Nickel(II) hydride and fluoride pincer complexes and their reactivity with Lewis acids $BX_3 \cdot L$ (X = H, L = thf; X = F, L = Et₂O)

Andrea Rossin, Maurizio Peruzzini* and Fabrizio Zanobini

Istituto di Chimica dei Composti Organometallici (ICCOM-CNR), Area di Ricerca CNR, Via

Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze), Italy.

Supporting Information

Table S1. Crystal data and structure refinement for 2.

CCDC number	786190
Empirical formula	C ₂₄ H ₄₃ F Ni P ₂
Formula weight	471.23
Temperature	150(2) K
Wavelength	0.71069 Å
Crystal system	Tetragonal
Space group	$I 4_1 c d$
Unit cell dimensions	$a = b = 16.044(7) \text{ Å}; \ c = 19.529(10) \text{ Å}$
Volume	5027(3) Å ³
Z	8
Density (calculated)	1.245 Mg/m ³
Absorption coefficient	0.914 mm ⁻¹
F(000)	2032
Crystal size	0.05 x 0.05 x 0.2 mm ³
Theta range for data collection	4.23 to 29.00°.
Index ranges	-21<=h<=20, -20<=k<=21, -26<=l<=26
Reflections collected	15468
Independent reflections	3014 [R(int) = 0.0524]
Completeness to theta = 25.00°	99.4 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3014 / 1 / 135
Goodness-of-fit on F ²	0.860
Final R indices [I>2sigma(I)]	R1 = 0.0304, $wR2 = 0.0648$
R indices (all data)	R1 = 0.0595, $wR2 = 0.0702$
Absolute structure parameter	-0.003(15)
Largest diff. peak and hole	0.314 and -0.236 e.Å ⁻³
Absorption correction	Semiempirical from equivalents

C(1)-Ni(1)	1.917(4)	
F(1)-Ni(1)	1.867(3)	
P(2)-Ni(1)	2.1702(8)	
Ni(1)-P(2)#1	2.1702(8)	
F(1)-Ni(1)-C(1)	180.0	
F(1)-Ni(1)-P(2)#1	93.95(2)	
C(1)-Ni(1)-P(2)#1	86.05(2)	
F(1)-Ni(1)-P(2)	93.95(2)	
C(1)-Ni(1)-P(2)	86.05(2)	
P(2)#1-Ni(1)-P(2)	172.09(5)	

 Table S2. Selected bond lengths [Å] and angles [°] for 2.

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y,z

Table S3. Crystal data and structure refinement for **5**.

CCDC number	786191
Empirical formula	C ₂₄ H ₄₅ B F ₄ Ni O P ₂
Formula weight	557.06
Temperature	123(2) K
Wavelength	0.71069 Å
Crystal system	Orthorhombic
Space group	Pbca
Unit cell dimensions	a = 17.280(8) Å
	b=15.826(11) Å
	c = 20.966(13) Å
Volume	5734(6) Å ³
Z	8
Density (calculated)	1.291 Mg/m ³
Absorption coefficient	0.829 mm ⁻¹
F(000)	2368
Crystal size	0.05 x 0.05 x 0.1 mm ³
Theta range for data collection	4.15 to 22.99°.
Index ranges	-18<=h<=14, -13<=k<=16, -22<=l<=17
Reflections collected	10876
Independent reflections	2958 [R(int) = 0.0723]
Completeness to theta = 20.00°	95.8 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2958 / 0 / 304
Goodness-of-fit on F ²	0.755
Final R indices [I>2sigma(I)]	R1 = 0.0326, $wR2 = 0.0465$
R indices (all data)	R1 = 0.0806, $wR2 = 0.0525$
Largest diff. peak and hole	0.261 and -0.222 e.Å ⁻³
Absorption correction	Semiempirical from equivalents

