Supporting information

Homoleptic 1-D Iron Selenolate Complexes — Synthesis, Structure, Magnetic and Thermal Behaviour of ${}^1_\infty[Fe(SeR)_2]$ (R = Ph, Mes)**

Andreas Eichhöfer^[a]*, Gernot Buth^[b], Francesco Dolci^[c], Karin Fink^[a], Richard. A. Mole^[d], Paul T. Wood^[e]

- [a] Institut für Nanotechnologie and [b] Institut für Synchrotronstrahlung; Karlsruhe Institut für Technologie (KIT)Postfach 364076021 Karlsruhe (Germany)
- [c] European Commission JRC Institute for Energy Cleaner Energy Unit, Westerduinweg 3, NL-1755 ZG Petten, The Netherlands
- [d] ZWE FRM-II, Lichtenbergstrasse 1, 85747 Garching, Germany
- [e] University Chemical Laboratory, Lensfield Rd., Cambridge CB2 1EW (UK)

^{**(}Ph = phenyl = C_6H_5 , Mes = mesityl = C_6H_2 -2,4,6-(CH₃)₃)

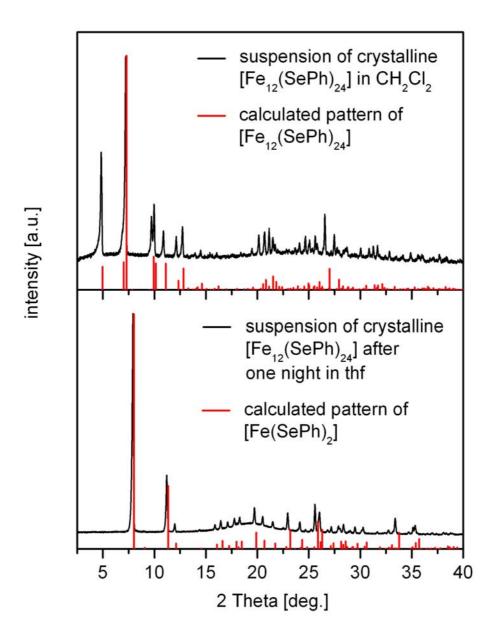


Figure S1. Measured (black) and simulated (red) X-ray powder patterns of $[Fe(SePh)_2]_{12}$ as a suspension of fresh crystals in CH_2Cl_2 (up) and as a suspension of crystals after one night in thf compared with the calculated pattern of $_{\infty}^{-1}[Fe(SePh)_2]$ (1) (down).

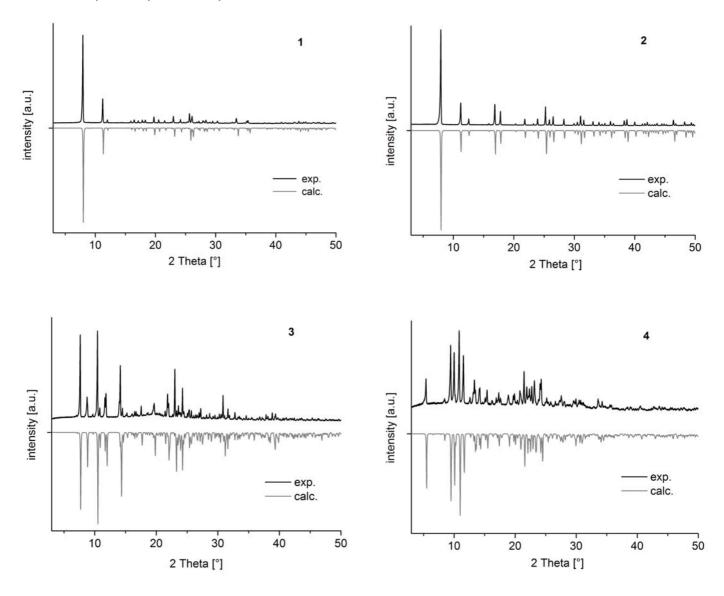


Figure S2. Measured (black) and simulated (grey) X-ray powder patterns of ${}^{1}_{\infty}$ [Fe(SePh)₂] (1), ${}^{1}_{\infty}$ [Fe(SeC₆H₂(CH₃)₃)₂] (2), [Fe(SePh)₂(1,10–phen)₂] (3) and [Fe(phen)₃][Fe(SePh)₄] (4).

