Supplementary Material (ESI) for Dalton Transactions This journal is © the Royal Society of Chemistry 2011

Electronic Supplementary Information for DT-ART-12-2010-001827

Infrared Spectra of CH₃-MH, CH₃-M, and CH₃-MH⁻ Prepared via Methane Activation by

Laser-Ablated Au, Ag, and Cu Atoms

by

Han-Gook Cho and Lester Andrews*

*lsa@virginia.edu

Approximate		СӉ	3-AuH	_			C	₃ -AuH				¹³ C	:H ₃ -AuF	–	
Description	Obs ^b	B3LYP ^c	Int^{c}	BPW91 ^d	Int ^d	Obs ^b	ВЗLYP°	int ^c	BPW91 ^d	Int ^d	Obs ^b	B3LYP ^c	int ^c	BPW91 ^d	Int ^d
A" CH ₃ as. str.		3194.2	~	3135.9	-		2372.0	0	2327.9	0		3181.8	-	3123.8	-
A' CH ₃ as. str.		3157.5	e	3098.2	с		2339.5	~	2294.5	~		3146.4	ო	3087.4	ო
A' CH ₃ s. str.		3040.1	. 	2978.8	. 		2168.9	2	2125.9	÷		3037.6	-	2976.3	-
A' Au-H str.	1853.5	1918.4	10	1917.5	7		1360.8	9	1360.1	4		1918.3	10	1917.4	7
A' CH ₃ scis.		1446.4	2	1401.0	2		1054.4	~	1020.8	÷		1442.6	2	1397.4	7
A" CH ₃ scis.		1410.8	б	1361.8	e		1031.0	2	995.1	7		1406.7	e	1357.9	с
A' CH ₃ deform	1044.9	1089.7	45	1063.4	26	790.3	825.1	30	808.5	17	1040.2	1084.2	44	1057.8	26
A' CH ₃ rock		698.5	22	693.2	18		520.8	7	518.4	0		695.2	22	690.4	18
A" CH ₃ rock		692.8	1	682.2	10		507.9	9	500.8	5		690.4	1	679.8	10
A' CAuH bend		419.9	18	424.5	5		295.6	16	394.0	0		418.6	24	424.6	17
A' C-Au str.		402.8	15	424.6	12		378.6	-	301.3	0		391.3	6	411.3	-
A" CH ₃ tort		182.0	ი	198.8	5		129.3	4	141.2	б		182.0	6	198.8	£
^a Frequencies and	d intensiti	es are in	ı cm	⁻¹ and k	m/mo	.1. ^b Obs	erved in	an ai	rgon mati	rix. °	Compute	ed with]	B3LY	P/6-311-	++G(3.

Table S1: Observed and Calculated Fundamental Frequencies of CH₃-AuH isotopomers in the Ground ²A' State (C_s structure)^a

Approximate		CH	l ₃ -Au				CI	D ₃ -Au				1 ³ C	CH ₃ -Au		
Description	Obs ^b	B3LΥP°	Int ^c	BPW91 ^d	Int ^d	Obs ^b	$B3LYP^{c}$	int ^c	BPW91 ^d	Int ^d	Obs ^b	$B3LYP^{c}$	int ^c	BPW91 ^d	Int ^d
E CH ₃ str.		3161.0	1 x 2	3102.5	1 X 2		2345.2	0 x 2	2301.3	0 x 2		3149.1	1 x 2	3090.8	1 x 2
A ₁ CH ₃ str.		3054.4	1	2991.7	6		2179.4	7	2134.7	9		3052.4	7	2989.8	6
E CH ₃ scis.		1450.9	1 x 2	1403.0	1 x 2		1055.7	1 x 2	1020.9	1 x 2		1447.3	1 x 2	1399.6	1 x 2
$A_1 CH_3 deform$	1181.7	1199.5	55	1164.2	45 (920.5	922.2	33	897.3	28	1173.3	1192.2	54	1157.1	44
E CH ₃ rock	794.5	803.4	29 x 2	788.5	25 x 2 £	584.0	594.0	16 x 2	582.7	13 x 2	90.6	799.9	29 x 2	784.1	25 x 2
A ₁ C-Au str.		527.1	0	538.4	.		484.2	0	493.3	0		510.9	0	521.9	.
^a Frequencies and i	ntensities ¿	are in cm	⁻¹ and	ł km/mo	I. ^b Obs	served in	an argoi	n matr	ix. ° Com	puted v	with B3I	YP/6-31	1++G(3df, 3pd)/	SDD.