C(1)-Ni(1)	1.905(4)	
B(1)-F(2)	1.378(5)	
B(1)-F(3)	1.385(5)	
B(1)-F(4)	1.394(5)	
B(1)-F(1)	1.407(5)	
O(1)-Ni(1)	1.964(3)	
O(1)-H(1A)	0.79(4)	
O(1)-H(1B)	0.73(3)	
P(1)-Ni(1)	2.2078(12)	
P(2)-Ni(1)	2.2099(13)	
F(2)-B(1)-F(3)	110.8(4)	
F(2)-B(1)-F(4)	109.9(4)	
F(3)-B(1)-F(4)	109.1(4)	
F(2)-B(1)-F(1)	109.8(4)	
F(3)-B(1)-F(1)	108.7(4)	
F(4)-B(1)-F(1)	108.5(4)	
Ni(1)-O(1)-H(1A)	117(3)	
Ni(1)-O(1)-H(1B)	127(4)	
H(1A)-O(1)-H(1B)	116(5)	
C(1)-Ni(1)-P(1)	85.19(15)	
O(1)-Ni(1)-P(1)	94.18(10)	
C(1)-Ni(1)-P(2)	85.66(15)	
O(1)-Ni(1)-P(2)	95.01(10)	
P(1)-Ni(1)-P(2)	170.72(4)	

 Table S4. Selected bond lengths [Å] and angles [°] for 5.

Table S5. Hydrogen bonds for 5 [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
O(1)-H(1A)F(1)#1	0.79(4)	1.91(4)	2.683(4)	166(4)	
O(1)-H(1B)F(3)	0.73(3)	2.58(4)	3.111(4)	132(4)	
O(1)-H(1B)F(4)	0.73(3)	2.04(3)	2.761(3)	171(5)	

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y,-z

Figure S1. (a) ¹H{¹¹B} NMR spectrum of the $1-d_1 + BH_3 \cdot thf$ mixture, at 298 K. (b) ¹¹B and (c) ¹¹B{¹H} NMR spectra of the same mixture, and comparison with the deuterium-free system (d).

Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ the Royal Society of Chemistry 2011

Figure S2. (a) ${}^{31}P{}^{1}H$, (b) ${}^{19}F{}^{1}H$, (c) ${}^{1}H$ and (d) ${}^{11}B$ NMR spectra of the 2 + BH₃ • thf mixture at ambient temperature, after reaching the equilibrium.

(b)

Supplementary Material (ESI) for Dalton Transactions This journal is © the Royal Society of Chemistry 2011

Figure S3. (a) ${}^{31}P{}^{1}H$, (b) ${}^{19}F{}^{1}H$ and (c) ${}^{11}B$ NMR spectra of the $1 + BF_3 \bullet Et_2O$ mixture at ambient temperature.

Figure S4. Optimized geometry of $({}^{tBu}PCP)Ni(\eta^1-\kappa,H-BH_3F)$. H atoms on the pincer ligand omitted for clarity. Selected bond lengths (Å) reported. Atom color code: orange, Ni; white, H; pink, B; gray, C; magenta, P; green, F.

Supplementary Material (ESI) for Dalton Transactions This journal is © the Royal Society of Chemistry 2011

Figure S5. Optimized geometry of (tBu PCP)Ni(σ -BH-BH₂F₂). H atoms on the pincer ligand omitted for clarity. Selected bond lengths (Å) reported. Atom color code: see Figure S4.

Figure S6. Optimized geometry of (${}^{tBu}PCP$)Ni(η^1 - κ ,*H*-BHF₃). H atoms on the pincer ligand omitted for clarity. Selected bond lengths (Å) reported. Atom color code: see Figure S4.

Optimised geometries (Cartesian coordinates) and related absolute internal energy (gasphase).

$(^{^{tBu}}PCP)Ni(\eta^1-BH_4)$ (3a)

E(gas) = -1149.295711 ha.