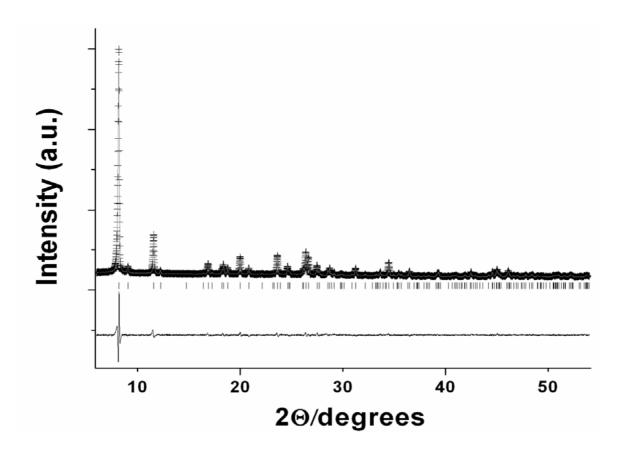


Figure S3. Rietveld refinement results for **1** after thermal treatment. Observed (cross symbols), calculated and difference profiles are present in figure. Weighted R value-Rw% is 4.48. Goodness of fit-chi² is 2.04.

Table S1. Refined parameters for **1** after heat treatment. The space group number is $I4_1/a$ (No. 88; setting 2). Cell parameters are a = b = 21.5799(4) Å and c = 10.9024(5) Å; V = 5077.0 Å³.

.

Atom Label	Atom Type	X coordinate	Y coordinate	Z coordinate	Biso	Occupancy
Se1	Se	0.7656(5)	0.4118(3)	0.093(1)	4.3(4)	1
Se2	Se	0.674(4)	0.5552(5)	-0.034(1)	2.5(3)	1
Fe1	Fe	0.7714(7)	0.5221(7)	0.029(1)	2.9(3)	1
C1	С	0.8419	0.3846	0.0881	3.81	1
C2	С	0.8501	0.3571	-0.0248	4.81	1
H2	Н	0.8169	0.3522	-0.0793	5.8	1
C3	С	0.907	0.3367	-0.0574	6.4	1
H3	Н	0.9126	0.3171	-0.1342	7.7	1
C4	С	0.9551	0.3445	0.0193	6.8	1
H4	Н	0.994	0.3303	-0.004	8.1	1
C5	С	0.9472	0.3728	0.1302	7	1
H5	Н	0.981	0.3789	0.1826	8.4	1
C6	С	0.8904	0.3927	0.1667	5.6	1
H6	Н	0.8849	0.4114	0.2444	6.7	1
C7	С	0.6882	0.642	0.0183	4.3	1
C8	С	0.7031	0.6817	-0.0763	5.18	1
H8	Н	0.7085	0.6667	-0.1574	6.2	1
C9	С	0.71	0.7427	-0.0528	5.9	1
H9	Н	0.7207	0.7696	-0.1173	7	1
C10	С	0.7014	0.7648	0.0658	6.3	1
H10	Н	0.7053	0.8068	0.0823	7.5	1
C11	С	0.6872	0.7253	0.1588	6.6	1
H11	Н	0.6821	0.7402	0.24	7.9	1
C12	С	0.6801	0.6639	0.1356	5.59	1
H12	Н	0.6698	0.6371	0.2005	6.7	1