Table S2: Observed and Calculated Fundamental Frequencies of CH₃-Au in the Ground ¹A₁ State (C_{3v} structure)^a

Computed with BPW91/6-311++G(3df, 3pd)/SDD. CH₃-Au has a C₃v structure.

φ

Approximate		CH ₃ -AuH	1			CE) ₃ -AuD ⁻				¹³ C	H ₃ -AuH	1	
Description	Obs ^b	B3LYP ^c Int ^c	MP2	int	Obs ^b	взгүр	int ^c	MP2	int	Obs ^b	Β3LΥΡ ^c	int ^c	MP2	int
E CH ₃ str.		3009.9 77 x 2	2 3079.0	56 x 2		2221.5	36 x 2	2276.5	26 x 2		2993.5	78 x 2	3068.3	57 x 2
A ₁ CH ₃ str.		2951.4 165	2999.4	139		2113.3	72	2149.1	60		2948.8	167	2996.6	140
A ₁ Au-H str.	1868.7	1843.7 683	1992.2	459	1341.5	1307.1	336	1412.9	222	1868.7	1848.7	684	1992.0	461
E CH ₃ scis.		1455.5 0 x 2	1457.5	0 x 2		1056.6	0 x 2	1056.5	0 x 2		1452.4	0 x 2	1454.4	0 x 2
$A_1 CH_3 deform$		1145.2 1	1153.4	7	858	884.4	10	895.6	20		1137.4	0	1145.2	9
E CH ₃ rock	726.6	722.2 23 x 2	2 756.3	19 x 2	553.4	544.4	13 x 2	571.4	10 x 2	722.8	717.5	22 x 2	751.8	18 x 2
E CAuH bend		491.1 11 x 2	2 481.8	7 x 2		349.0	5 x 2	342.6	3 x 2		491.0	11 x 2	481.7	7 x 2
A ₁ C-Au str.		453.7 50	483.9	42		413.5	39	438.2	31		440.2	47	469.8	39
^a Frequencies and	intensities	are in cm^{-1} and	km/mol.	^b Observ	ved in an	argon ma	trix. ° (Computed	I with B3	3LYP/6-	.311++G(3df, 3p	d)/SDD.	q

Approximate		CH	3-Agh	-			B	3-AgH				¹³ C	H ₃ -AgF	–	
Description	Obs ^b	взгүр	Int ^c	BPW91 ^d	Int ^d	Obs ^b	ВЗLYP°	int ^c	BPW91 ^d	Int ^d	Obs ^b	$B3LYP^{c}$	int ^c	BPW91 ^d	Int ^d
A" CH ₃ as. str.		3214.3	0	3150.4	-		2388.4	0	2339.5	0		3201.7	0	3138.2	-
A' CH ₃ as. str.		3185.6	. 	3120.5	7		2364.3	0	2314.3	-		3173.6	-	3109.0	5
A' CH ₃ s. str.		3059.4	-	2996.2	7		2177.5	2	2134.3	2		3057.7	. 	2994.4	7
A' Ag-H str.		1622.3	17	1644.6	13		1152.7	6	1168.6	7		1622.2	17	1644.6	13
A' CH ₃ scis.		1436.4	~	1398.5	. 		1049.7	-	1017.3	-		1432.2	. 	1389.6	-
A" CH ₃ scis.		1412.1	с	1366.7	e		1033.6	2	999.7	2		1407.8	2	1362.6	7
A' CH ₃ deform		985.2	101	980.6	60		745.5	70	746.9	39		980.1	98	975.2	58
A" CH ₃ rock		590.4	4	595.7	15		430.9	œ	440.4	19		588.7	4	593.8	15
A' CH ₃ rock		580.0	36	592.0	36		429.4	19	436.1	80		577.7	36	589.5	36
A' CAgH bend		347.0	ω	376.6	. 		319.4	с	349.6			339.6	15	366.5	с
A' C-Ag str.		307.5	109	343.4	68		223.5	57	245.4	33		304.7	101	342.5	66
A" CH ₃ tort		84.2	38	77.2	29		59.9	19	55.0	15		84.2	38	77.3	29
^a Frequencies and inte	insities a	re in cm	-1 and	d km/mol.	^b Not c	bserved	in an arg(n me	utrix. ° Cor	nputed	with B3	LYP/6-31	[]++G	(3df, 3pd	IOS/(