Ni	0.021800	-0.418864	-0.224500
Р	-2.202637	-0.232227	0.070793
С	0.033377	1.520855	-0.075479
С	-1.099012	2.228644	0.375809
С	-1.117022	3.623339	0.421306
Н	-2.016668	4.138344	0.763198
С	0.004455	4.354697	0.049745
Н	-0.011203	5.442979	0.085243
С	-2.279472	1.448125	0.867269
Н	-3.238155	1.966442	0.716717
Н	-2.181209	1.282686	1.951859
С	-3.050886	-1.348608	1.368860
С	-1.968739	-1.661708	2.406542
Н	-2.420654	-2.211832	3.246344
Н	-1.502244	-0.754183	2.819952
Н	-1.176576	-2.286152	1.975212
С	-4.221007	-0.655151	2.071477
Н	-4.651893	-1.357236	2.801840
Н	-5.024049	-0.370410	1.381539
Н	-3.914948	0.239323	2.628357
С	-3.545153	-2.666715	0.774908
Н	-2.761603	-3.182047	0.205711
Н	-4.420353	-2.527827	0.126149
Н	-3.856712	-3.328118	1.598348
С	-3.259980	-0.041138	-1.502693
С	-4.717360	0.297784	-1.198387
Н	-4.827398	1.181315	-0.555000
Н	-5.249226	-0.540792	-0.730557
Н	-5.233747	0.520244	-2.144933
С	-3.207556	-1.304873	-2.361184
Н	-3.670584	-2.169338	-1.872191
Н	-2.179164	-1.580335	-2.619059
Н	-3.760882	-1.113854	-3.293640
С	-2.633113	1.101636	-2.307382
Н	-3.176795	1.197752	-3.259726
Н	-1.578124	0.901528	-2.537665
Н	-2.688636	2.069469	-1.791699
Н	0.096982	-2.064465	0.134598
Р	2.239074	-0.171163	-0.135229
С	1.171806	2.285442	-0.400323
С	1.153075	3.680567	-0.343773
Н	2.052509	4.240993	-0.605335
С	2.442319	1.570441	-0.750156
Н	3.334699	2.075595	-0.349169
Н	2.580829	1.508381	-1.840699
С	3.475320	-1.144814	-1.215453

2.832133	-1.284655	-2.599465
3.559823	-1.756166	-3.277782
2.561630	-0.313220	-3.038114
1.932307	-1.907376	-2.569688
4.804828	-0.403431	-1.383485
5.452526	-1.003704	-2.040804
5.345000	-0.256787	-0.442178
4.681642	0.576012	-1.863620
3.737529	-2.542457	-0.655086
2.804562	-3.089730	-0.469128
4.332339	-2.521638	0.268452
4.314139	-3.116627	-1.396476
2.780415	-0.170830	1.695285
4.281347	0.013387	1.902848
4.661969	0.934373	1.440175
4.864191	-0.834133	1.523015
4.483322	0.086124	2.982736
2.334275	-1.494487	2.320707
2.808985	-2.366180	1.854830
1.247402	-1.624796	2.241752
2.602455	-1.497229	3.388548
2.052482	0.964258	2.421164
2.318929	0.917203	3.488460
0.961417	0.875793	2.335936
2.336368	1.958165	2.049122
-0.134475	-1.633281	-1.883974
-0.105591	-2.546124	-1.046071
0.847048	-3.274250	-1.232541
-1.159163	-3.143219	-1.009522
	2.832133 3.559823 2.561630 1.932307 4.804828 5.452526 5.345000 4.681642 3.737529 2.804562 4.332339 4.314139 2.780415 4.281347 4.661969 4.864191 4.483322 2.334275 2.808985 1.247402 2.602455 2.052482 2.318929 0.961417 2.336368 -0.134475 -0.105591 0.847048 -1.159163	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

$(^{tBu}PCP)Ni(\eta^2-BH_4)$ (3b)

E(gas) = -1149.293799 ha.

С	0.002550	1.532234	-0.005387
С	-1.149583	2.272666	0.330596
С	-1.150931	3.668545	0.325386
Н	-2.065311	4.204751	0.586825
С	-0.000037	4.373935	0.000632
Н	-0.001340	5.462813	0.002757
С	-2.394562	1.535741	0.717201
Η	-3.316070	2.036139	0.382809
Н	-2.463296	1.465190	1.813538
С	-3.016054	-0.184669	-1.651735
С	-2.831095	-1.543551	-2.328545
Н	-3.384727	-2.346021	-1.828409
Н	-1.776147	-1.840422	-2.365043
Η	-3.205074	-1.475226	-3.361661
С	-2.251442	0.860347	-2.470976
Н	-2.643518	0.852440	-3.499820
Η	-1.176639	0.634136	-2.513199
Н	-2.364979	1.879765	-2.077127

