -0.69 e.Å ⁻³	

	0	
Table S2.	Bond lengths [A] and angles [°] for 1 .	

Zn(1)-N(1)	1.867(3)
Zn(1)-N(2)	1.886(3)
N(1)-C(1)	1.427(4)
N(1)-C(12)	1.436(5)
C(1)-C(6)	1.405(5)
C(1)-C(2)	1.411(5)
Zn(2)-N(3)	1.870(3)
Zn(2)-N(4)	1.887(3)
N(2)-C(29)	1.430(4)
N(2)-C(40)	1.452(5)
C(2)-C(3)	1.407(5)
C(2)-C(13)	1.534(5)
N(3)-C(68)	1.431(4)
N(3)-C(57)	1.436(4)
C(3)-C(4)	1.399(5)
N(4)-C(85)	1.435(5)
N(4)-C(96)	1.435(4)
C(4)-C(5)	1.385(5)
C(4)-C(17)	1.544(5)
C(5)-C(6)	1.391(5)
C(6)-C(7)	1.437(5)
C(7)-C(8)	1.394(5)
C(7)-C(12)	1.413(5)
C(8)-C(9)	1.379(5)
C(9)-C(10)	1.401(5)
C(9)-C(21)	1.533(5)
C(10)-C(11)	1.396(5)
C(11)-C(12)	1.422(5)
C(11)-C(25)	1.544(5)
C(13)-C(16)	1.535(5)
C(13)-C(14)	1.538(5)
C(13)-C(15)	1.540(5)
C(17)-C(18)	1.524(6)
C(17)-C(19)	1.534(6)
C(17)-C(20)	1.537(5)
C(21)-C(24)	1.537(6)
C(21)-C(22)	1.537(6)
C(21)-C(23)	1.539(6)

C(25)-C(27)	1.528(5)
C(25)-C(28)	1.539(5)
C(25)-C(26)	1.553(5)
C(29)-C(30)	1.409(5)
C(29)-C(34)	1.412(5)
C(30)-C(31)	1.395(5)
C(30)-C(41)	1.539(5)
C(31)-C(32)	1.402(5)
C(32)-C(33)	1.377(5)
C(32)-C(45)	1.548(5)
C(33)-C(34)	1.389(5)
C(34)-C(35)	1.450(5)
C(35)-C(36)	1.378(5)
C(35)-C(40)	1.412(5)
C(36)-C(37)	1.389(5)
C(37)-C(38)	1.408(5)
C(37)-C(49)	1.536(5)
C(38)-C(39)	1.387(5)
C(39)-C(40)	1.407(5)
C(39)-C(53)	1.542(5)
C(41)-C(44)	1.534(5)
C(41)-C(42)	1.540(5)
C(41)-C(43)	1.542(5)
C(45)-C(46)	1.503(6)
C(45)-C(47)	1.516(6)
C(45)-C(48)	1.523(6)
C(49)-C(52)	1.527(6)
C(49)-C(50)	1.532(5)
C(49)-C(51)	1.542(5)
C(53)-C(55)	1.519(5)
C(53)-C(54)	1.529(5)
C(53)-C(56)	1.542(5)
C(57)-C(58)	1.412(5)
C(57)-C(62)	1.416(5)
C(58)-C(59)	1.387(5)
C(58)-C(69)	1.561(5)
C(59)-C(60)	1.408(5)
C(60)-C(61)	1.390(5)
C(60)-C(73)	1.530(5)
C(61)-C(62)	1.386(5)

C(62)-C(63)	1.450(5)
C(63)-C(64)	1.389(5)
C(63)-C(68)	1.400(5)
C(64)-C(65)	1.385(5)
C(65)-C(66)	1.400(5)
C(65)-C(77)	1.553(5)
C(66)-C(67)	1.404(5)
C(67)-C(68)	1.418(5)
C(67)-C(81)	1.533(5)
C(69)-C(70)	1.522(5)
C(69)-C(72)	1.536(5)
C(69)-C(71)	1.548(5)
C(73)-C(74)	1.530(6)
C(73)-C(76)	1.540(6)
C(73)-C(75)	1.541(6)
C(77)-C(80)	1.529(5)
C(77)-C(79)	1.531(5)
C(77)-C(78)	1.532(6)
C(81)-C(82)	1.533(5)
C(81)-C(83)	1.538(5)
C(81)-C(84)	1.539(5)
C(85)-C(86)	1.407(5)
C(85)-C(90)	1.408(5)
C(86)-C(87)	1.395(5)
C(86)-C(97)	1.548(5)
C(87)-C(88)	1.407(5)
C(88)-C(89)	1.389(5)
C(88)-C(101)	1.527(5)
C(89)-C(90)	1.390(5)
C(90)-C(91)	1.439(5)
C(91)-C(92)	1.396(5)
C(91)-C(96)	1.407(5)
C(92)-C(93)	1.387(5)
C(93)-C(94)	1.406(5)
C(93)-C(105)	1.537(5)
C(94)-C(95)	1.397(5)
C(95)-C(96)	1.411(5)
C(95)-C(109)	1.537(5)
C(97)-C(100)	1.527(5)
C(97)-C(99)	1.531(5)

C(97)-C(98)	1.533(5)
C(101)-C(104)	1.527(6)
C(101)-C(102)	1.532(6)
C(101)-C(103)	1.537(5)
C(105)-C(106)	1.519(6)
C(105)-C(108)	1.521(6)
C(105)-C(107)	1.547(6)
C(109)-C(111)	1.530(5)
C(109)-C(112)	1.539(5)
C(109)-C(110)	1.542(5)
N(1)-Zn(1)-N(2)	169.03(12)
C(1)-N(1)-C(12)	104.7(3)
C(1)-N(1)-Zn(1)	116.8(2)
C(12)-N(1)-Zn(1)	108.0(2)
C(6)-C(1)-C(2)	120.6(3)
C(6)-C(1)-N(1)	110.6(3)
C(2)-C(1)-N(1)	128.7(3)
N(3)-Zn(2)-N(4)	169.50(13)
C(29)-N(2)-C(40)	104.4(3)
C(29)-N(2)-Zn(1)	114.6(2)
C(40)-N(2)-Zn(1)	103.1(2)
C(3)-C(2)-C(1)	115.2(3)
C(3)-C(2)-C(13)	120.2(3)
C(1)-C(2)-C(13)	124.6(3)
C(68)-N(3)-C(57)	104.7(3)
C(68)-N(3)-Zn(2)	116.9(2)
C(57)-N(3)-Zn(2)	107.0(2)
C(4)-C(3)-C(2)	125.2(3)
C(85)-N(4)-C(96)	104.5(3)
C(85)-N(4)-Zn(2)	105.3(2)
C(96)-N(4)-Zn(2)	114.6(2)
C(5)-C(4)-C(3)	117.4(3)
C(5)-C(4)-C(17)	120.0(3)
C(3)-C(4)-C(17)	122.6(3)
C(4)-C(5)-C(6)	120.2(3)
C(5)-C(6)-C(1)	121.3(3)
C(5)-C(6)-C(7)	131.4(3)
C(1)-C(6)-C(7)	107.3(3)
C(8)-C(7)-C(12)	122.2(4)

C(8)-C(7)-C(6)	130.5(4)
C(12)-C(7)-C(6)	106.9(3)
C(9)-C(8)-C(7)	119.8(4)
C(8)-C(9)-C(10)	117.1(3)
C(8)-C(9)-C(21)	123.4(4)
C(10)-C(9)-C(21)	119.3(3)
C(11)-C(10)-C(9)	126.1(4)
C(10)-C(11)-C(12)	115.3(3)
C(10)-C(11)-C(25)	117.2(3)
C(12)-C(11)-C(25)	127.2(3)
C(7)-C(12)-C(11)	119.3(3)
C(7)-C(12)-N(1)	110.3(3)
C(11)-C(12)-N(1)	130.1(3)
C(2)-C(13)-C(16)	112.7(3)
C(2)-C(13)-C(14)	110.2(3)
C(16)-C(13)-C(14)	106.2(3)
C(2)-C(13)-C(15)	110.1(3)
C(16)-C(13)-C(15)	106.9(3)
C(14)-C(13)-C(15)	110.5(3)
C(18)-C(17)-C(19)	108.8(4)
C(18)-C(17)-C(20)	107.7(3)
C(19)-C(17)-C(20)	109.1(3)
C(18)-C(17)-C(4)	112.8(3)
C(19)-C(17)-C(4)	109.4(3)
C(20)-C(17)-C(4)	109.0(3)
C(9)-C(21)-C(24)	108.5(3)
C(9)-C(21)-C(22)	111.8(3)
C(24)-C(21)-C(22)	108.8(3)
C(9)-C(21)-C(23)	110.7(3)
C(24)-C(21)-C(23)	109.1(4)
C(22)-C(21)-C(23)	107.8(4)
C(27)-C(25)-C(28)	107.2(3)
C(27)-C(25)-C(11)	115.7(3)
C(28)-C(25)-C(11)	110.0(3)
C(27)-C(25)-C(26)	107.2(3)
C(28)-C(25)-C(26)	109.2(3)
C(11)-C(25)-C(26)	107.4(3)
C(30)-C(29)-C(34)	119.8(3)
C(30)-C(29)-N(2)	129.6(3)
C(34)-C(29)-N(2)	110.6(3)