Table S4: Calculated Fundamental Frequencies of CH₃-AgH isotopomers in the Ground ²A' State (C_s structure)^a

Approximate		Ч С	H ₃ -Ag				U	D ₃ -Ag				¹³ C	CH ₃ -Ag		
Description	Obs ^b	Β3LΥΡ°	Int ^c	BPW91	¹ Int ^d	Obs ^b	Β3LΥΡ°	int ^c	BPW91 ^d	Int ^d	Obs ^b	B3LYP ^c	int ^c	BPW91 ^d	Int ^d
E CH ₃ str.		3166.0	3 x 2	3113.0	3 x 2		2348.1	0 x 2	2308.4	0 x 2		3154.1	3 x 2	3101.4	3 x 2
A ₁ CH ₃ str.		3059.7	23	3001.9	16		2182.9	13	2141.8	10		3057.7	22	3000.0	16
E CH ₃ scis.		1448.6	0 x 2	1402.0	0 x 2		1054.5	1 x 2	1020.5	1 x 2		1445.0	0 x 2	1398.5	0 x 2
$A_1 CH_3 deform$	1076.4	1097.7	69	1066.4	56	824.1	845.4	35	822.4	28 10	069.3	1090.6	69	1059.5	56
E CH ₃ rock	666.1	693.6	52 x 2	685.1	45 x 2	499.1	512.7	31 x 2	506.8	26 x 2 6	63.6	690.7	51 x 2	682.2	44 x 2
A ₁ C-Ag str.		445.2	7	450.2	.		410.4	ы	414.4	5		432.5	7	437.3	~
^a Frequencies and	intensities	are in cm	n ⁻¹ and	l km/mc	ol. ^b Ol	bserved ir	n an argo	n matr	rix. ° Com	puted w	ith B3L	JYP/6-31	1++G(3df, 3pd)/	SDD.
Computed with BP	W91/6-311	++G(3df,	3pd)/S	DD. CF	I ₃ -Ag I	ias a C _{3v} s	tructure.								

_a
- e
3
5
Ц
Ħ
Š
30
\mathbf{O}
\smile
e e
a
÷
01
7
\triangleleft
-
q
Ξ
2
2
τĒ
<u> </u>
ē
日
_
Ξ.
50
~
\triangleleft
5
÷
5
\mathcal{O}
f
0
Ś
<u>e</u> .
·:2
Ē
4.5
ē
lne
ədne
reque
Freque
l Freque
al Freque
ntal Freque
ental Freque
nental Freque
amental Freque
damental Freque
ndamental Freque
undamental Freque
Fundamental Freque
1 Fundamental Freque
ed Fundamental Freque
ted Fundamental Freque
lated Fundamental Freque
ulated Fundamental Freque
culated Fundamental Freque
alculated Fundamental Freque
Calculated Fundamental Freque
Calculated Fundamental Freque
d Calculated Fundamental Freque
nd Calculated Fundamental Freque
and Calculated Fundamental Freque
d and Calculated Fundamental Freque
ed and Calculated Fundamental Freque
ved and Calculated Fundamental Freque
erved and Calculated Fundamental Freque
served and Calculated Fundamental Freque
bserved and Calculated Fundamental Freque
Observed and Calculated Fundamental Freque
: Observed and Calculated Fundamental Freque
5: Observed and Calculated Fundamental Freque
S5: Observed and Calculated Fundamental Freque
3 S5: Observed and Calculated Fundamental Freque
le S5: Observed and Calculated Fundamental Freque