С	-4.498263	0.177933	-1.640749
Н	-4.697942	1.135737	-1.141489
Н	-5.112032	-0.597585	-1.165869
Н	-4.848779	0.276055	-2.679949
С	-3.304009	-1.177660	1.333851
С	-2.416587	-1.413685	2.560922
Н	-1.954470	-0.486688	2.934906
Н	-1.611422	-2.123754	2.341254
Н	-3.032485	-1.826533	3.374554
С	-3.768527	-2.529733	0.795722
Н	-2.936061	-3.126523	0.405406
Н	-4.531657	-2.426857	0.012800
Н	-4.229577	-3.094831	1.620724
С	-4.537561	-0.379262	1.767106
Н	-5.128190	-1.005387	2.453474
Н	-5.192226	-0.110327	0.929108
Н	-4.283592	0.538895	2.311310
Р	-2.229942	-0.203241	0.083858
Ni	-0.000875	-0.419853	-0.021271
С	1.152952	2.274516	-0.337605
С	1.152309	3.670960	-0.326378
Н	2.065979	4.209353	-0.584846
С	2.398613	1.538672	-0.721142
Н	3.319062	2.039144	-0.383800
Н	2.470967	1.467021	-1.817282
С	2.984571	-0.181836	1.659901
С	2.782621	-1.538783	2.335836
Н	3.338252	-2.345239	1.844958
Н	1.725407	-1.828995	2.359209
Н	3.142327	-1.471364	3.373710
С	2.214480	0.866118	2.468516
Н	2.593062	0.855507	3.501986
Н	1.138788	0.644819	2.497030
Н	2.338173	1.884923	2.077356
С	4.468681	0.174223	1.673452
Н	4.680430	1.132724	1.180437
Н	5.088448	-0.602430	1.207473
Н	4.801937	0.268377	2.718381
С	3.333181	-1.172953	-1.316759
С	2.472875	-1.417802	-2.560409
Н	2.021927	-0.492910	-2.952288
Н	1.661856	-2.124843	-2.352789
Н	3.105885	-1.838428	-3.356728
С	3.792124	-2.521289	-0.763572
Н	2.954538	-3.121302	-0.390631
Н	4.536800	-2.410152	0.035966
Н	4.274254	-3.086630	-1.576539
С	4.572147	-0.370582	-1.729123
Н	5.178461	-0.996757	-2.401749
Н	5.210082	-0.094690	-0.880791
Н	4.323725	0.544083	-2.282261
Р	2.230140	-0.201505	-0.090592
В	-0.004823	-2.671151	-0.039577

-1.020887	-3.331418	-0.010850
0.037218	-1.952436	0.991317
1.006140	-3.338458	-0.080703
-0.042391	-1.937325	-1.059437
	-1.020887 0.037218 1.006140 -0.042391	-1.020887 -3.331418 0.037218 -1.952436 1.006140 -3.338458 -0.042391 -1.937325

$(^{tBu}PCP)Ni(\eta^2-\kappa,H:\kappa,H-BH_3F)$

E(gas) = -1248.574062 ha.

С	-0.068477	1.619562	-0.181573
С	1.068026	2.376925	-0.527229
С	1.027650	3.771605	-0.580898
Н	1.928610	4.323901	-0.854013
С	-0.144255	4.455869	-0.286640
Н	-0.176402	5.543110	-0.338349
С	2.353921	1.663154	-0.803062
Н	3.233165	2.210129	-0.429453
Н	2.505260	1.531768	-1.885350
С	2.757977	0.108831	1.743108
С	2.449618	-1.218501	2.440611
Н	3.020601	-2.059718	2.031135
Н	1.383085	-1.469893	2.362076
Н	2.701234	-1.130898	3.508892
С	1.921516	1.201639	2.414557
Н	2.192148	1.237641	3.481323
Н	0.844647	0.999016	2.341583
Н	2.101522	2.198343	1.989993
С	4.233105	0.462297	1.915342
Н	4.497412	1.402227	1.409750
Н	4.902369	-0.327735	1.553986
Н	4.443548	0.601895	2.986990
С	3.511997	-1.001451	-1.101375
С	2.841213	-1.359722	-2.431010
Н	2.398124	-0.485218	-2.930251
Н	2.057834	-2.110192	-2.292143
Н	3.602672	-1.772984	-3.110131
С	3.981670	-2.284640	-0.417350
Η	3.145174	-2.930638	-0.134125
Η	4.605219	-2.081631	0.463881
Η	4.605684	-2.847172	-1.128883
С	4.739855	-0.133148	-1.402972
Η	5.459227	-0.749321	-1.963444
Η	5.251848	0.226317	-0.503017
Η	4.504895	0.733138	-2.033528
Р	2.208603	-0.041017	-0.075329
Ni	-0.027514	-0.324866	-0.125227
С	-1.228412	2.342624	0.163350
С	-1.269216	3.736277	0.094241
Η	-2.190039	4.260118	0.357217
С	-2.422341	1.592779	0.668467
Η	-3.379578	2.050608	0.377965
Η	-2.409961	1.575485	1.769223