C(31)-C(30)-C(29)	115.9(3)
C(31)-C(30)-C(41)	120.3(3)
C(29)-C(30)-C(41)	123.7(3)
C(30)-C(31)-C(32)	124.9(4)
C(33)-C(32)-C(31)	118.0(3)
C(33)-C(32)-C(45)	120.2(3)
C(31)-C(32)-C(45)	121.7(3)
C(32)-C(33)-C(34)	119.5(4)
C(33)-C(34)-C(29)	121.9(3)
C(33)-C(34)-C(35)	130.6(4)
C(29)-C(34)-C(35)	107.4(3)
C(36)-C(35)-C(40)	121.6(4)
C(36)-C(35)-C(34)	131.7(4)
C(40)-C(35)-C(34)	106.6(3)
C(35)-C(36)-C(37)	119.6(4)
C(36)-C(37)-C(38)	117.3(4)
C(36)-C(37)-C(49)	119.6(4)
C(38)-C(37)-C(49)	123.2(4)
C(39)-C(38)-C(37)	125.4(4)
C(38)-C(39)-C(40)	115.1(3)
C(38)-C(39)-C(53)	120.8(3)
C(40)-C(39)-C(53)	123.9(3)
C(39)-C(40)-C(35)	120.4(3)
C(39)-C(40)-N(2)	129.0(3)
C(35)-C(40)-N(2)	110.4(3)
C(44)-C(41)-C(30)	112.6(3)
C(44)-C(41)-C(42)	107.2(3)
C(30)-C(41)-C(42)	108.7(3)
C(44)-C(41)-C(43)	106.5(3)
C(30)-C(41)-C(43)	111.6(3)
C(42)-C(41)-C(43)	110.2(3)
C(46)-C(45)-C(47)	110.1(4)
C(46)-C(45)-C(48)	108.4(4)
C(47)-C(45)-C(48)	107.3(4)
C(46)-C(45)-C(32)	110.5(3)
C(47)-C(45)-C(32)	108.3(3)
C(48)-C(45)-C(32)	112.2(3)
C(52)-C(49)-C(50)	108.9(4)
C(52)-C(49)-C(37)	109.0(3)
C(50)-C(49)-C(37)	113.2(3)

C(52)-C(49)-C(51)	108.9(4)
C(50)-C(49)-C(51)	108.3(3)
C(37)-C(49)-C(51)	108.4(4)
C(55)-C(53)-C(54)	107.9(3)
C(55)-C(53)-C(56)	107.7(3)
C(54)-C(53)-C(56)	109.0(3)
C(55)-C(53)-C(39)	112.0(3)
C(54)-C(53)-C(39)	109.5(3)
C(56)-C(53)-C(39)	110.7(3)
C(58)-C(57)-C(62)	119.4(3)
C(58)-C(57)-N(3)	130.1(3)
C(62)-C(57)-N(3)	110.3(3)
C(59)-C(58)-C(57)	115.9(3)
C(59)-C(58)-C(69)	116.7(3)
C(57)-C(58)-C(69)	126.9(3)
C(58)-C(59)-C(60)	125.8(3)
C(61)-C(60)-C(59)	116.9(4)
C(61)-C(60)-C(73)	123.4(3)
C(59)-C(60)-C(73)	119.7(3)
C(62)-C(61)-C(60)	119.7(4)
C(61)-C(62)-C(57)	122.2(3)
C(61)-C(62)-C(63)	131.0(3)
C(57)-C(62)-C(63)	106.6(3)
C(64)-C(63)-C(68)	122.3(3)
C(64)-C(63)-C(62)	130.4(3)
C(68)-C(63)-C(62)	107.3(3)
C(65)-C(64)-C(63)	118.7(3)
C(64)-C(65)-C(66)	118.8(3)
C(64)-C(65)-C(77)	119.0(3)
C(66)-C(65)-C(77)	122.1(3)
C(65)-C(66)-C(67)	124.6(3)
C(66)-C(67)-C(68)	115.0(3)
C(66)-C(67)-C(81)	120.8(3)
C(68)-C(67)-C(81)	124.2(3)
C(63)-C(68)-C(67)	120.5(3)
C(63)-C(68)-N(3)	110.8(3)
C(67)-C(68)-N(3)	128.6(3)
C(70)-C(69)-C(72)	107.6(3)
C(70)-C(69)-C(71)	107.4(3)
C(72)-C(69)-C(71)	110.0(3)

C(70)-C(69)-C(58)	115.5(3)
C(72)-C(69)-C(58)	107.0(3)
C(71)-C(69)-C(58)	109.3(3)
C(60)-C(73)-C(74)	112.6(3)
C(60)-C(73)-C(76)	109.9(3)
C(74)-C(73)-C(76)	107.7(4)
C(60)-C(73)-C(75)	108.6(3)
C(74)-C(73)-C(75)	108.5(3)
C(76)-C(73)-C(75)	109.4(4)
C(80)-C(77)-C(79)	107.9(3)
C(80)-C(77)-C(78)	108.6(4)
C(79)-C(77)-C(78)	108.9(3)
C(80)-C(77)-C(65)	112.9(3)
C(79)-C(77)-C(65)	108.4(3)
C(78)-C(77)-C(65)	110.0(3)
C(67)-C(81)-C(82)	112.2(3)
C(67)-C(81)-C(83)	111.1(3)
C(82)-C(81)-C(83)	106.8(3)
C(67)-C(81)-C(84)	109.8(3)
C(82)-C(81)-C(84)	106.6(3)
C(83)-C(81)-C(84)	110.3(3)
C(86)-C(85)-C(90)	119.8(3)
C(86)-C(85)-N(4)	129.2(3)
C(90)-C(85)-N(4)	110.8(3)
C(87)-C(86)-C(85)	115.9(3)
C(87)-C(86)-C(97)	120.0(3)
C(85)-C(86)-C(97)	124.0(3)
C(86)-C(87)-C(88)	125.1(4)
C(89)-C(88)-C(87)	117.2(3)
C(89)-C(88)-C(101)	119.8(3)
C(87)-C(88)-C(101)	122.9(3)
C(88)-C(89)-C(90)	119.6(4)
C(89)-C(90)-C(85)	121.8(3)
C(89)-C(90)-C(91)	131.6(3)
C(85)-C(90)-C(91)	106.5(3)
C(92)-C(91)-C(96)	121.8(3)
C(92)-C(91)-C(90)	130.4(3)
C(96)-C(91)-C(90)	107.8(3)
C(93)-C(92)-C(91)	119.1(3)
C(92)-C(93)-C(94)	117.9(3)

C(92)-C(93)-C(105)	121.4(3)
C(94)-C(93)-C(105)	120.8(3)
C(95)-C(94)-C(93)	125.4(3)
C(94)-C(95)-C(96)	115.0(3)
C(94)-C(95)-C(109)	119.9(3)
C(96)-C(95)-C(109)	125.0(3)
C(91)-C(96)-C(95)	120.7(3)
C(91)-C(96)-N(4)	110.1(3)
C(95)-C(96)-N(4)	129.0(3)
C(100)-C(97)-C(99)	106.5(3)
C(100)-C(97)-C(98)	107.9(3)
C(99)-C(97)-C(98)	109.7(3)
C(100)-C(97)-C(86)	112.1(3)
C(99)-C(97)-C(86)	109.6(3)
C(98)-C(97)-C(86)	110.8(3)
C(88)-C(101)-C(104)	109.1(3)
C(88)-C(101)-C(102)	110.0(4)
C(104)-C(101)-C(102)	110.7(4)
C(88)-C(101)-C(103)	113.1(3)
C(104)-C(101)-C(103)	107.5(4)
C(102)-C(101)-C(103)	106.4(3)
C(106)-C(105)-C(108)	108.1(4)
C(106)-C(105)-C(93)	111.8(3)
C(108)-C(105)-C(93)	111.8(3)
C(106)-C(105)-C(107)	110.3(4)
C(108)-C(105)-C(107)	107.1(4)
C(93)-C(105)-C(107)	107.6(3)
C(111)-C(109)-C(95)	112.5(3)
C(111)-C(109)-C(112)	107.0(3)
C(95)-C(109)-C(112)	109.6(3)
C(111)-C(109)-C(110)	106.6(3)
C(95)-C(109)-C(110)	111.0(3)
C(112)-C(109)-C(110)	109.9(3)

Refinement Details and Structural data for 2•C7H8

Crystallographic Method

Crystals of $2 \cdot C_7 H_8$ were mounted on a dual-stage glass fiber using YR-1800 perfluoropolyether oil (Lancaster) and cooled rapidly to 150 K in a stream of cold nitrogen using an Oxford Cryosystems low-temperature device. Data for compound $2 \cdot C_7 H_8$ were collected on a Bruker SMART1000 diffractometer, equipped with a graphite-monochromated Mo- K_{α} radiation source ($\lambda = 0.71073$ Å). Absorption corrections were applied using a multi-scan method (SADABS).¹ All non-H atoms were located using direct methods² and difference Fourier syntheses. All fully occupied non-H atoms were refined with anisotropic displacement parameters. CCDC 783805 contains the supplementary data for $2 \cdot C_7 H_8$. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif.