Approximate		J	CH ₃ -AgF	'			O	:D ₃ -AgH	L			13(CH₃-Ag⊢	<u>_</u>	
Description	Obs ^b	Β3LΥΡ°	Int ^c	BPW91 ^d	Int ^d	Obs ^b	Β3LΥΡ ^c	int ^c	BPW91 ^d	Int ^d	Obs ^b	Β3LΥΡ ^c	int ^c	BPW91 ^d	Int ^d
E CH ₃ str.		3010.6	77 x 2	2962.2	74 x 2		2226.2	33 x 2	2189.8	32 x 2		3000.1	78 x 2	2951.9	75 x 2
A ₁ CH ₃ str.		2953.7	165	2897.8	175		2114.5	71	2074.9	76		2951.1	167	2895.2	177
A ₁ Ag-H str.	1562.0	1554.5	615	1575.5	587	1124.2	1103.9	308	1118.8	293	1562.0	1554.5	615	1575.5	588
E CH ₃ scis.		1452.8	0 x 2	1407.9	0 x 2		1055.2	0 x 2	1022.1	0 x 2		1449.5	0 x 2	1404.8	0 x 2
A1 CH3 deform		1095.3	4	1062.3	2		846.3	13	821.8	6		1087.7	с	1054.9	
E CH ₃ rock		622.9	75 x 2	619.3	61 x 2		471.0	42 x 2	469.1	33 x 2		619.3	74 x 2	615.7	60 x 2
A ₁ C-Ag str.		417.5	38	422.7	36		382.3	28	386.6	26		415.7	51	411.0	33
E CAgH bend		415.7	51 x 2	415.4	37 x 2		296.1	24 x 2	295.9	17 x 2		405.8	35 x 2	415.4	37 x 2
^a Frequencies and	intensit	ties are in	n cm ⁻¹	and km/m	ol. ^b Ot	served i	n an arg	on mat	trix. ° Co	mputed	with B3	LYP/6-3	11++G((3df, 3pc	I)/SDD.

) a
ંગ્રે
E
C
2
st
ŝ
Ű
J
Ę
[a]
$\overline{\mathbf{v}}$
\mathbf{A}
р
Ш
ō
5
<u> </u>
Je
t]
n
L.
це
n
ă.
Ы
ot
Š
H
6
\checkmark
Ĩ.
ΞÊ.
5
Ľ
ō
\mathbf{s}
<u>е</u> .
2
8
ň
ğ
re
Γ Ι
Ц
It 2
5
n
ar
di
u
Ē
Ξ
ed O
at
llε
3
al(
õ
Ĭ
DC.
aı
q
é
Ĺ
é
þ,
0
90
le
p.
<u>a</u>

Computed with BPW91/6-311++G(3df,3pd)/SDD. CH₃-AgH⁻ has a C_{3v} structure.