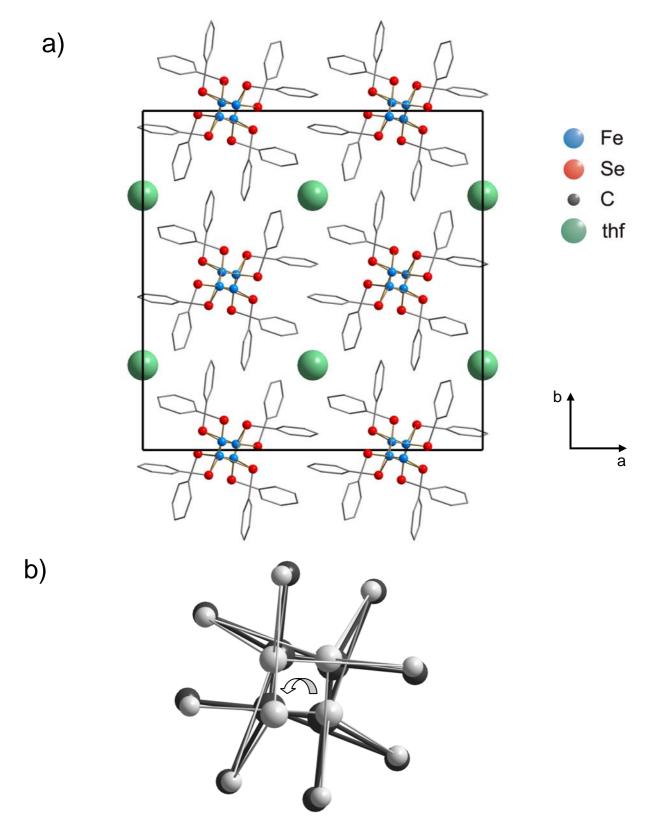


Figure S4. a) Structure of ${}^1_\infty$ [Fe(SePh)₂] (1) in the crystal, view along c, location of the channels of disordered thf molecules are schematically indicated by the green balls; b) irreversible twist of the FeSe-chains in 1 before (black) and after (light grey) heating to 110 ${}^{\circ}$ C and cooling down.

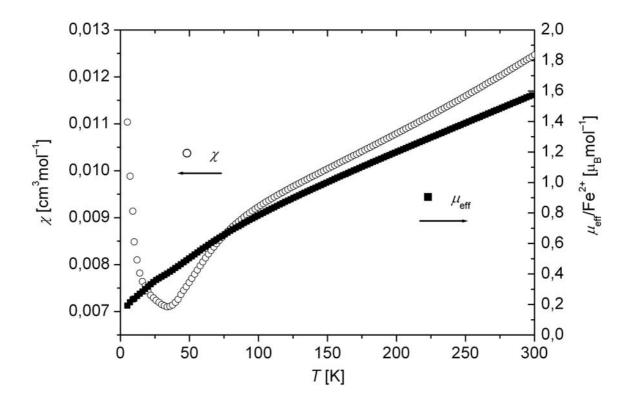
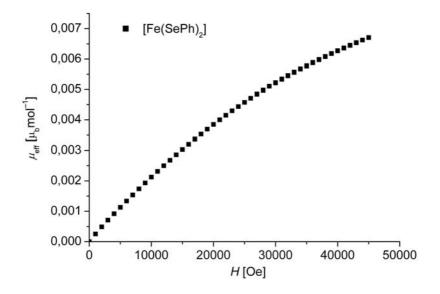



Figure S5. Susceptibility behaviour for [Fe(SePh)₂]₁₂.

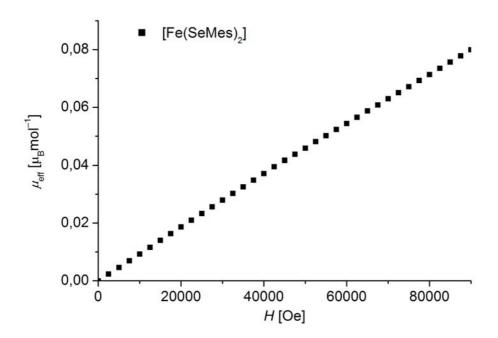


Figure S6. Isothermal magnetization curves of $_{\infty}^{1}$ [Fe(SePh)₂] (1) and $_{\infty}^{1}$ [Fe(SeC₆H₂(CH₃)₃)₂] (2) at 5K.

