Supporting Information

Polyoxometalate-templated lanthanide-organic hybrid layers based on 6³-honeycomb-like 2D nets

Xiu-Li Hao,^a Ming-Fa Luo,^a Wei Yao,^a Yang-Guang Li,^{*a} Yong-Hui Wang^{*a} and En-Bo Wang^a

Contents

- 1. Additional structural figures for compounds 1, 2 and 3
- 2. Selected bond lengths and angles for compounds 1, 2 and 3
- 3. Additional physical measurements for compounds 1, 2 and 3

1 Additional structural figures for compounds **1**, **2** and **3**

Fig. S1 ORTEP diagram of the basic structural units in **compound 1** with thermal ellipsoids at 30% probability displacement. All H atoms and solvent molecules are omitted for clarity.

Fig. S2 ORTEP diagram of the basic structural units in **compound 2** with thermal ellipsoids at 30% probability displacement. All H atoms and solvent molecules are omitted for clarity.

Fig. S3 ORTEP diagram of the basic structural units in **compound 3** with thermal ellipsoids at 30% probability displacement. All H atoms and solvent molecules are omitted for clarity.

Fig. S4 The side view of the cationic 2D lanthanide-organic network in **1** and the distribution of Keggin-type POM templates in the layer.

Fig. S5 (a) (c) (e) The schematic views of the H-bonding interactions between two interval layers and the 2-fold interpenetrating supramolecular framework in 1; (b) (d) (f) The relevant structural features of the 3D entangled lanthanide-organic supramolecular framework in 1.

Fig. S6 (a) Schematic view of the 3D lanthanide-organic supramolecular framework in 1 with the two-fold interpenetration mode; (b) the distribution of POM templates in the lanthanide-organic supramolecular framework viewed along c axis.

Table S1. Selected bond lengths (Å) and angles (deg) of compound 1				
Dy(1)-O(41)	2.237(12)	Dy(1)-O(43)	2.270(10)	
Dy(1)-O(45)	2.345(9)	Dy(1)-O(1W)	2.386(13)	
Dy(1)-O(2W)	2.367(11)	Dy(1)-O(3W)	2.384(11)	
Dy(1)-O(4W)	2.389(10)	Dy(1)-O(5W)	2.387(12)	
O(41)-Dy(1)-O(43)	140.0(4)	O(41)-Dy(1)-O(45)	103.4(4)	
O(41)-Dy(1)-O(1W)	86.4(5)	O(41)-Dy(1)-O(2W)	147.2(4)	
O(41)-Dy(1)-O(3W)	74.4(5)	O(41)-Dy(1)-O(4W)	73.7(4)	
O(41)-Dy(1)-O(5W)	74.7(4)	O(43)-Dy(1)-O(45)	92.1(4)	
O(43)-Dy(1)-O(1W)	104.7(5)	O(43)-Dy(1)-O(2W)	71.8(4)	
O(43)-Dy(1)-O(3W)	76.5(4)	O(43)-Dy(1)-O(4W)	146.2(4)	
O(43)-Dy(1)-O(5W)	73.1(4)	O(45)-Dy(1)-O(1W)	140.5(4)	
O(45)-Dy(1)-O(2W)	77.4(4)	O(45)-Dy(1)-O(3W)	70.8(3)	
O(45)-Dy(1)-O(4W)	75.5(3)	O(45)-Dy(1)-O(5W)	148.4(3)	
O(1W)-Dy(1)-O(2W)	74.5(5)	O(1W)-Dy(1)-O(3W)	147.5(5)	
O(1W)-Dy(1)-O(4W)	70.8(5)	O(1W)-Dy(1)-O(5W)	71.1(5)	
O(2W)-Dy(1)-O(3W)	133.6(4)	O(2W)-Dy(1)-O(4W)	74.9(4)	
O(2W)-Dy(1)-O(5W)	121.5(4)	O(3W)-Dy(1)-O(4W)	125.8(4)	
O(3W)-Dy(1)-O(5W)	78.5(4)	O(4W)-Dy(1)-O(5W)	131.3(4)	