Approximate		CH	3-CuH	_			CD ₃	-CuH				¹³ C	H3-Cut	Ŧ	
Description	Obs ^b	Β3LΥΡ°	: Int ^c	BPW91 ^d	Int ^d	Obs ^b	Β3LΥΡ ^c	int ^c	BPW91 ^d	Int ^d	Obs ^b	Β3LΥΡ ^c	int ^c	BPW91 ^d	Int ^d
A" CH ₃ as. str.		3165.0	ю	3113.8	2		2347.7	0	2309.5	0		3153.0	с	3102.1	2
A' CH ₃ as. str.		3133.1	5	3080.5	4		2320.0	2	2280.5	. 		3122.2	9	3069.8	4
A' CH ₃ s. str.		3024.5	5	2966.1	ю		2159.1	4	2117.3	2		3022.1	4	2963.7	с
A' Cu-H str.	1718.8	1707.5	33	1704.1	18	1243.7	1216.9	18	1214.6	6	1717.7	1707.5	33	1704.1	17
A' CH ₃ scis.		1439.4	. 	1392.0	÷		1048.4	~	1013.8	. 		1435.7		1388.5	-
A" CH ₃ scis.		1411.4	2	1359.2	ю		1029.7	2	992.1	2		1407.5	2	1355.5	7
A' CH ₃ deform	1012.1	1050.3	68	1017.9	38	786.0	810.8	40	790.9	21	1003.6	1043.5	67	1010.9	37
A' CH ₃ rock	covered	623.2	53	605.4	48		473.0	27	464.5	22	covered	620.0	53	602.1	48
A" CH ₃ rock		599.8	21	581.0	19		443.6	12	429.6	1		597.4	20	578.7	18
A' CCuH bend		463.0	~	471.2			425.3	2	426.0	4		450.8	. 	459.1	-
A' C-Cu str.		382.2	70	364.1	50		272.8	36	259.9	25		382.2	70	364.1	50
A" CH ₃ tort		150.4	47	95.6	37		107.6	25	68.8	19		150.4	47	95.6	37
^a Frequencies and in	tensities ar	e in cm ⁻¹	and l	km/mol. ^b	Obser	ved in an a	urgon matr	ix. °C	Computed	with F	317P/6-	·311++G(3df, 3p	od). ^d Com	puted

Table S7: Observed and Calculated Fundamental Frequencies of CH₃-CuH isotopomers in the Ground ²A' State (C_s structure)^a

with BPW91/6-311++G(3df,3pd). CH₃-CuH has a C_s structure.

Annroximate		5 5	l₃-Cu				O	D ₃ -Cu				¹³ C	:H ₃ -Cu		
Description	Obs ^b	B3LYP°	Int ^c	BPW91 ^d	Int ^d	Obs ^b	Β3LΥΡ°	int ^c	BPW91 ^d	Int ^d	Obs ^b	Β3LΥΡ ^c	int ^c	BPW91 ^d	Int ^d
E CH ₃ str.		3128.1	5 x 2	3076.4	4 x 2		2317.6	1 x 2	2279.1	1 x 2		3116.7	5 x 2	3065.1	4 x 2
A ₁ CH ₃ str.		3032.9	24	2974.3	18		2166.5	13	2124.2	10		3030.7	23	2972.2	17
E CH ₃ scis.		1444.1	0 x 2	1394.5	0 x 2		1049.5	1 x 2	1013.3	1 x 2		1440.7	0 x 2	1391.2	0 x 2
$A_1 CH_3 deform$	1203.0	1120.9	42	1082.7	38	920.0	876.3	19	851.6	17	1195.1	1003.6	43	1074.4	38
E CH ₃ rock	648.3	662.7	52 x 2	: 650.0	46 x 2	494.2	494.0	32 x 2	484.9	28 x 2	645	659.5	51 x 2	646.8	45 x 2
A ₁ C-Au str.		525.7	4	541.0	ო		480.1	5	491.2	4		512.4	б	527.5	7
^a Frequencies and in	tensities ar	e in cm ⁻¹	and kı	m/mol. ^b ,	Observ	ved in an a	rgon mat	rix. °C	Computed	with B	3LYP/6-	311++G(3	df, 3p	d).	
^d Computed with BF	W91/6-31	1++G(3d	f,3pd).	. CH ₃ -Cu	has a	C _{3v} structi	tre. The	four lo	west frequ	lencies	compute	ed with			

MP2/6-311++G(3df,3pd) are 1453 cm⁻¹(0.3x2km/mol), 1150(63), 679(67), 564 (15).