Refinement special details: The lattice toluene molecule was disordered over three positions. The disorder was successfully modelled using 39:33:28 occupancy levels, isotropic displacement parameters and optimised bond geometries.

Crystal data for 2•C₇H₈: C₅₆H₈₀CdN₂•C₇H₈, $M_r = 985.75$, 0.26 x 0.16 x 0.05 mm³, triclinic, space group *P*-1 (No. 2), a = 12.192(2), b = 14.983(3), c = 16.507(3), $\alpha = 68.19(3)$, $\beta = 82.75(3)$, $\gamma = 81.36(3)$, V = 2759.5(10) Å³, Z = 2, $\rho_{calcd} = 1.186$ g cm⁻³; $\mu = 0.435$ mm⁻¹, Mo_{Kα} radiation, $\lambda = 0.71073$ Å, T = 150 K. 24741 reflections measured, (12387 unique, $R_{int} = 0.040$, $\theta < 27.5^{\circ}$). Data were collected on a Bruker SMART1000 diffractometer and were corrected for absorption (transmission range 0.70-0.75). The structure was solved by direct methods and refined by full-matrix least-squares on F^2 to give $wR_2 = 0.179$ for all data and $R_1 = 0.0581$ for 7795 reflections with $I > 2\sigma(I)$, GooF = 1.02 for 622 parameters. Min. and max. residual electron densities -0.71 and 1.39 e/Å³.

Table S3. Crystal data and structure refinement for $2 \cdot C_7 H_8$.

Identification code	CDCBTB	
Empirical formula	C63 H88 Cd N2	
Formula weight	985.75	
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	$a = 12.192(2) \text{ Å}$ $\alpha = 68.19(3)$	
	b = 14.983(3) Å	$\beta = 82.75(3)^{\circ}$.
	c = 16.507(3) Å	$\gamma = 81.36(3)^{\circ}$.
Volume	2759.5(10) Å ³	
Z	2	
Density (calculated)	1.186 Mg/m ³	
Absorption coefficient	0.435 mm ⁻¹	
F(000)	1056	
Crystal size	0.26 x 0.16 x 0.05 mm ³	
Theta range for data collection	1.33 to 27.50°.	
Index ranges	-15<=h<=15, -19<=k<=19, -21<=l<=21	
Reflections collected	24741	
Independent reflections	12387 [R(int) = 0.040]	
Completeness to theta = 27.50°	97.8 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7456 and 0.6956	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	12387 / 22 / 622	
Goodness-of-fit on F^2	1.02	
Final R indices [I>2sigma(I)]	R1 = 0.0581, $wR2 = 0.150$	
R indices (all data)	R1 = 0.103, $wR2 = 0.179$	
Largest diff. peak and hole	0.71 and -1.39 e.Å ⁻³	

Table S4.	Bond lengths [A	A] and angles [[°] for 2• C ₇ H ₈ .
-----------	-----------------	-----------------	---

Cd(1)-N(1)	2.107(4)
Cd(1)-C(11)	2.703(4)
Cd(1)-C(12)	2.710(4)
N(1)-C(11)	1.419(5)
N(1)-C(12)	1.420(5)
C(1)-C(2)	1.393(6)
C(1)-C(12)	1.418(6)
C(1)-C(14)	1.530(6)
Cd(2)-N(2)	2.117(4)
Cd(2)-C(39)	2.667(4)
Cd(2)-C(40)	2.679(4)
N(2)-C(40)	1.420(5)
N(2)-C(39)	1.424(5)
C(2)-C(3)	1.398(6)
C(2)-H(2)	0.9500
C(3)-C(4)	1.381(6)
C(3)-C(17)	1.555(6)
C(4)-C(5)	1.389(6)
C(4)-H(4)	0.9500
C(5)-C(12)	1.411(6)
C(5)-C(6)	1.457(6)
C(6)-C(7)	1.388(6)
C(6)-C(11)	1.407(6)
C(7)-C(8)	1.383(6)
C(7)-H(7)	0.9500
C(8)-C(9)	1.422(6)
C(8)-C(21)	1.540(6)
C(9)-C(10)	1.383(6)
C(9)-H(9)	0.9500
C(10)-C(11)	1.411(6)
C(10)-C(25)	1.544(6)
C(13)-C(14)	1.526(7)
C(13)-H(13A)	0.9800
C(13)-H(13B)	0.9800
C(13)-H(13C)	0.9800
C(14)-C(15)	1.523(7)
C(14)-C(16)	1.534(7)
C(15)-H(15A)	0.9800

C(15)-H(15B)	0.9800
C(15)-H(15C)	0.9800
C(16)-H(16A)	0.9800
C(16)-H(16B)	0.9800
C(16)-H(16C)	0.9800
C(17)-C(19)	1.513(7)
C(17)-C(18)	1.524(7)
C(17)-C(20)	1.536(7)
C(18)-H(18A)	0.9800
C(18)-H(18B)	0.9800
C(18)-H(18C)	0.9800
C(19)-H(19A)	0.9800
C(19)-H(19B)	0.9800
C(19)-H(19C)	0.9800
C(20)-H(20A)	0.9800
C(20)-H(20B)	0.9800
C(20)-H(20C)	0.9800
C(21)-C(24)	1.531(6)
C(21)-C(22)	1.533(6)
C(21)-C(23)	1.542(6)
C(22)-H(22A)	0.9800
C(22)-H(22B)	0.9800
C(22)-H(22C)	0.9800
C(23)-H(23A)	0.9800
C(23)-H(23B)	0.9800
C(23)-H(23C)	0.9800
C(24)-H(24A)	0.9800
C(24)-H(24B)	0.9800
C(24)-H(24C)	0.9800
C(25)-C(27)	1.521(7)
C(25)-C(28)	1.527(6)
C(25)-C(26)	1.534(6)
C(26)-H(26A)	0.9800
C(26)-H(26B)	0.9800
C(26)-H(26C)	0.9800
C(27)-H(27A)	0.9800
C(27)-H(27B)	0.9800
C(27)-H(27C)	0.9800
C(28)-H(28A)	0.9800
C(28)-H(28B)	0.9800

C(28)-H(28C)	0.9800
C(29)-C(30)	1.380(6)
C(29)-C(40)	1.424(5)
C(29)-C(41)	1.533(6)
C(30)-C(31)	1.423(6)
C(30)-H(30)	0.9500
C(31)-C(32)	1.382(5)
C(31)-C(45)	1.532(6)
C(32)-C(33)	1.403(6)
C(32)-H(32)	0.9500
C(33)-C(40)	1.392(6)
C(33)-C(34)	1.455(5)
C(34)-C(35)	1.390(6)
C(34)-C(39)	1.402(6)
C(35)-C(36)	1.386(6)
C(35)-H(35)	0.9500
C(36)-C(37)	1.405(6)
C(36)-C(49)	1.547(6)
C(37)-C(38)	1.391(6)
C(37)-H(37)	0.9500
C(38)-C(39)	1.416(5)
C(38)-C(53)	1.531(6)
C(41)-C(42)	1.513(6)
C(41)-C(43)	1.534(6)
C(41)-C(44)	1.539(6)
C(42)-H(42A)	0.9800
C(42)-H(42B)	0.9800
C(42)-H(42C)	0.9800
C(43)-H(43A)	0.9800
C(43)-H(43B)	0.9800
C(43)-H(43C)	0.9800
C(44)-H(44A)	0.9800
C(44)-H(44B)	0.9800
C(44)-H(44C)	0.9800
C(45)-C(47)	1.523(6)
C(45)-C(48)	1.528(6)
C(45)-C(46)	1.533(6)
C(46)-H(46A)	0.9800
C(46)-H(46B)	0.9800
C(46)-H(46C)	0.9800

C(47)-H(47A)	0.9800
C(47)-H(47B)	0.9800
C(47)-H(47C)	0.9800
C(48)-H(48A)	0.9800
C(48)-H(48B)	0.9800
C(48)-H(48C)	0.9800
C(49)-C(51)	1.519(7)
C(49)-C(50)	1.523(7)
C(49)-C(52)	1.529(7)
C(50)-H(50A)	0.9800
C(50)-H(50B)	0.9800
C(50)-H(50C)	0.9800
C(51)-H(51A)	0.9800
C(51)-H(51B)	0.9800
C(51)-H(51C)	0.9800
C(52)-H(52A)	0.9800
C(52)-H(52B)	0.9800
C(52)-H(52C)	0.9800
C(53)-C(55)	1.520(7)
C(53)-C(54)	1.528(6)
C(53)-C(56)	1.531(7)
C(54)-H(54A)	0.9800
C(54)-H(54B)	0.9800
C(54)-H(54C)	0.9800
C(55)-H(55A)	0.9800
C(55)-H(55B)	0.9800
C(55)-H(55C)	0.9800
C(56)-H(56A)	0.9800
C(56)-H(56B)	0.9800
C(56)-H(56C)	0.9800
C(100)-C(101)	1.3900
C(100)-C(105)	1.3900
C(100)-C(106)	1.474(12)
C(101)-C(102)	1.3900
C(101)-H(10A)	0.9500
C(102)-C(103)	1.3900
C(102)-H(10B)	0.9500
C(103)-C(104)	1.3900
С(103)-Н(10С)	0.9500
C(104)-C(105)	1.3900