2 Selected bond lengths and angles for compounds 1, 2 and 3

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z; #2 -x,-y+2,-z; #3 -x-1,-y+1,-z+1

				0					
T 11 CA	0 1 / 1	1 1	1 /1	/ A `	. 1	1	(1)	C	10
I anie N /	Nelected	hond	lenathe	(Δ)	1 and	angles	(deg)	of com	nound /
$1 a n n c o \Delta$.	BUILLIUU	DUNIU	icneuis		<i>i</i> anu	angios	IUC21	OI COIII	DUUIIU 4
				· /	,		\		

			_
Tb(1)-O(41)	2.370(12)	Tb(1)-O(43)	2.262(15)
Tb(1)-O(45)	2.254(13)	Tb(1)-O(1W)	2.386(14)
Tb(1)-O(2W)	2.447(15)	Tb(1)-O(3W)	2.419(14)
Tb(1)-O(4W)	2.420(15)	Tb(1)-O(5W)	2.398(17)
O(41)-Tb(1)-O(43)	91.9(5)	O(41)-Tb(1)-O(45)	102.5(5)
O(41)-Tb(1)-O(1W)	148.8(5)	O(41)-Tb(1)-O(2W)	75.1(5)
O(41)-Tb(1)-O(3W)	71.2(5)	O(41)-Tb(1)-O(4W)	77.4(5)
O(41)-Tb(1)-O(5W)	139.4(6)	O(43)-Tb(1)-O(45)	141.4(5)
O(43)-Tb(1)-O(1W)	73.5(5)	O(43)-Tb(1)-O(2W)	146.5(5)
O(43)-Tb(1)-O(3W)	76.2(5)	O(43)-Tb(1)-O(4W)	71.6(5)
O(43)-Tb(1)-O(5W)	104.8(6)	O(45)-Tb(1)-O(1W)	76.0(5)
O(45)-Tb(1)-O(2W)	72.1(5)	O(45)-Tb(1)-O(3W)	75.0(6)
O(45)-Tb(1)-O(4W)	146.3(6)	O(45)-Tb(1)-O(5W)	87.2(6)
O(1W)-Tb(1)-O(2W)	131.1(5)	O(1W)-Tb(1)-O(3W)	78.4(5)
O(1W)-Tb(1)-O(4W)	121.4(5)	O(1W)-Tb(1)-O(5W)	71.8(6)
O(2W)-Tb(1)-O(3W)	125.6(5)	O(2W)-Tb(1)-O(4W)	75.4(5)
O(2W)-Tb(1)-O(5W)	70.7(6)	O(3W)-Tb(1)-O(4W)	133.6(5)
O(3W)-Tb(1)-O(5W)	148.2(6)	O(4W)-Tb(1)-O(5W)	73.6(6)

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+2,-z+1; #2 -x+2,-y+1,-z+1; #3 -x+3,-y+2,-z; #4 -x+2,-y+1,-z