Table S8: Observed and Calculated Fundamental Frequencies of CH₃-Cu in the Ground ¹A₁ State (C_{3v} structure)^a

45

Approximate		Ю	3-CuH⁻				C	3-CuH ⁻				¹³ CF	H ₃ -CuH		
Description	Obs ^b	$B3LYP^{c}$	Int ^c	BPW91 ^d	Int ^d	Obs ^b	Β3LΥΡ ^c	int ^c	BPW91 ^d	Int ^d	Obs ^b	$B3LYP^{c}$	int ^c	BPW91 ^d	Int ^d
E CH ₃ str.		2975.9	89 x 2	2924.1	84 x 2		2198.8	39 x 2	2160.0	37 x 2		2965.7	90 x 2	2914.1	85 x 2
A ₁ CH ₃ str.		2927.7	163	2867.8	187		2097.2	71	2054.4	83		2924.9	166	2865.1	189
A ₁ Cu-H str.	1612.9	1606.1	529	1629.7	493	1165.0	1143.9	264	1160.6	245	1612.9	1606.1	530	1629.7	493
E CH ₃ scis.		1446.3	0 x 2	1399.2	0 x 2		1049.8	0 x 2	1015.2	0 x 2		1443.0	0 x 2	1396.1	0 x 2
A1 CH3 deform		1107.4	12	1071.7	9		860.0	21	834.4	14		1099.4	10	1063.8	5
E CH ₃ rock		612.8	85 x 2	609.6	63 x 2		468.2	45 x 2	466.4	33 x 2		609.2	85 x 2	605.9	63 x 2
A ₁ C-Cu str.		462.1	23	473.2	20		423.2	15	432.2	12		450.4	22	461.2	18
E CCuH bend		406.9	48 x 2	401.4	33 x 2		291.0	22 x 2	287.1	15 x 2		406.8	48 x 2	401.4	33 x 2
^a Frequencies and i	intensities a	are in cm	-1 and 1	km/mol.	^b Observ	'ed in an a	rgon mat	rix. °C	omputed	l with B	3LYP/6-	311++G(3	3df, 3p	d). ^d Co	mputed

a
ucture)
, stri
(C3
ate
1 St
¹ A
Ground
he (
in t
omers
isotop
Π
Ū.
CH
of
quencies
Fre
amental
Fund
[pa:
culat
Cal
pui
ed a
bserv
0
SS :
able
Ц,

with BPW91/6-311+++G(3df,3pd). CH₃-CuH⁻ has a C_{3v} structure.

S	
×	
ð	
<u>[</u>]	
Ē	
H	
ň	
\mathbf{U}	
al	
G	
Ť	
\sim	
-	
-	
d	
P	
2	
Ċ	
Ū.	
ō,	
Ч,	
p	
ЭĽ	
ă	
\geq	
20	
\cup	
ē	
th	
ų,	
0	
S	
H	
ğ	
Ĕ	
\circ	
ă	
Ö	
~~	
щ	
в	
ve B	
tive B	
ective B	
fective B	
Effective B	
Effective B	
nd Effective B	
and Effective B	
s and Effective B	
sts and Effective B	
bers and Effective B	
nbers and Effective B	
umbers and Effective B	
Numbers and Effective B	
Numbers and Effective B	
on Numbers and Effective B	
ion Numbers and Effective B	
ation Numbers and Effective B	
pation Numbers and Effective B	
upation Numbers and Effective B	
scupation Numbers and Effective B	
Occupation Numbers and Effective E	
l Occupation Numbers and Effective B	
al Occupation Numbers and Effective B	
ural Occupation Numbers and Effective B	
ttural Occupation Numbers and Effective B	
Vatural Occupation Numbers and Effective B	
Natural Occupation Numbers and Effective B	
0: Natural Occupation Numbers and Effective E	
10: Natural Occupation Numbers and Effective B	
S10: Natural Occupation Numbers and Effective E	
e S10: Natural Occupation Numbers and Effective B	
ole S10: Natural Occupation Numbers and Effective B	
able S10: Natural Occupation Numbers and Effective B	