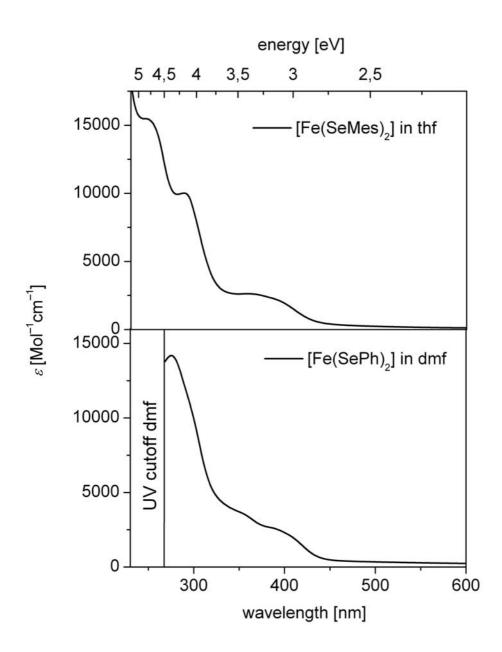


Figure S7. UV-Vis spectra of $_{\infty}^{-1}$ [Fe(SePh)₂] (1) and $_{\infty}^{-1}$ [Fe(SeC₆H₂(CH₃)₃)₂] (2) in solution.

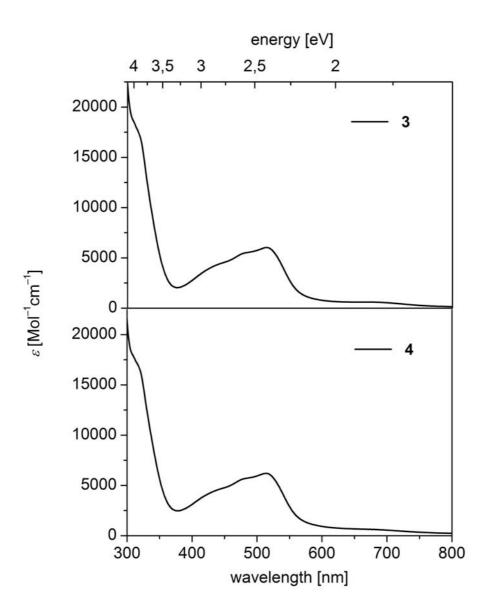


Figure S8. UV-Vis spectra of $[Fe(SePh)_2(1,10-phen)_2]$ (3) and $[Fe(phen)_3][Fe(SePh)_4]$ (4) in dmf.

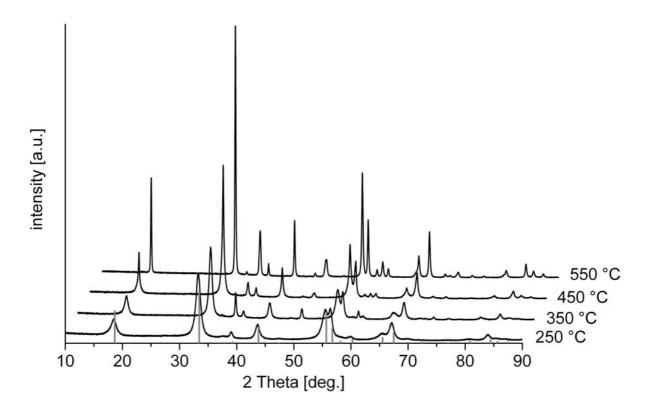


Figure S9. Powder XRD patterns of the residue of $_{\infty}^{1}$ [Fe(SePh)₂] (1) after thermal treatment at 250, 350, 450 and 550 °C under vacuum (3·10⁻⁶ mbar) compared to the indexed reflection patterns of tetragonal Fe_{1+x}Se (0.012 < x < 0.02) [13] (grey lines).