C(104)-H(10D)	0.9500
C(105)-H(10E)	0.9500
C(106)-H(10F)	0.9800
C(106)-H(10G)	0.9800
C(106)-H(10H)	0.9800
C(110)-C(115)	1.28(3)
C(110)-C(116)	1.473(16)
C(110)-C(111)	1.48(2)
C(111)-C(112)	1.4416
C(111)-H(11A)	0.9500
C(112)-C(113)	1.28(3)
C(112)-H(11C)	0.9501
C(113)-C(114)	1.44(4)
C(113)-H(11D)	0.9500
C(114)-C(115)	1.39(3)
C(114)-H(11F)	0.9500
C(115)-H(11G)	0.9500
C(116)-H(11H)	0.9800
C(116)-H(11I)	0.9800
C(116)-H(11J)	0.9800
C(200)-C(201)	1.3900
C(200)-C(205)	1.3900
C(200)-C(206)	1.469(12)
C(201)-C(202)	1.3900
C(201)-H(20D)	0.9500
C(202)-C(203)	1.3900
C(202)-H(20E)	0.9500
C(203)-C(204)	1.3900
C(203)-H(20F)	0.9500
C(204)-C(205)	1.3900
C(204)-H(20G)	0.9500
C(205)-H(20H)	0.9500
C(206)-H(20I)	0.9800
C(206)-H(20J)	0.9800
C(206)-H(20K)	0.9800
N(1)-Cd(1)-C(11)	31.30(12)
N(1)#1-Cd(1)-C(11)	148.70(12)
N(1)-Cd(1)-C(12)	31.20(12)
N(1)#1-Cd(1)-C(12)	148.80(12)

C(11)-Cd(1)-C(12)	49.02(12)
C(11)#1-Cd(1)-C(12)	130.98(12)
C(11)-N(1)-C(12)	104.6(3)
C(11)-N(1)-Cd(1)	98.2(2)
C(12)-N(1)-Cd(1)	98.5(3)
C(2)-C(1)-C(12)	114.4(4)
C(2)-C(1)-C(14)	122.1(4)
C(12)-C(1)-C(14)	123.3(4)
N(2)-Cd(2)-C(39)	32.08(12)
N(2)#2-Cd(2)-C(39)	147.92(12)
N(2)-Cd(2)-C(40)	31.79(12)
N(2)#2-Cd(2)-C(40)	148.21(12)
C(39)-Cd(2)-C(40)	49.64(12)
C(39)#2-Cd(2)-C(40)	130.36(12)
C(40)-N(2)-C(39)	104.2(3)
C(40)-N(2)-Cd(2)	96.5(2)
C(39)-N(2)-Cd(2)	95.8(2)
C(1)-C(2)-C(3)	125.0(4)
C(1)-C(2)-H(2)	117.5
C(3)-C(2)-H(2)	117.5
C(4)-C(3)-C(2)	119.0(4)
C(4)-C(3)-C(17)	121.8(4)
C(2)-C(3)-C(17)	119.1(4)
C(3)-C(4)-C(5)	118.7(4)
C(3)-C(4)-H(4)	120.6
C(5)-C(4)-H(4)	120.6
C(4)-C(5)-C(12)	121.3(4)
C(4)-C(5)-C(6)	132.4(4)
C(12)-C(5)-C(6)	106.2(4)
C(7)-C(6)-C(11)	120.7(4)
C(7)-C(6)-C(5)	132.9(4)
C(11)-C(6)-C(5)	106.3(4)
C(8)-C(7)-C(6)	119.7(4)
C(8)-C(7)-H(7)	120.2
C(6)-C(7)-H(7)	120.2
C(7)-C(8)-C(9)	118.2(4)
C(7)-C(8)-C(21)	122.9(4)
C(9)-C(8)-C(21)	118.9(4)
C(10)-C(9)-C(8)	124.2(4)
C(10)-C(9)-H(9)	117.9

C(8)-C(9)-H(9)	117.9
C(9)-C(10)-C(11)	115.4(4)
C(9)-C(10)-C(25)	121.9(4)
C(11)-C(10)-C(25)	122.5(4)
C(6)-C(11)-C(10)	121.4(4)
C(6)-C(11)-N(1)	111.4(3)
C(10)-C(11)-N(1)	127.2(4)
C(6)-C(11)-Cd(1)	107.8(3)
C(10)-C(11)-Cd(1)	109.7(3)
N(1)-C(11)-Cd(1)	50.5(2)
C(5)-C(12)-C(1)	121.2(4)
C(5)-C(12)-N(1)	111.3(3)
C(1)-C(12)-N(1)	127.5(4)
C(5)-C(12)-Cd(1)	107.9(3)
C(1)-C(12)-Cd(1)	109.0(3)
N(1)-C(12)-Cd(1)	50.3(2)
C(14)-C(13)-H(13A)	109.5
C(14)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13B)	109.5
C(14)-C(13)-H(13C)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5
C(15)-C(14)-C(13)	108.1(4)
C(15)-C(14)-C(1)	113.6(4)
C(13)-C(14)-C(1)	107.9(4)
C(15)-C(14)-C(16)	106.1(4)
C(13)-C(14)-C(16)	109.9(5)
C(1)-C(14)-C(16)	111.2(4)
C(14)-C(15)-H(15A)	109.5
C(14)-C(15)-H(15B)	109.5
H(15A)-C(15)-H(15B)	109.5
C(14)-C(15)-H(15C)	109.5
H(15A)-C(15)-H(15C)	109.5
H(15B)-C(15)-H(15C)	109.5
C(14)-C(16)-H(16A)	109.5
C(14)-C(16)-H(16B)	109.5
H(16A)-C(16)-H(16B)	109.5
C(14)-C(16)-H(16C)	109.5
H(16A)-C(16)-H(16C)	109.5
H(16B)-C(16)-H(16C)	109.5

C(19)-C(17)-C(18)	110.0(4)
C(19)-C(17)-C(20)	109.2(5)
C(18)-C(17)-C(20)	107.6(5)
C(19)-C(17)-C(3)	108.9(4)
C(18)-C(17)-C(3)	110.2(4)
C(20)-C(17)-C(3)	110.9(4)
C(17)-C(18)-H(18A)	109.5
C(17)-C(18)-H(18B)	109.5
H(18A)-C(18)-H(18B)	109.5
C(17)-C(18)-H(18C)	109.5
H(18A)-C(18)-H(18C)	109.5
H(18B)-C(18)-H(18C)	109.5
C(17)-C(19)-H(19A)	109.5
C(17)-C(19)-H(19B)	109.5
H(19A)-C(19)-H(19B)	109.5
C(17)-C(19)-H(19C)	109.5
H(19A)-C(19)-H(19C)	109.5
H(19B)-C(19)-H(19C)	109.5
C(17)-C(20)-H(20A)	109.5
C(17)-C(20)-H(20B)	109.5
H(20A)-C(20)-H(20B)	109.5
C(17)-C(20)-H(20C)	109.5
H(20A)-C(20)-H(20C)	109.5
H(20B)-C(20)-H(20C)	109.5
C(24)-C(21)-C(22)	108.5(4)
C(24)-C(21)-C(8)	108.7(4)
C(22)-C(21)-C(8)	111.7(4)
C(24)-C(21)-C(23)	109.4(4)
C(22)-C(21)-C(23)	107.7(4)
C(8)-C(21)-C(23)	110.9(3)
C(21)-C(22)-H(22A)	109.5
C(21)-C(22)-H(22B)	109.5
H(22A)-C(22)-H(22B)	109.5
C(21)-C(22)-H(22C)	109.5
H(22A)-C(22)-H(22C)	109.5
H(22B)-C(22)-H(22C)	109.5
C(21)-C(23)-H(23A)	109.5
C(21)-C(23)-H(23B)	109.5
H(23A)-C(23)-H(23B)	109.5
C(21)-C(23)-H(23C)	109.5

