Electronic Supporting Information (ESI) for:

Cooperative Self-Assembly of a Macrocyclic Schiff Base Complex

Giovanni Salassa,^a Ana M. Castilla^a and Arjan W. Kleij^{a,b*}

^{*a*} Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007, Tarragona, Spain. Fax: +34 977920224; Tel: +34 977920247; E-mail: akleij@iciq.es ^{*b*} Catalan Institute for Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain.

Contents:

- Page S2: 1 H NMR (DMSO-*d*₆) spectrum for Zn₄ complex **3**.
- Page S3: 1 H NMR (DMSO- d_6 + added pyr/Bu-NH₂) spectrum for 4.
- Page S4: MALDI-TOF mass spectrum for 4 (pyrene matrix).
- Page S5: ¹H NMR (DMSO- d_6) of complex 8.
- Page S6: 1 H NMR (DMSO- d_6) of complex 9.
- Page S7: DFT studies on mononuclear complex 7.
- Page S10 Calculated distances/angles for $3 \cdot (pyr)_4$ using DFT.
- Page S11: Influence of solvent on UV-vis spectrum of Zn₄ macrocycle **3**.

¹H NMR (DMSO- d_6) spectrum for Zn₄ complex **3**:


```
<sup>1</sup>H NMR (DMSO-d_6 + added pyr/Bu-NH<sub>2</sub>) spectrum for 4:
```


Only the aromatic region is shown here. The complex proved to be rather insoluble and additives needed to be added (pyridine, *n*-butyl amine) to record a ¹H NMR spectrum. Nonetheless, from the pattern above and comparison with the ¹H aromatic region for **3** we can confirm the proposed connectivity pattern for **4**.

Note that the two peaks in the region 1900–2000 m.u.'s relate to $1971.4 (M+H)^+$ (calcd 1971.4) and 1928.4 $(M-C_3H_6)^+$ (calcd. 1928.4). The peak at 510.7 does not contain Pd (cf., isotope pattern) and is possibly related to the matrix used (dctb).

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2011

```
<sup>1</sup>H NMR (DMSO-d_6) of complex 8:
```


Extension of region between 5-9 ppm:

Extension of the aromatic region:

DFT studies on mononuclear complex 7.

Experimental (left) and simulated (right) UV-Vis Spectra of complex 7 in toluene: the dashed lines represent the traces after addition of pyridine.

Table S1

- a: Related transitions energy values in eV and in nm (in parenthesis).
- b: the oscillator strength values (shown also as vertical bars in the images).

Complex	Transition	Energy ^a	f	Major contributions
7 dimer	1	2,6782 (462)	0	H-1→L+1 (10%), HOMO→LUMO (86%)
1,0×10°	2	2,7023 (458)	0,0994	H-1→LUMO (78%), HOMO→L+1 (19%)
8 0x10 ⁴	3	2,7420 (452)	0,0211	H-1→LUMO (20%), HOMO→L+1 (78%)
- 0,8	4	2,7519 (450)	0	H-1→L+1 (88%), HOMO→LUMO (11%)
τ _E 6,0×10 ⁴	5	3,0511 (406)	1E-4	H-1→L+3 (35%), HOMO→L+2 (49%)
	6	3,0709 (403)	0,4009	H-1→L+2 (37%), HOMO→L+3 (44%)
ω -0,4	7	3,1901 (388)	1E-4	H-1→L+2 (48%), HOMO→L+3 (46%)
2,0x10 ⁴	8	3,1908 (388)	0	H-1→L+3 (52%), HOMO→L+2 (41%)
	9	3,3539 (369)	0,4357	H-2→LUMO (86%)
0,0 1 0,0 300 350 400 450 500 550 600	10	3,3651 (368)	1E-4	H-3→LUMO (35%), H-2→L+1 (49%)
Wavelenght (nm)				
$7 \pm m_{L}$	1	2,8406 (436)	0,1667	HOMO→LUMO (91%)
7 + py	2	3,0282 (409)	0,0701	H-1→LUMO (36%), HOMO→L+1 (56%)
, no.5	3	3,1557 (392)	0,2534	H-1→LUMO (43%), HOMO→L+1 (26%),
4x10 ⁴ -				HOMO→L+2 (18%)
-0,4	4	3,2201 (385)	0,082	HOMO→L+2 (78%)
∑ ³ x10 ⁴ -	5	3,2915 (376)	0,1614	H-1→L+1 (85%)
5,0	6	3,4298 (361)	0,0119	H-1→L+2 (98%)
≥ ^{2x10*}	7	3,6761 (337)	0,0168	H-3→LUMO (67%), H-3→L+1 (20%)
	8	3,7289 (332)	0,1645	H-5→LUMO (15%), H-3→L+1 (13%),
				H-2→LUMO (58%)
0,0	9	3,7885 (327)	5E-4	HOMO→L+3 (99%)
300 350 400 450 500 550 600	10	3,8797 (319)	0,1934	H-5→LUMO (19%), H-3→L+1 (33%), H-
wavelenght (nm)				2→LUMO (33%)

Selected calculated singlet excited-state transitions for complex 7 in toluene.

Electron density difference maps $(EDDMs)^1$ of transitions 6 (left) and 9 (right) in complex 7 in *dimer* state.

Transition 6, 447 nm

Electron density difference maps (EDDMs) of transitions 1 (left) and 3 (right) in complex 7 in monomer state with pyridine coordinating in the axial position.

Transition 1, 458 nm

Transition 3, 417 nm

Transition 9, 384 nm

¹ The electron density migrates from the violet-coloured lobes to the blue-coloured ones.

Frontier orbitals diagram of complex 11 in dimer state (red) and in monomer state.

The results from the DFT study carried out for complex 7 helps to understand the hyperchromic shift upon disruption of the dimeric assembly: transitions 1 (458 nm) and 3 (417 nm) become more probable in the monomeric complex, see page S13.

Calculated distances/angles for $3 \cdot (pyr)_4$ using DFT.

Distances (Å)					
Zn–N(py)	2.195				
$Zn-O(N_2O_2 \text{ pocket})$	1.983				
$Zn-N(N_2O_2 \text{ pocket})$	2.155				
Zn–Zn(long side)	11.683				
Zn–Zn(short side)	8.407				
Angles (deg)					
N(N ₂ O ₂ pocket)–Zn–O(N ₂ O ₂ pocket)	88.4°				
$N(N_2O_2 \text{ pocket})$ -Zn- $N(N_2O_2 \text{ pocket})$	77.2°				
$O(N_2O_2 \text{ pocket})$ -Zn- $O(N_2O_2 \text{ pocket})$	98.7°				
$O(N_2O_2 \text{ pocket})$ –Zn–N(py)	100.1°				
$N(N_2O_2 \text{ pocket})$ – Zn – $N(py)$	101.1°				
Dihedral Angles (deg)					
C–C (diaminobenzidine)	32.9°				

Influence of solvent on UV-vis spectrum of Zn_4 macrocycle **3**.

Solvent influence (selected region in UV-vis spectrum) in the case of Zn_4 macrocycle **3** (at 1×10^{-5} M). Note that in the case of the more polar media the total absorption increases, indicating a different aggregated state for Zn_4 complex **3**.