С	-3.263402	-0.224540	-1.520832
С	-3.129057	-1.582528	-2.210910
Η	-3.570111	-2.401447	-1.630337
Н	-2.082965	-1.841382	-2.411208
Η	-3.660928	-1.534972	-3.173808
С	-2.650098	0.837446	-2.439034
Н	-3.153850	0.787624	-3.416359
Н	-1.578068	0.662486	-2.600018
Н	-2.772052	1.858024	-2.052323
С	-4.744995	0.086167	-1.312940
Н	-4.917244	1.026713	-0.771438
Η	-5.269950	-0.720772	-0.784663
Н	-5.223539	0.188651	-2.299085
С	-3.094705	-1.150816	1.499117
С	-2.052497	-1.255151	2.616761
Η	-1.671734	-0.272957	2.934111
Η	-1.194923	-1.867305	2.311528
Η	-2.514894	-1.729106	3.496128
С	-3.478652	-2.559861	1.054161
Н	-2.643578	-3.083301	0.571546
Η	-4.333657	-2.553210	0.365215
Н	-3.778593	-3.142428	1.938845
С	-4.336282	-0.447887	2.054048
Н	-4.761029	-1.073424	2.853982
Н	-5.119440	-0.306666	1.300635
Η	-4.109351	0.530139	2.497167
Р	-2.255886	-0.166575	0.096284
В	-0.057681	-2.544498	-0.714202
F	1.121117	-3.320595	-0.682471
Η	-0.082134	-1.884164	0.412617
Η	-1.060114	-3.228901	-0.689513
Η	-0.077099	-1.745528	-1.666713

$(^{^{tBu}}PCP)Ni(\sigma-BH-BH_2F_2)$

E(gas) = -1347.864444 ha.

С	0.062076	1.684359	-0.265546
С	1.206254	2.389145	-0.685651
С	1.197837	3.779462	-0.816403
Η	2.102456	4.292454	-1.147508
С	0.055015	4.508460	-0.515848
Н	0.047107	5.591661	-0.627136
С	2.473604	1.627974	-0.917354
Η	3.364560	2.177677	-0.577745
Н	2.624280	1.410667	-1.985632
С	2.770930	0.240630	1.763859
С	2.340205	-1.007373	2.539758
Η	2.861408	-1.914406	2.211898
Η	1.261396	-1.186388	2.438880
Н	2.563532	-0.860954	3.607855
С	2.000298	1.436774	2.330102

Н	2.256235	1.537392	3.396259
Н	0.913248	1.301518	2.250478
Н	2.256204	2.383002	1.834316
С	4.262792	0.488905	1.971666
Н	4.623747	1.370093	1.422735
Н	4.876093	-0.374907	1.688351
Н	4.444964	0.678565	3.040719
С	3.543792	-1.096872	-0.979571
С	2.921219	-1.466222	-2.329946
Н	2 595112	-0.585404	-2 901588
Н	2.066884	-2 137258	-2 213986
Н	3 681425	-1 983421	-2 934960
C	3 869009	-2 376083	-0.210561
н	2 968925	-2 942651	0.052857
н	4 451422	-2 175115	0.698847
ц	1 185126	-3.024092	-0.852202
C II	4.403420	-3.024092	1 255170
с u	4.042301	1.005504	-1.233170
п u	5 250127	-1.003304	-1./92000
п	J.JJ9127 A 60500A	-0.000/10	-0.34/000
п	4.003004	0.000424	-1.899391
P	2.20/842	-0.009434	-0.060644
	0.05/309	-0.250080	-0.11139/
C	-1.038/98	2.434139	0.101280
U U	-1.008033	5.042275 4.405259	-0.041015
п	-1.939962	4.403238	0.239441
с u	-2.220170	1.730001	0.720042
и П	-3.163633	1 721250	1 919993
C	-2.080210	0.022610	1.010005
C	-3.252420	-1 3/5807	-1.444/45
н	-3.778783	-1.545077	-1 538613
н	-2 250762	-1.711700	-2 331032
и П	-2.230702	-1./11/90	2.086012
C II	-3.792900	-1.24/043	-3.080913
с ц	-2.363071	1.019049	-2.397203
и П	1 545403	0.730807	-3.340877
и П	-1.545405	2 046580	2.013493
C	-2.56+095	2.040380	-1.182020
с u	4.089302	1 455217	0.608147
н	-4.748131	-0.240415	-0.098147
н	-5.231413	0 556036	-0.373019
C	-3.103275	-0.935407	1 562489
C	-2.01/206	-0.995407	2 573268
н	-2.014290	-0.437372	2.373208
н	-1 332783	-0.+57572	2.002170
н	-1.552785	-1 719882	3 478787
C	-3 795460	_2 215132	1 095211
н	-3 131579	-2 863320	0 514675
Н	-4 694684	-2.002320	0.501712
Н	-4.124568	-2.774703	1.984545
C	-4 142940	-0.047168	2 252040
Н	-4.670330	-0.650069	3.006908
Н	-4.898500	0.339581	1.557102
	-		