H(23A)-C(23)-H(23C)	109.5
H(23B)-C(23)-H(23C)	109.5
C(21)-C(24)-H(24A)	109.5
C(21)-C(24)-H(24B)	109.5
H(24A)-C(24)-H(24B)	109.5
C(21)-C(24)-H(24C)	109.5
H(24A)-C(24)-H(24C)	109.5
H(24B)-C(24)-H(24C)	109.5
C(27)-C(25)-C(28)	107.9(4)
C(27)-C(25)-C(26)	108.5(4)
C(28)-C(25)-C(26)	108.0(4)
C(27)-C(25)-C(10)	112.5(3)
C(28)-C(25)-C(10)	112.2(4)
C(26)-C(25)-C(10)	107.5(4)
C(25)-C(26)-H(26A)	109.5
C(25)-C(26)-H(26B)	109.5
H(26A)-C(26)-H(26B)	109.5
C(25)-C(26)-H(26C)	109.5
H(26A)-C(26)-H(26C)	109.5
H(26B)-C(26)-H(26C)	109.5
C(25)-C(27)-H(27A)	109.5
C(25)-C(27)-H(27B)	109.5
H(27A)-C(27)-H(27B)	109.5
C(25)-C(27)-H(27C)	109.5
H(27A)-C(27)-H(27C)	109.5
H(27B)-C(27)-H(27C)	109.5
C(25)-C(28)-H(28A)	109.5
C(25)-C(28)-H(28B)	109.5
H(28A)-C(28)-H(28B)	109.5
C(25)-C(28)-H(28C)	109.5
H(28A)-C(28)-H(28C)	109.5
H(28B)-C(28)-H(28C)	109.5
C(30)-C(29)-C(40)	115.0(4)
C(30)-C(29)-C(41)	123.3(4)
C(40)-C(29)-C(41)	121.6(4)
C(29)-C(30)-C(31)	124.8(4)
C(29)-C(30)-H(30)	117.6
C(31)-C(30)-H(30)	117.6
C(32)-C(31)-C(30)	118.0(4)
C(32)-C(31)-C(45)	122.2(4)

C(30)-C(31)-C(45)	119.8(3)
C(31)-C(32)-C(33)	119.3(4)
C(31)-C(32)-H(32)	120.3
C(33)-C(32)-H(32)	120.3
C(40)-C(33)-C(32)	121.0(4)
C(40)-C(33)-C(34)	106.7(3)
C(32)-C(33)-C(34)	132.3(4)
C(35)-C(34)-C(39)	120.9(4)
C(35)-C(34)-C(33)	133.0(4)
C(39)-C(34)-C(33)	106.1(3)
C(36)-C(35)-C(34)	119.0(4)
C(36)-C(35)-H(35)	120.5
C(34)-C(35)-H(35)	120.5
C(35)-C(36)-C(37)	118.9(4)
C(35)-C(36)-C(49)	121.8(4)
C(37)-C(36)-C(49)	119.3(4)
C(38)-C(37)-C(36)	124.4(4)
C(38)-C(37)-H(37)	117.8
C(36)-C(37)-H(37)	117.8
C(37)-C(38)-C(39)	114.9(4)
C(37)-C(38)-C(53)	122.1(4)
C(39)-C(38)-C(53)	123.0(4)
C(34)-C(39)-C(38)	121.7(4)
C(34)-C(39)-N(2)	111.2(3)
C(38)-C(39)-N(2)	127.1(4)
C(34)-C(39)-Cd(2)	105.3(3)
C(38)-C(39)-Cd(2)	110.4(3)
N(2)-C(39)-Cd(2)	52.1(2)
C(33)-C(40)-N(2)	111.5(3)
C(33)-C(40)-C(29)	121.6(4)
N(2)-C(40)-C(29)	126.9(4)
C(33)-C(40)-Cd(2)	105.2(3)
N(2)-C(40)-Cd(2)	51.7(2)
C(29)-C(40)-Cd(2)	110.9(3)
C(42)-C(41)-C(29)	108.8(4)
C(42)-C(41)-C(43)	109.3(4)
C(29)-C(41)-C(43)	112.1(3)
C(42)-C(41)-C(44)	108.1(4)
C(29)-C(41)-C(44)	111.9(3)
C(43)-C(41)-C(44)	106.6(4)

C(41)-C(42)-H(42A)	109.5
C(41)-C(42)-H(42B)	109.5
H(42A)-C(42)-H(42B)	109.5
C(41)-C(42)-H(42C)	109.5
H(42A)-C(42)-H(42C)	109.5
H(42B)-C(42)-H(42C)	109.5
C(41)-C(43)-H(43A)	109.5
C(41)-C(43)-H(43B)	109.5
H(43A)-C(43)-H(43B)	109.5
C(41)-C(43)-H(43C)	109.5
H(43A)-C(43)-H(43C)	109.5
H(43B)-C(43)-H(43C)	109.5
C(41)-C(44)-H(44A)	109.5
C(41)-C(44)-H(44B)	109.5
H(44A)-C(44)-H(44B)	109.5
C(41)-C(44)-H(44C)	109.5
H(44A)-C(44)-H(44C)	109.5
H(44B)-C(44)-H(44C)	109.5
C(47)-C(45)-C(48)	107.3(4)
C(47)-C(45)-C(31)	111.6(4)
C(48)-C(45)-C(31)	111.9(3)
C(47)-C(45)-C(46)	109.3(4)
C(48)-C(45)-C(46)	108.0(4)
C(31)-C(45)-C(46)	108.6(4)
C(45)-C(46)-H(46A)	109.5
C(45)-C(46)-H(46B)	109.5
H(46A)-C(46)-H(46B)	109.5
C(45)-C(46)-H(46C)	109.5
H(46A)-C(46)-H(46C)	109.5
H(46B)-C(46)-H(46C)	109.5
C(45)-C(47)-H(47A)	109.5
C(45)-C(47)-H(47B)	109.5
H(47A)-C(47)-H(47B)	109.5
C(45)-C(47)-H(47C)	109.5
H(47A)-C(47)-H(47C)	109.5
H(47B)-C(47)-H(47C)	109.5
C(45)-C(48)-H(48A)	109.5
C(45)-C(48)-H(48B)	109.5
H(48A)-C(48)-H(48B)	109.5
C(45)-C(48)-H(48C)	109.5

H(48A)-C(48)-H(48C)	109.5
H(48B)-C(48)-H(48C)	109.5
C(51)-C(49)-C(50)	108.5(4)
C(51)-C(49)-C(52)	109.9(4)
C(50)-C(49)-C(52)	107.9(4)
C(51)-C(49)-C(36)	108.2(4)
C(50)-C(49)-C(36)	111.4(3)
C(52)-C(49)-C(36)	110.9(4)
C(49)-C(50)-H(50A)	109.5
C(49)-C(50)-H(50B)	109.5
H(50A)-C(50)-H(50B)	109.5
C(49)-C(50)-H(50C)	109.5
H(50A)-C(50)-H(50C)	109.5
H(50B)-C(50)-H(50C)	109.5
C(49)-C(51)-H(51A)	109.5
C(49)-C(51)-H(51B)	109.5
H(51A)-C(51)-H(51B)	109.5
C(49)-C(51)-H(51C)	109.5
H(51A)-C(51)-H(51C)	109.5
H(51B)-C(51)-H(51C)	109.5
C(49)-C(52)-H(52A)	109.5
C(49)-C(52)-H(52B)	109.5
H(52A)-C(52)-H(52B)	109.5
C(49)-C(52)-H(52C)	109.5
H(52A)-C(52)-H(52C)	109.5
H(52B)-C(52)-H(52C)	109.5
C(55)-C(53)-C(54)	106.9(4)
C(55)-C(53)-C(38)	112.8(4)
C(54)-C(53)-C(38)	111.9(4)
C(55)-C(53)-C(56)	107.8(4)
C(54)-C(53)-C(56)	109.1(5)
C(38)-C(53)-C(56)	108.3(4)
C(53)-C(54)-H(54A)	109.5
C(53)-C(54)-H(54B)	109.5
H(54A)-C(54)-H(54B)	109.5
C(53)-C(54)-H(54C)	109.5
H(54A)-C(54)-H(54C)	109.5
H(54B)-C(54)-H(54C)	109.5
C(53)-C(55)-H(55A)	109.5
C(53)-C(55)-H(55B)	109.5

H(55A)-C(55)-H(55B)	109.5
C(53)-C(55)-H(55C)	109.5
H(55A)-C(55)-H(55C)	109.5
H(55B)-C(55)-H(55C)	109.5
C(53)-C(56)-H(56A)	109.5
C(53)-C(56)-H(56B)	109.5
H(56A)-C(56)-H(56B)	109.5
C(53)-C(56)-H(56C)	109.5
H(56A)-C(56)-H(56C)	109.5
H(56B)-C(56)-H(56C)	109.5
C(101)-C(100)-C(105)	120.0
C(101)-C(100)-C(106)	119.7(4)
C(105)-C(100)-C(106)	120.3(4)
C(102)-C(101)-C(100)	120.0
C(102)-C(101)-H(10A)	120.0
C(100)-C(101)-H(10A)	120.0
C(100)-C(101)-H(11C)	103.3
C(101)-C(102)-C(103)	120.0
C(101)-C(102)-H(10B)	120.0
C(103)-C(102)-H(10B)	120.0
C(104)-C(103)-C(102)	120.0
C(104)-C(103)-H(10C)	120.0
С(102)-С(103)-Н(10С)	120.0
C(103)-C(104)-C(105)	120.0
C(103)-C(104)-H(10D)	120.0
C(105)-C(104)-H(10D)	120.0
C(104)-C(105)-C(100)	120.0
C(104)-C(105)-H(10E)	120.0
C(100)-C(105)-H(10E)	120.0
C(115)-C(110)-C(116)	128(2)
C(115)-C(110)-C(111)	118.4(19)
C(116)-C(110)-C(111)	113.8(15)
C(112)-C(111)-C(110)	112.0(9)
C(112)-C(111)-H(11A)	124.0
C(110)-C(111)-H(11A)	124.0
C(113)-C(112)-C(111)	132.4(15)
C(113)-C(112)-H(11C)	115.6
C(111)-C(112)-H(11C)	112.1
C(112)-C(113)-C(114)	111(2)
C(112)-C(113)-H(11D)	124.7