Er(1)-O(41) $2.240(11)$ $Er(1)-O(43)$ $2.343(10)$ $Er(1)-O(45)$ $2.242(14)$ $Er(1)-O(1W)$ $2.319(12)$ $Er(1)-O(2W)$ $2.392(13)$ $Er(1)-O(3W)$ $2.339(15)$ $Er(1)-O(4W)$ $2.364(12)$ $Er(1)-O(5W)$ $2.347(12)$ $O(41)-Er(1)-O(43)$ $103.0(5)$ $O(41)-Er(1)-O(45)$ $141.7(5)$ $O(41)-Er(1)-O(1W)$ $145.7(5)$ $O(41)-Er(1)-O(2W)$ $71.7(5)$ $O(41)-Er(1)-O(3W)$ $89.6(6)$ $O(41)-Er(1)-O(4W)$ $75.3(6)$ $O(41)-Er(1)-O(5W)$ $75.3(5)$ $O(43)-Er(1)-O(4W)$ $75.3(6)$ $O(41)-Er(1)-O(5W)$ $75.3(5)$ $O(43)-Er(1)-O(4W)$ $75.3(6)$ $O(43)-Er(1)-O(1W)$ $77.4(4)$ $O(43)-Er(1)-O(2W)$ $76.4(4)$ $O(43)-Er(1)-O(1W)$ $77.4(4)$ $O(43)-Er(1)-O(4W)$ $70.9(4)$ $O(43)-Er(1)-O(3W)$ $146.7(4)$ $O(45)-Er(1)-O(1W)$ $71.8(5)$ $O(45)-Er(1)-O(2W)$ $146.7(4)$ $O(45)-Er(1)-O(3W)$ $71.8(5)$ $O(1W)-Er(1)-O(2W)$ $75.2(5)$ $O(1W)-Er(1)-O(3W)$ $71.8(5)$ $O(1W)-Er(1)-O(4W)$ $133.9(5)$ $O(1W)-Er(1)-O(5W)$ $71.8(5)$ $O(2W)-Er(1)-O(4W)$ $133.9(5)$ $O(1W)-Er(1)-O(4W)$ $126.0(5)$ $O(2W)-Er(1)-O(5W)$ $70.4(5)$ $O(4W)-Er(1)-O(5W)$ $78.7(4)$	Tuble 55. Selected bolid lengths (17) and ungles (deg) of compound 5					
Er(1)-O(45) $2.242(14)$ $Er(1)-O(1W)$ $2.319(12)$ $Er(1)-O(2W)$ $2.392(13)$ $Er(1)-O(3W)$ $2.339(15)$ $Er(1)-O(4W)$ $2.364(12)$ $Er(1)-O(5W)$ $2.347(12)$ $O(41)-Er(1)-O(43)$ $103.0(5)$ $O(41)-Er(1)-O(45)$ $141.7(5)$ $O(41)-Er(1)-O(1W)$ $145.7(5)$ $O(41)-Er(1)-O(2W)$ $71.7(5)$ $O(41)-Er(1)-O(3W)$ $89.6(6)$ $O(41)-Er(1)-O(4W)$ $75.3(6)$ $O(41)-Er(1)-O(3W)$ $89.6(6)$ $O(41)-Er(1)-O(4W)$ $75.3(6)$ $O(41)-Er(1)-O(5W)$ $75.3(5)$ $O(43)-Er(1)-O(4W)$ $75.3(6)$ $O(43)-Er(1)-O(1W)$ $77.4(4)$ $O(43)-Er(1)-O(2W)$ $76.4(4)$ $O(43)-Er(1)-O(1W)$ $77.4(4)$ $O(43)-Er(1)-O(4W)$ $70.9(4)$ $O(43)-Er(1)-O(3W)$ $140.6(5)$ $O(43)-Er(1)-O(4W)$ $70.9(4)$ $O(43)-Er(1)-O(5W)$ $148.8(4)$ $O(45)-Er(1)-O(1W)$ $71.8(5)$ $O(45)-Er(1)-O(2W)$ $146.7(4)$ $O(45)-Er(1)-O(3W)$ $100.9(6)$ $O(45)-Er(1)-O(4W)$ $76.7(5)$ $O(1W)-Er(1)-O(3W)$ $71.8(5)$ $O(1W)-Er(1)-O(2W)$ $75.2(5)$ $O(1W)-Er(1)-O(3W)$ $71.8(5)$ $O(1W)-Er(1)-O(4W)$ $133.9(5)$ $O(1W)-Er(1)-O(4W)$ $126.0(5)$ $O(2W)-Er(1)-O(5W)$ $73.9(4)$ $O(3W)-Er(1)-O(4W)$ $148.2(5)$ $O(3W)-Er(1)-O(5W)$ $70.4(5)$ $O(4W)-Er(1)-O(5W)$ $78.7(4)$	Er(1)-O(41)	2.240(11)	Er(1)-O(43)	2.343(10)		
Er(1)-O(2W)2.392(13) $Er(1)-O(3W)$ 2.339(15) $Er(1)-O(4W)$ 2.364(12) $Er(1)-O(5W)$ 2.347(12) $O(41)-Er(1)-O(43)$ 103.0(5) $O(41)-Er(1)-O(45)$ 141.7(5) $O(41)-Er(1)-O(1W)$ 145.7(5) $O(41)-Er(1)-O(2W)$ 71.7(5) $O(41)-Er(1)-O(3W)$ 89.6(6) $O(41)-Er(1)-O(4W)$ 75.3(6) $O(41)-Er(1)-O(5W)$ 75.3(5) $O(43)-Er(1)-O(4W)$ 75.3(6) $O(41)-Er(1)-O(5W)$ 75.3(5) $O(43)-Er(1)-O(4W)$ 76.4(4) $O(43)-Er(1)-O(1W)$ 77.4(4) $O(43)-Er(1)-O(2W)$ 76.4(4) $O(43)-Er(1)-O(3W)$ 140.6(5) $O(43)-Er(1)-O(4W)$ 70.9(4) $O(43)-Er(1)-O(5W)$ 148.8(4) $O(45)-Er(1)-O(1W)$ 71.8(5) $O(45)-Er(1)-O(2W)$ 146.7(4) $O(45)-Er(1)-O(3W)$ 100.9(6) $O(45)-Er(1)-O(2W)$ 75.2(5) $O(1W)-Er(1)-O(5W)$ 73.9(4) $O(1W)-Er(1)-O(2W)$ 75.2(5) $O(1W)-Er(1)-O(5W)$ 71.8(5) $O(2W)-Er(1)-O(4W)$ 133.9(5) $O(1W)-Er(1)-O(5W)$ 121.8(5) $O(2W)-Er(1)-O(5W)$ 72.4(5) $O(2W)-Er(1)-O(4W)$ 126.0(5) $O(3W)-Er(1)-O(5W)$ 70.4(5) $O(4W)-Er(1)-O(5W)$ 78.7(4)	Er(1)-O(45)	2.242(14)	Er(1)-O(1W)	2.319(12)		
Er(1)-O(4W)2.364(12) $Er(1)-O(5W)$ 2.347(12) $O(41)-Er(1)-O(43)$ $103.0(5)$ $O(41)-Er(1)-O(45)$ $141.7(5)$ $O(41)-Er(1)-O(1W)$ $145.7(5)$ $O(41)-Er(1)-O(2W)$ $71.7(5)$ $O(41)-Er(1)-O(3W)$ $89.6(6)$ $O(41)-Er(1)-O(4W)$ $75.3(6)$ $O(41)-Er(1)-O(5W)$ $75.3(5)$ $O(43)-Er(1)-O(4W)$ $75.3(6)$ $O(41)-Er(1)-O(5W)$ $75.3(5)$ $O(43)-Er(1)-O(4W)$ $76.4(4)$ $O(43)-Er(1)-O(1W)$ $77.4(4)$ $O(43)-Er(1)-O(2W)$ $76.4(4)$ $O(43)-Er(1)-O(3W)$ $140.6(5)$ $O(43)-Er(1)-O(4W)$ $70.9(4)$ $O(43)-Er(1)-O(5W)$ $148.8(4)$ $O(45)-Er(1)-O(1W)$ $71.8(5)$ $O(45)-Er(1)-O(2W)$ $146.7(4)$ $O(45)-Er(1)-O(3W)$ $100.9(6)$ $O(45)-Er(1)-O(2W)$ $76.7(5)$ $O(1W)-Er(1)-O(5W)$ $73.9(4)$ $O(1W)-Er(1)-O(2W)$ $75.2(5)$ $O(1W)-Er(1)-O(3W)$ $71.8(5)$ $O(1W)-Er(1)-O(4W)$ $133.9(5)$ $O(1W)-Er(1)-O(5W)$ $121.8(5)$ $O(2W)-Er(1)-O(3W)$ $72.4(5)$ $O(2W)-Er(1)-O(4W)$ $126.0(5)$ $O(3W)-Er(1)-O(5W)$ $130.3(4)$ $O(3W)-Er(1)-O(4W)$ $148.2(5)$ $O(3W)-Er(1)-O(5W)$ $70.4(5)$ $O(4W)-Er(1)-O(5W)$ $78.7(4)$	Er(1)-O(2W)	2.392(13)	Er(1)-O(3W)	2.339(15)		
O(41)-Er(1)-O(43) $103.0(5)$ $O(41)-Er(1)-O(45)$ $141.7(5)$ $O(41)-Er(1)-O(1W)$ $145.7(5)$ $O(41)-Er(1)-O(2W)$ $71.7(5)$ $O(41)-Er(1)-O(3W)$ $89.6(6)$ $O(41)-Er(1)-O(4W)$ $75.3(6)$ $O(41)-Er(1)-O(5W)$ $75.3(5)$ $O(43)-Er(1)-O(45)$ $92.0(4)$ $O(43)-Er(1)-O(1W)$ $77.4(4)$ $O(43)-Er(1)-O(2W)$ $76.4(4)$ $O(43)-Er(1)-O(3W)$ $140.6(5)$ $O(43)-Er(1)-O(4W)$ $70.9(4)$ $O(43)-Er(1)-O(3W)$ $146.7(4)$ $O(45)-Er(1)-O(1W)$ $71.8(5)$ $O(45)-Er(1)-O(2W)$ $146.7(4)$ $O(45)-Er(1)-O(3W)$ $100.9(6)$ $O(45)-Er(1)-O(2W)$ $76.7(5)$ $O(45)-Er(1)-O(5W)$ $73.9(4)$ $O(1W)-Er(1)-O(2W)$ $75.2(5)$ $O(1W)-Er(1)-O(3W)$ $71.8(5)$ $O(1W)-Er(1)-O(4W)$ $133.9(5)$ $O(1W)-Er(1)-O(5W)$ $121.8(5)$ $O(2W)-Er(1)-O(3W)$ $72.4(5)$ $O(2W)-Er(1)-O(4W)$ $126.0(5)$ $O(3W)-Er(1)-O(5W)$ $70.4(5)$ $O(4W)-Er(1)-O(5W)$ $78.7(4)$	Er(1)-O(4W)	2.364(12)	Er(1)-O(5W)	2.347(12)		
O(41)-Er(1)-O(1W)145.7(5) $O(41)-Er(1)-O(2W)$ 71.7(5) $O(41)-Er(1)-O(3W)$ 89.6(6) $O(41)-Er(1)-O(4W)$ 75.3(6) $O(41)-Er(1)-O(5W)$ 75.3(5) $O(43)-Er(1)-O(4W)$ 92.0(4) $O(43)-Er(1)-O(1W)$ 77.4(4) $O(43)-Er(1)-O(2W)$ 76.4(4) $O(43)-Er(1)-O(3W)$ 140.6(5) $O(43)-Er(1)-O(4W)$ 70.9(4) $O(43)-Er(1)-O(5W)$ 148.8(4) $O(45)-Er(1)-O(1W)$ 71.8(5) $O(45)-Er(1)-O(2W)$ 146.7(4) $O(45)-Er(1)-O(3W)$ 100.9(6) $O(45)-Er(1)-O(2W)$ 76.7(5) $O(45)-Er(1)-O(5W)$ 73.9(4) $O(1W)-Er(1)-O(2W)$ 75.2(5) $O(1W)-Er(1)-O(3W)$ 71.8(5) $O(2W)-Er(1)-O(4W)$ 133.9(5) $O(1W)-Er(1)-O(5W)$ 121.8(5) $O(2W)-Er(1)-O(5W)$ 72.4(5) $O(2W)-Er(1)-O(4W)$ 126.0(5) $O(3W)-Er(1)-O(5W)$ 70.4(5) $O(4W)-Er(1)-O(5W)$ 78.7(4)	O(41)-Er(1)-O(43)	103.0(5)	O(41)-Er(1)-O(45)	141.7(5)		