Н	-3.695866	0.804542	2.779306
Р	-2.201837	-0.009512	0.148280
В	-0.115687	-2.487368	-0.752948
Н	-0.123837	-1.740173	-1.740157
Н	0.079956	-1.794593	0.365186
F	-1.328434	-3.147741	-0.562201
F	0.935832	-3.401890	-0.774325

$(^{tBu}PCP)Ni(\eta^{1}-\kappa,H-BHF_{3})$

E(gas) = -1447.161576 ha.

С	-0.000848	1.897390	-0.006970
С	-1.170300	2.631131	0.276816
С	-1.186572	4.025385	0.217734
Н	-2.112572	4.560456	0.435046
С	-0.033262	4.730719	-0.100445
Н	-0.046857	5.818776	-0.140480
С	-2.407819	1.894049	0.681945
Н	-3.334682	2.376231	0.336468
Н	-2.468099	1.858060	1.779558
С	-2.968312	0.089998	-1.642987
С	-2.699145	-1.291450	-2.242992
Н	-3.218572	-2.096090	-1.710218
Н	-1.626893	-1.533192	-2.244122
Н	-3.046895	-1.301695	-3.287422
С	-2.224157	1.130702	-2.484608
Н	-2.609013	1.084574	-3.514909
Н	-1.143555	0.933014	-2.517821
Н	-2.366362	2.156561	-2.118360
С	-4.461007	0.406562	-1.674047
Н	-4.687532	1.392829	-1.244905
Н	-5.063289	-0.345106	-1.149692
Н	-4.801829	0.423486	-2.720610
С	-3.293219	-0.830158	1.368857
С	-2.331257	-1.138864	2.521063
Н	-1.830243	-0.235387	2.903591
Н	-1.559892	-1.855486	2.209366
Н	-2.892038	-1.584689	3.356815
С	-3.865820	-2.142752	0.834002
Н	-3.100729	-2.807621	0.425550
Н	-4.644763	-1.978509	0.078478
Н	-4.342353	-2.671064	1.674156
С	-4.463527	0.012976	1.885328
Н	-5.058282	-0.606978	2.572974
Н	-5.135635	0.340257	1.081297
Н	-4.147078	0.898481	2.448961
Р	-2.233381	0.136863	0.103319
Ni	0.000958	-0.036425	0.030481
С	1.155907	2.637107	-0.323797
С	1.137660	4.032902	-0.362336
Н	2.052899	4.573692	-0.609365
С	2.423795	1.908550	-0.644263

Н	3.317872	2.398428	-0.228907
Н	2.573863	1.871115	-1.733126
С	2.967966	0.132058	1.693465
С	2.617751	-1.198393	2.360205
Н	3.050523	-2.065658	1.848613
Н	1.531581	-1.356487	2.399726
Н	2.998217	-1.189149	3.393373
С	2.291219	1.253374	2.487559
Н	2.668118	1.223765	3.521296
Н	1.200136	1.126937	2.521498
Н	2.500144	2.253475	2.084370
С	4.478200	0.348120	1.713281
Н	4.779714	1.273897	1.202982
Н	5.024183	-0.490311	1.263240
Н	4.813770	0.428758	2.758554
С	3.251017	-0.818247	-1.326014
С	2.361880	-0.891190	-2.573209
Н	2.074014	0.103384	-2.945753
Н	1.450781	-1.472596	-2.385869
Н	2.918083	-1.391972	-3.380211
С	3.572077	-2.235001	-0.855939
Н	2.682132	-2.804093	-0.570057
Н	4.275885	-2.239784	-0.012722
Н	4.056596	-2.774944	-1.683777
С	4.560573	-0.109993	-1.681893
Н	5.074048	-0.704302	-2.453029
Н	5.243361	-0.027233	-0.828227
Н	4.409749	0.893226	-2.099648
Р	2.225591	0.158460	-0.052826
В	0.059777	-2.957875	-0.062961
Н	-0.009886	-1.645774	0.101216
F	0.384127	-3.177672	-1.386401
F	1.028960	-3.396614	0.812740
F	-1.183564	-3.457015	0.258274