C(114)-C(113)-H(11D)	124.7
C(115)-C(114)-C(113)	123(2)
C(115)-C(114)-H(11F)	118.7
C(113)-C(114)-H(11F)	118.7
C(110)-C(115)-C(114)	124(3)
C(110)-C(115)-H(11G)	118.0
C(114)-C(115)-H(11G)	118.0
C(110)-C(116)-H(11H)	109.5
C(110)-C(116)-H(11I)	109.5
H(11H)-C(116)-H(11I)	109.5
C(110)-C(116)-H(11J)	109.5
H(11H)-C(116)-H(11J)	109.5
H(11I)-C(116)-H(11J)	109.5
C(201)-C(200)-C(205)	120.0
C(201)-C(200)-C(206)	119.4(4)
C(205)-C(200)-C(206)	120.5(4)
C(202)-C(201)-C(200)	120.0
C(202)-C(201)-H(20D)	120.0
C(200)-C(201)-H(20D)	120.0
C(201)-C(202)-C(203)	120.0
C(201)-C(202)-H(20E)	120.0
C(203)-C(202)-H(20E)	120.0
C(202)-C(203)-C(204)	120.0
C(202)-C(203)-H(20F)	120.0
C(204)-C(203)-H(20F)	120.0
C(203)-C(204)-C(205)	120.0
C(203)-C(204)-H(20G)	120.0
C(205)-C(204)-H(20G)	120.0
C(204)-C(205)-C(200)	120.0
C(204)-C(205)-H(20H)	120.0
C(200)-C(205)-H(20H)	120.0

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z+1 #2 -x+2,-y,-z

References

- 1. G. M. Sheldrick, *SADABS, Program for area detector absorption correction*, Institute for Inorganic Chemistry, University of Göttingen, Germany, **1996**.
- 2. G. M. Sheldrick, Acta Crystallogr. Sect. A: Found. Crystallogr. 2008, 64, 112.

DFT Calculations

Restricted geometry optimisations were performed for models of **1**, **1a** and **2** using coordinates derived from the X-ray crystal structures of these compounds. **1** was geometry optimised without constraints whereas **1a** and **2** were geometry optimised in C_i symmetry (the molecular symmetry of **2** as derived from X-ray crystallography). The calculations were performed using the Amsterdam Density Functional (ADF) suite version 2009.01.^{1,2} The DFT geometry optimisations employed all-electron Slater type orbital (STO) triple- ζ -plus polarisation basis sets (from the ZORA/TZP database of the ADF suite for the Zn, Cd, C, N, and H atoms. Scalar relativistic approaches were used within the ZORA Hamiltonian for the inclusion of relativistic effects and the local density approximation (LDA) with the correlation potential due to Vosko et al.³ was used in all of the calculations. Gradient corrections were performed using the functionals of Becke⁴ and Perdew.⁵ The bond orders between molecular fragments were calculated using the AOMix program.^{6,7}

References

- C. Fonseca Guerra, J. G. Snijders, G. te Velde and E. J. Baerends, *Theor. Chem. Acc.* 1998, 99, 391.
- G. te Velde, F. M. Bickelhaupt, S. J. A. van Gisbergen, C. Fonseca Guerra, E. J. Baerends, J. G. Snijders and T. Ziegler, J. Comput. Chem. 2001, 22, 931.
- 3. S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200.
- 4. A. D. Becke, Phys. Rev. A. 1988, 38, 3098.
- 5. J. P. Perdew, Phys. Rev. B. 1986, 33, 8822.
- S. I. Gorelsky, AOMix: Program for Molecular Orbital Analysis; University of Ottawa, 2009, <u>http://www.sg-chem.net/</u>
- 7. S. I. Gorelsky, A. B. P. Lever, J. Organomet. Chem. 2001, 635, 187.

Geometry Optimised Structure and Coordinates for 1

1.C	1.310623	3.981448	-4.907242
2.C	-1.012181	-0.060136	-4.711303
3.C	3.746344	3.433029	-4.733844
4.C	0.143588	-2.027801	-3.717836
5.C	2.436376	3.599334	-3.928783
6.C	-0.421993	-0.622791	-3.401482
7.C	1.029103	1.479306	-3.480938
8.C	2.134890	2.294389	-3.167762
9.C	0.706345	0.270196	-2.838888
10.C	2.610034	4.757812	-2.920161
11.C	-7.264117	-0.535630	-1.585467
12.C	-1.588386	-0.748571	-2.404864
13.C	3.008227	1.845406	-2.175531
14.C	1.545182	-0.086800	-1.753237
15.C	2.719104	0.665071	-1.490862
16.C	-7.343129	-2.904324	-0.797231
17.C	-6.969554	-1.467129	-0.387826
18.C	2.260911	-4.282606	-0.572969
19.C	3.499758	-0.086890	-0.538960
20.C	-5.490927	-1.340412	0.029546
21.C	7.793335	-0.501104	0.063010
22.C	2.768529	-1.265237	-0.228660
23.C	-7.868265	-1.052268	0.801062
24.C	4.784413	0.139356	-0.046320
25.C	-4.937990	-0.086813	0.293713
26.C	-4.669477	-2.467714	0.233514
27.C	-1.507357	-3.994503	-0.124482
28.C	3.386968	-2.296255	0.523655
29.C	-3.952410	5.288545	1.189472
30.C	-3.609428	0.007769	0.711942
31.C	2.776068	-3.695130	0.761121
32.C	5.394270	-0.824768	0.757956

33.C	-3.333961	-2.430422	0.671105
34.C	4.678012	-2.012163	1.006521
35.C	-1.504365	5.676428	0.850662
36.C	-2.784206	-1.137142	0.878912
37.C	-3.188412	2.508102	1.166636
38.C	3.804732	-4.699130	1.324781
39.C	-2.840871	1.155330	1.121007
40 C	6.830760	-0.603339	1.270243
41 C	-2.589972	-3 755147	0.946667
42 C	-3 524945	-4 982861	0.893458
43 C	-2 276604	3 430209	1 677022
44 C	-2 550315	4 944213	1.077022
45 C	-1 579170	0.678620	1.722121
46 C	6 807731	0.070020	2 077616
40.C	1 631676	3 613557	1 788286
47.C	7 21 4975	-3.013337	1.788280
40.C	1.064767	-1.730413	2.170090
49.C	-1.004/0/	2.925171	2.188083
50.C	-0.0/38/0	1.5/5540	2.196129
51.C	1.809512	2.058013	2.456502
52.C	-1.9/2226	-3./23101	2.363129
53.C	1.002336	-0.239044	2.982765
54.C	-2.446935	5.460188	3.176533
55.C	0.610243	1.245161	2.995580
56.C	0.367173	1.628674	4.478389
57.H	1.183175	3.231247	-5.700746
58.H	-0.242057	0.065144	-5.485151
59.H	3.655545	2.618294	-5.467020
60.H	1.553453	4.937046	-5.394545
61.H	-1.761405	-0.767202	-5.096218
62.H	3.986650	4.361484	-5.276015
63.H	0.915622	-1.968785	-4.498803
64.H	-1.516995	0.904982	-4.560917
65.H	0.348432	4.102807	-4.389435
66.H	-0.662777	-2.684906	-4.080324
67.H	0.393931	1.791620	-4.303072
68.H	4.593604	3.196435	-4.074852
69.H	0.597331	-2.485361	-2.830644
70.H	-6.644309	-0.801061	-2.454155
71.H	2.830013	5.697660	-3.450422
72.H	-8.322404	-0.614730	-1.879343
73.H	-2.440829	-1.271851	-2.864510
74.H	-7.064997	0.516290	-1.340510
75.H	1.696823	4.901075	-2.325052
76.H	-6.718236	-3.265592	-1.626812
77.H	3.924343	2.389986	-1.943636
78.H	-1.936296	0.231044	-2.049265
79 H	3 436840	4 565367	-2.222724
80 H	-8 391473	-2.933854	-1 128742
81 H	-1 316035	-1 363035	-1 529676
82 H	3 (1942)31	-4 418744	-1 277653
83 H	1 527865	-3 675337	1.277033
84 H	7 520071	0 337370	_0 5000/15
07.11	1.520211	0.554541	0.577043