Compound	σ occ ^b	a* occ ^b	%C°	%M°	q(C) ^d	d(M) ^d	EBO ^e	
CH ₃ -AuH	1.92706	0.09588	58.96, s(14.1), p(85.8)	41.04, s(41.8), p(24.1), d(34.0)	-0.625	0.031	0.916	
CH ₃ -Au	1.99837	0.00891	56.46, s(14.5), p(85.4)	43.54, s(80.4), p(0.1), d(19.5)	-0.750	0.159	0.995	
CH ₃ -AuH ⁻	1.89010	0.15201	82.06, s(24.8), p(75.2)	17.94, s(42.3), p(47.0), d(10.4)	-1.108	0.019	0.869	
CH ₃ -AgH	1.89331	0.09731	58.88, s(12.5), p(87.5)	41.12, s(44.6), p(24.6), d(30.8)	-0.749	0.411	0.898	
CH ₃ -Ag	1.99826	0.00502	66.91, s(13.5), p(86.5)	33.09, s(93.1), p(0.1), d(6.8)	-0.923	0.351	0.997	
CH₃-AgH [−]	1.92383	0.10141	85.02, s(24.9), p(75.1)	14.98, s(47.3), p(47.1), d(5.6)	-1.167	0.202	0.911	
CH ₃ -CuH	1.93819	0.06763	65.55, s(16.2), p(83.7)	34.45, s(45.5), p(24.0), d(30.5)	-0.667	0.148	0.935	
CH ₃ -Cu	1.99881	0.00292	70.32, s(15.9), p(84.1)	29.68, s(91.2), p(0.2), d(8.6)	-1.010	0.420	0.998	
CH ₃ -CuH ⁻	1.94457	0.07638	85.97, s(28.1), p(71.9)	14.03, s(49.2), p(45.2), d(5.5)	-1.204	0.250	0.934	
^a Computed with J	B3LYP/6-3	11++G(3df, 3p	d). The SDD core potentials	s and bases are used for Au and Ag	g, whereas a	all electron	n basis	
for Cu. ^b Occupati	ion number.	^c Contribution	to the bonding orbital in %	o. ^d Natural charge. Additional cha	arges for CI	H ₃ -AuH ⁻ ir	nclude q(H) = .	-0.413
and $q(3H = 3 \times 0)$.	167). ^e Effe	ective bond ord	er [($\sigma \operatorname{occ} - \sigma^* \operatorname{occ})/2$].					

Figure S1. Infrared spectra in the 1950-1750, 1400-900, and 800-500 cm⁻¹ regions for the reaction products of the laser-ablated gold with CH_2D_2 in excess argon at 8 K. (a) Au and CH_2D_2 (2.0 % in argon) co-deposited for 1 h, (b)-(d) as (a) after visible, uv, and full arc irradiation, and (e) as (d) after annealing to 26 K. **a**, **i**, and **i**⁻ stand for product absorption groups while P and c stand for the precursor and common absorptions.

Figure S2. Infrared spectra in the 1650-1450, 1000-800, and 700-500 cm⁻¹ regions for the reaction products of the laser-ablated silver with CH_2D_2 in excess argon at 8 K. (a) Ag and CH_2D_2 (2.0 % in argon) co-deposited for 1 h, (b)-(d) as (a) after visible, uv, and full arc irradiation, and (e) as (d) after annealing to 26 K. **a** and **i**⁻ stand for product absorption groups while P, c, and w stand for the precursor, common, and water residue absorptions.

Figure S3. Infrared spectra in the 1950-1550, 1400-800, and 700-500 cm⁻¹ regions for the reaction products of the laser-ablated copper with CH_2D_2 in excess argon at 8 K. (a) Cu and CH_2D_2 (2.0 % in argon) co-deposited for 1 h, (b)-(d) as (a) after visible, uv, and full arc irradiation, and (e) as (d) after annealing to 26 K. **a**, **i**, and **i**⁻ stand for product absorption groups while P, c, and w stand for the precursor, common, and water residue absorptions.