$(^{^{tBu}}PCP)Ni(\eta^{1}-BF_{4})$ (4)

E(gas) = -1546.454102 ha.

С	-0.056798	2.040180	-0.105147
С	1.126217	2.775753	-0.331580
С	1.103136	4.168165	-0.433110
Н	2.039063	4.702548	-0.605075
С	-0.090092	4.868861	-0.333869
Н	-0.102763	5.953728	-0.424986
С	2.435872	2.069773	-0.510381
Н	3.257304	2.556351	0.037427
Н	2.725153	2.093482	-1.570420
С	2.937226	0.154777	1.728852
С	2.594051	-1.223576	2.297112
Н	3.085496	-2.042259	1.759020
Н	1.514943	-1.422745	2.271623
Н	2.924593	-1.267089	3.346456

С	2.222024	1.216398	2.570220
Н	2.557851	1.125006	3.614293
Н	1.130820	1.082358	2.553505
Н	2.438770	2.241573	2.240005
С	4.443618	0.386693	1.791902
Н	4.744851	1.343673	1.341859
Н	5.004867	-0.418944	1.301479
Н	4.760460	0.407022	2.845961
С	3.237843	-0.636945	-1.327208
С	2.353243	-0.638895	-2.579081
Н	2.078533	0.376394	-2.903215
Н	1.434877	-1.216844	-2.417964
Н	2.904216	-1.109416	-3.407503
С	3.524291	-2.076602	-0.906634
Н	2.626957	-2.626814	-0.605591
Н	4.259531	-2.125400	-0.091891
Н	3.958331	-2.610783	-1.765557
С	4.566336	0.054101	-1.643155
Н	5.083052	-0.533719	-2.417108
Н	5.234517	0.106378	-0.775247
Н	4.444566	1.068316	-2.043524
Р	2.220540	0.293932	-0.018565
Ni	-0.029232	0.131346	0.056917
С	-1.256434	2.777809	0.013832
C	-1.266802	4.167719	-0.113250
Н	-2.214232	4.701883	-0.023354
С	-2.543973	2.076068	0.328742
Н	-3.393586	2.454210	-0.259847
Н	-2.808299	2.239734	1.383517
С	-2.983162	-0.167267	-1.605376
С	-2.527940	-1.576206	-1.987486
Н	-2.907816	-2.350114	-1.310560
Н	-1.433140	-1.666244	-1.997353
Н	-2.893655	-1.806052	-2.999845
С	-2.378750	0.822151	-2.605643
Н	-2.715460	0.547170	-3.616469
Н	-1.280199	0.789769	-2.597963
Н	-2.689334	1.860209	-2.424213
С	-4.504893	-0.069656	-1.650313
Н	-4.876622	0.912181	-1.323490
Н	-4.986112	-0.844077	-1.039524
Н	-4.843013	-0.219014	-2.687207
С	-3.171147	-0.547393	1.537259
С	-2.247356	-0.337966	2.743202
Н	-2.000867	0.721528	2.911630
Н	-1.306113	-0.892327	2.627432
Н	-2.747884	-0.707550	3.651029
С	-3.373651	-2.045111	1.323256
Н	-2.447571	-2.567318	1.061403
Н	-4.120335	-2.255162	0.545637
Н	-3.753306	-2.483085	2.259191
С	-4.526904	0.107339	1.809388
н	-4 992821	-0 398637	2 668751

Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ the Royal Society of Chemistry 2011

Η	-5.217623	0.012746	0.962111
Н	-4.447742	1.170886	2.067885
Р	-2.256847	0.262714	0.085031
В	0.097873	-3.217690	-0.139943
F	-0.125089	-1.860596	0.439256
F	1.099620	-3.792813	0.607210
F	-1.097169	-3.891563	-0.043919
F	0.472388	-3.014973	-1.458373