85.H	-1.951397	-4.042255	-1.128448
86.H	7.770710	-1.423978	-0.534707
87.H	1.796717	-5.265880	-0.398444
88.H	-8.932465	-1.126951	0.525429
89.H	-4.077650	4.973551	0.143598
90.H	-7.245313	-3.609338	0.040497
91.H	-5.534599	0.821794	0.203041
92.H	5.310923	1.052875	-0.325639
93.H	-7.667675	-0.016625	1.109574
94.H	8.827099	-0.336572	0.406337
95.H	-5.111179	-3.444721	0.067712
96.H	-1.560107	5.337997	-0.194099
97.H	-0.744362	-3.199482	-0.148239
98.H	4.678595	-4.796300	0.665675
99.H	-3.942228	-5.149727	-0.109722
100.H	-0.965893	-4.933559	0.064069
101.H	-4.168396	2.818654	0.808581
102.H	-4.109611	6.376248	1.231032
103.H	-7.690439	-1.700720	1.671425
104.H	-1.677328	6.764125	0.873584
105.H	-4.741919	4.813618	1.789764
106.H	3.331540	-5.689019	1.403706
107.H	6.591026	1.574851	1.469214
108.H	5.174814	-2.785259	1.583595
109.H	2.002419	1.827199	1.398917
110.H	-0.482687	5.487198	1.208119
111.H	7.352422	-2.709013	1.638946
112.H	0.817849	-2.950448	1.458368
113.H	-2.951063	-5.881880	1.162684
114.H	-4.356543	-4.889748	1.605443
115.H	4.155048	-4.423945	2.329653
116.H	1.181934	-4.604646	1.950789
117.H	7.925502	0.897049	2.427890
118.H	1.392517	-0.549545	1.996167
119.H	8.331761	-1.534633	2.535341
120.H	-0.380501	3.637086	2.649222
121.H	6.236716	0.670339	2.955517
122.H	1.643164	3.139990	2.541383
123.H	1.991427	-3.231208	2.753554
124.H	-1.320709	-2.854405	2.506756
125.H	6.668300	-1.873967	3.056738
126.H	2.716663	1.812401	3.029679
127.H	-1.391234	-4.639808	2.547654
128.H	-2.646467	6.542625	3.213526
129.H	0.171944	-0.893226	3.270431
130.H	-3.174472	4.952350	3.826269
131.H	-2.768865	-3.665409	3.119060
132.H	1.837988	-0.404117	3.679142
133.H	-1.446229	5.291664	3.597254
134.H	0.124268	2.693730	4.587412
135.H	-0.465721	1.049399	4.902877
136.H	1.271471	1.422175	5.072676

137.N	1.499242	-1.237573	-0.892078
138.N	-1.497586	-0.740165	1.348205
139.Zn	-0.003324	-1.083093	0.248706

Energy = -804.91905621 eV

Geometry Optimised Structure and Coordinates for 1a

1.C	1.651383	2.282887	-3.691237
2.C	1.416210	-2.390172	-3.727485
3.C	1.255663	4.426256	-2.461182
4.C	0.792035	-4.493861	-2.524959
5.C	1.228435	2.890187	-2.330435
6.C	0.926364	-2.965425	-2.375130
7.C	-6.050806	3.870204	-1.369467
8.C	-0.480420	-2.405166	-2.086959
9.C	-0.229564	2.479891	-2.045485
10.C	-4.630519	-4.939941	-1.340686
11.C	-6.426059	-3.202413	-1.412216
12.C	-4.081522	5.406966	-1.280155
13.C	2.221843	2.379945	-1.262616
14.C	1.964528	-2.577416	-1.298997
15.C	2.321065	1.020746	-0.873888
16.C	2.203177	-1.241737	-0.890134
17.C	-5.339005	-3.833997	-0.524208
18.C	-4.904183	4.374452	-0.475060
19.C	3.220001	3.219941	-0.752632
20.C	2.867472	-3.524373	-0.799019
21.C	5.523684	-5.076650	-0.756703
22.C	6.029213	4.478927	-0.701064
23.C	3.450394	0.547114	-0.158928
24.C	3.372977	-0.898731	-0.166527
25.C	-4.250532	1.886577	-0.301427
26.C	-4.428908	-1.430762	-0.317247
27.C	-3.988320	3.225414	-0.011852

28.C	-4.306335	-2.793895	-0.048852
29.C	4.306335	2.793895	0.048852
30.C	3.988320	-3.225414	0.011852
31.C	-6.029213	-4.478927	0.701064
32.C	-5.523684	5.076650	0.756703
33.C	4.428908	1.430762	0.317247
34 C	4.250532	-1.886577	0.301427
35 C	-3 372977	0.898731	0.166527
36 C	-3 450394	-0.547114	0.158928
30.C	1 00/183	-/ 37//52	0.150520
37.C	5 220005	2 822007	0.475000
30.C	2.339003	3.0333377	0.324208
39.C	-2.807472	2 210041	0.759019
40.C	-5.220001	-5.219941	0.752052
41.C	4.081522	-5.406966	1.280155
42.C	6.426059	3.202413	1.412216
43.C	-2.203177	1.241737	0.890134
44.C	-2.321065	-1.020746	0.873888
45.C	-1.964528	2.577416	1.298997
46.C	-2.221843	-2.379945	1.262616
47.C	6.050806	-3.870204	1.369467
48.C	4.630519	4.939941	1.340686
49.C	0.229564	-2.479891	2.045485
50.C	0.480420	2.405166	2.086959
51.C	-0.792035	4.493861	2.524959
52.C	-0.926364	2.965425	2.375130
53.C	-1.255663	-4.426256	2.461182
54.C	-1.228435	-2.890187	2.330435
55.C	-1.416210	2.390172	3.727485
56.C	-1.651383	-2.282887	3.691237
57.H	0.964380	2.618148	-4.484772
58.H	0.700426	-2.640722	-4.526831
59.H	2.670967	2.594290	-3.960799
60.H	2.397867	-2.804998	-3.998596
61.H	1.506816	-1.297163	-3.674455
62.H	1.625139	1.185855	-3.651702
63.H	0.514130	4.736621	-3.211451
64.H	0.023841	-4.714687	-3.279946
65.H	2.234167	4.796205	-2.797372
66.H	1.726792	-4.960898	-2.864740
67.H	-1.189560	-2.767085	-2.846760
68.H	-0.896900	2.925351	-2.798698
69.H	-5.670679	3.361224	-2.266895
70.H	-6.665309	4.719917	-1.700737
71.H	-4.143419	-4.519158	-2.232279
72.H	-5.358487	-5.697754	-1.670312
73.H	-5.993997	-2.726764	-2.304271
74.H	-0.490002	-1.308628	-2.147587
75.H	-0.356964	1.391599	-2.120354
76.H	-7.126579	-3.979100	-1.752235
77.H	-3.641936	4.946111	-2.176604
78.H	-4.724470	6.241532	-1.601035
79.H	-6.710094	3.174065	-0.831524

80.H	1.001785	4.923744	-1.513690
81.H	-3.859963	-5.450549	-0.746914
82.H	0.484969	-4.973354	-1.584032
83.H	4.750015	-5.500518	-1.411740
84.H	6.545943	3.719205	-1.305398
85.H	-0.863096	-2.726548	-1.107118
86.H	-0.574133	2.826849	-1.060367
87.H	2.718962	-4.564057	-1.082878
88.H	3.180388	4.273245	-1.021975
89.H	6.118428	-4.369708	-1.353303
90.H	5.303760	4.988017	-1.350575
91.H	-7.008832	-2.446805	-0.866257
92.H	-5.138114	1.594660	-0.860625
93.H	-5.283736	-1.039522	-0.866665
94.H	-3.261015	5.825640	-0.681346
95.H	-6.770892	-5.225140	0.374885
96 H	6 182373	-5 899776	-0 437589
97.H	-6.182373	5.899776	0.437589
98 H	6 770892	5 225140	-0 374885
99 H	3 261015	-5 825640	0.681346
100 H	7 008832	2 446805	0.866257
100.H	-6 118428	4 369708	1 353303
101.II 102 H	-5 303760	-4 988017	1 350575
102.H	-6 545943	-3 719205	1 305398
103.H	5 283736	1 039522	0.866665
105 H	5 138114	-1 594660	0.860625
105.II 106 H	-4 750015	5 500518	1 411740
100.II 107 H	-3 180388	-4 273245	1.021975
107.II 108 H	-2 718962	4 564057	1.021773
100.II 109 H	6 710094	-3 174065	0.831524
110 H	7 126579	3 979100	1 752235
110.II 111 H	A 724470	-6 241532	1.601035
111.II 112 H	3 850063	5 / 505/9	0.746914
112.II 113 H	0 574133	-7 876849	1 060367
113.II 114 H	0.863096	2 726548	1.000507
11 4 .П 115 Ц	-0.484969	2.7203 4 0 1 073351	1.107110
115.II 116 Н	-1.001785	-1 923711	1.504052
110.11 117 Н	3 6/1936	-4.925744	2 176604
117.П 118 Н	5 003007	2 726764	2.170004
110.II 110 Н	5 358/87	5 697754	1 670312
11).II 120 Ц	6 665300	1 710017	1.070312
120.11 121 Н	5 670679	-4.713317	2 266805
121.II 122 Ц	0.356064	-3.301224	2.200893
122.11 122 Ц	0.330904	-1.391399	2.120334
123.П 124 Ц	0.490002	1.308028	2.14/30/
124.П 125 Ц	4.145419	4.319136	2.252219
12 Ј.П 126 Ц	-1.120192	4.700070	2.004/40
120.П 127 II	-2.23410/	-4./90203	2.171312
12/.П 190 II	1 1 2 0 5 6 0	-2.723331	2.170090 2.016760
120.H	1.189300	2.101083 1711207	2.040/0U
129.H	-0.023841	4./1408/	3.219940 2 011451
13U.П 121 II	-0.314130	-4./30021	3.211431 2.651702
тэт. п	-1.023139	-1.103033	5.051/02

132.H	-1.506816	1.297163	3.674455
133.H	-2.397867	2.804998	3.998596
134.H	-2.670967	-2.594290	3.960799
135.H	-0.700426	2.640722	4.526831
136.H	-0.964380	-2.618148	4.484772
137.N	1.460054	-0.066133	-1.231113
138.N	-1.460054	0.066133	1.231113
139.Zn	0.000000	0.000000	0.000000

Energy = -804.87863635 eV

Geometry Optimised Structure and Coordinates for 2

1.C	1.717644	2.341265	-3.769292
2.C	1.469814	-2.436998	-3.803892
3.C	1.347786	4.455697	-2.481880
4.C	0.895875	-4.532097	-2.562225
5.C	1.324393	2.917114	-2.386448
6.C	1.021623	-3.001037	-2.432902
7.C	-6.118440	3.868701	-1.365445
8.C	-0.384498	-2.451183	-2.115706
9.C	-0.129030	2.499760	-2.080951
10.C	-4.678921	-4.902170	-1.360189
11.C	-6.505083	-3.194629	-1.384981
12.C	-4.121306	5.371727	-1.306909
13.C	2.336586	2.384155	-1.347718
14.C	2.079517	-2.591780	-1.383725
15.C	2.458624	1.011880	-1.007910
16.C	2.341404	-1.244524	-1.023357
17.C	-5.411744	-3.836706	-0.512050
18.C	-4.971280	4.382029	-0.476530
19.C	3.313785	3.225430	-0.801489

20.C	2.960949	-3.537521	-0.845394
21.C	5.590333	-5.137759	-0.723313
22.C	6.097319	4.534952	-0.686480
23.C	3.581450	0.541034	-0.278610
24.C	3.505274	-0.902938	-0.286845
25.C	-4.362654	1.890557	-0.217631
26.C	-4.539705	-1.426965	-0.233099
27.C	-4.081876	3.232607	0.035085
28.C	-4.401250	-2.794034	0.003270
29.C	4.401250	2.794034	-0.003270
30.C	4.081876	-3.232607	-0.035085
31.C	-6.097319	-4.534952	0.686480
32.C	-5.590333	5.137759	0.723313
33.C	4.539705	1.426965	0.233099
34.C	4.362654	-1.890557	0.217631
35.C	-3.505274	0.902938	0.286845
36 C	-3 581450	-0 541034	0.278610
37.C	4 971280	-4.382029	0.476530
38 C	5 411744	3 836706	0.512050
39 C	-2.960949	3 537521	0.845394
40 C	-3 313785	-3 225430	0.801489
41 C	4 121306	-5 371727	1 306909
42 C	6 505083	3 194629	1 384981
43 C	-2 341404	1 244524	1.023357
44 C	-2.541404	-1 011880	1.023337
45 C	-2.079517	2 591780	1 383725
45.C	-2.336586	-2 38/155	1.303723
40.C	6 118/1/0	-3 868701	1.347710
47.C	1 678021	4 902170	1.360180
40.C	4.078921	4.702170	2 080051
4).C	0.129030	2.451183	2.000751
51 C	0.384498	2.451185 4 532007	2.113700
52 C	-0.893873	4.332097	2.302223
52.C	-1.021023 1 247786	<i>A A 5</i> 5 6 0 7	2.432902
54 C	-1.347780	-4.433097	2.401000
55 C	-1.324393	-2.91/114	2.300440
55.C	-1.409014	2.430996	3.603692
50.С 57 Ц	-1./1/044	-2.541205	3.709292
59 Ц	1.012370	2.090364	-4.340702
J0.П 50 Ц	0.734277	-2.099440	-4.301249
J9.П	2.729003	2.003033	-4.033703
00.П	2.443301	-2.830800	-4.090830
01.H	1.55/584	-1.343415	-3.762922
62.H	1.69/956	1.243664	-3./51402
03.H	0.000440	4.782490	-3.219242
04.H	0.123658	-4./08385	-3.308472
05.H	2.323837	4.833/56	-2.815946
00.H	1.832282	-4.9955/2	-2.902218
0/.H	-1.114806	-2.84/334	-2.85/103
08.H	-0.815947	2.979764	-2./94009
09.H	-3./3888/	5.525868	-2.241/14
/U.H	-0./14/84	4./1/5/6	-1./30661
/1.H	-4.193635	-4.443021	-2.233/34

72.H	-5.391321	-5.660985	-1.720307
73.H	-6.077049	-2.683901	-2.259462
74.H	-0.410683	-1.357420	-2.216390
75.H	-0.260585	1.415971	-2.203972
76.H	-7.191426	-3.971279	-1.752842
77.H	-3.679504	4.872345	-2.181454
78.H	-4.745476	6.205755	-1.664414
79.H	-6.795069	3.202282	-0.811695
80.H	1.100949	4.930932	-1.521182
81.H	-3.903360	-5.419284	-0.778628
82.H	0.599504	-5.002382	-1.613121
83.H	4.814951	-5.566840	-1.372923
84.H	6.631633	3.805361	-1.312219
85.H	-0.731730	-2.746090	-1.113207
86.H	-0.448308	2.807095	-1.072801
87.H	2.793948	-4.583647	-1.092514
88.H	3.255287	4.286718	-1.033315
89.H	6.206580	-4.463713	-1.335857
90 H	5 366376	5 051848	-1 323587
91 H	-7 102214	-2.465968	-0.818341
92 H	-5 245447	1 596247	-0 783080
93 H	-5 388910	-1 034730	-0 790620
94 H	-3 300600	5 797284	-0 713238
95 H	-6 823129	-5 283482	0.330934
96 H	6 227771	-5 963395	-0.369069
97 H	-6 227771	5.963395	0.369069
98 H	6 823129	5 283482	-0 330934
99 H	3 300600	-5 797284	0 713238
100 H	7 102214	2 465968	0.818341
100.11 101 H	-6 206580	4 463713	1 335857
101.11 102 H	-5.366376	-5 051848	1.333637
102.11 103 Н	-6 631633	-3 805361	1 312210
103.П 104 Н	5 388010	1 03/730	0.790620
104.11 105 H	5 245447	-1.034730	0.790020
105.11 106 H	-/ 81/051	5 566840	1 372023
100.11 107 Н	3 255287	1 286718	1.033315
107.11 108 H	-2 7030/8	-4.200710	1.000011
100.11 100 Ц	6 705060	4.383047	0.811605
109.П 110 Ц	7 101/26	-3.202282	1 752842
110.11 111 Ц	1.191420	6 205755	1.752642
111.II 112 Ц	4.743470	-0.203733	1.004414
112.II 112 Ц	0.449209	2 807005	0.778028
11 3. П 114 Ц	0.446506	-2.807093	1.072601
114.П 115 U	0.751750	2.740090	1.113207
11 <i>Э</i> .П 11 <i>С</i> Ц	-0.399304	3.002362	1.013121
110.H	-1.100949	-4.930932	1.521182
11/.H	3.679504	-4.8/2345	2.181454
118.H	0.077049	2.083901	2.239462
119.H	5.391321	3.000983	1.720307
120.H	0./14/84	-4./1/5/6	1./50001
121.H	5./5888/	-3.323808	2.241/14
122.H	0.260585	-1.4159/1	2.203972
123.H	0.410683	1.33/420	2.210390

124.H	4.193635	4.443021	2.233734
125.H	-1.832282	4.995572	2.902218
126.H	-2.323837	-4.833756	2.815946
127.H	0.815947	-2.979764	2.794009
128.H	1.114806	2.847334	2.837103
129.H	-0.123658	4.768385	3.308472
130.H	-0.600446	-4.782490	3.219242
131.H	-1.697956	-1.243664	3.751402
132.H	-1.557584	1.343415	3.762922
133.H	-2.445501	2.850806	4.096850
134.H	-2.729663	-2.663653	4.053765
135.H	-0.734277	2.699446	4.581249
136.H	-1.012576	-2.690584	4.540702
137.N	1.619428	-0.073070	-1.404016
138.N	-1.619428	0.073070	1.404016
139.Cd	0.000000	0.000000	0.000000

Energy = -804.16338982 eV