O(41)-Er(1)-O(3W) $89.6(6)$ $O(41)-Er(1)-O(4W)$ $75.3(6)$ $O(41)-Er(1)-O(5W)$ $75.3(5)$ $O(43)-Er(1)-O(45)$ $92.0(4)$ $O(43)-Er(1)-O(1W)$ $77.4(4)$ $O(43)-Er(1)-O(2W)$ $76.4(4)$ $O(43)-Er(1)-O(3W)$ $140.6(5)$ $O(43)-Er(1)-O(4W)$ $70.9(4)$ $O(43)-Er(1)-O(5W)$ $148.8(4)$ $O(45)-Er(1)-O(1W)$ $71.8(5)$ $O(45)-Er(1)-O(2W)$ $146.7(4)$ $O(45)-Er(1)-O(3W)$ $100.9(6)$ $O(45)-Er(1)-O(2W)$ $76.7(5)$ $O(45)-Er(1)-O(5W)$ $73.9(4)$ $O(1W)-Er(1)-O(2W)$ $75.2(5)$ $O(1W)-Er(1)-O(3W)$ $71.8(5)$ $O(1W)-Er(1)-O(4W)$ $133.9(5)$ $O(1W)-Er(1)-O(5W)$ $121.8(5)$ $O(2W)-Er(1)-O(3W)$ $72.4(5)$ $O(2W)-Er(1)-O(4W)$ $126.0(5)$ $O(2W)-Er(1)-O(5W)$ $130.3(4)$ $O(3W)-Er(1)-O(4W)$ $148.2(5)$ $O(3W)-Er(1)-O(5W)$ $70.4(5)$ $O(4W)-Er(1)-O(5W)$ $78.7(4)$	O(41)-Er(1)-O(1W)	145.7(5)	O(41)-Er(1)-O(2W)	71.7(5)		
O(41)-Er(1)-O(5W)75.3(5) $O(43)-Er(1)-O(45)$ 92.0(4) $O(43)-Er(1)-O(1W)$ 77.4(4) $O(43)-Er(1)-O(2W)$ 76.4(4) $O(43)-Er(1)-O(3W)$ 140.6(5) $O(43)-Er(1)-O(4W)$ 70.9(4) $O(43)-Er(1)-O(5W)$ 148.8(4) $O(45)-Er(1)-O(1W)$ 71.8(5) $O(45)-Er(1)-O(2W)$ 146.7(4) $O(45)-Er(1)-O(3W)$ 100.9(6) $O(45)-Er(1)-O(4W)$ 76.7(5) $O(45)-Er(1)-O(5W)$ 73.9(4) $O(1W)-Er(1)-O(2W)$ 75.2(5) $O(1W)-Er(1)-O(3W)$ 71.8(5) $O(1W)-Er(1)-O(4W)$ 133.9(5) $O(1W)-Er(1)-O(5W)$ 121.8(5) $O(2W)-Er(1)-O(3W)$ 72.4(5) $O(2W)-Er(1)-O(4W)$ 126.0(5) $O(3W)-Er(1)-O(5W)$ 130.3(4) $O(3W)-Er(1)-O(4W)$ 148.2(5) $O(3W)-Er(1)-O(5W)$ 70.4(5) $O(4W)-Er(1)-O(5W)$ 78.7(4)	O(41)-Er(1)-O(3W)	89.6(6)	O(41)-Er(1)-O(4W)	75.3(6)		
O(43)- $Er(1)$ - $O(1W)$ 77.4(4) $O(43)$ - $Er(1)$ - $O(2W)$ 76.4(4) $O(43)$ - $Er(1)$ - $O(3W)$ 140.6(5) $O(43)$ - $Er(1)$ - $O(4W)$ 70.9(4) $O(43)$ - $Er(1)$ - $O(5W)$ 148.8(4) $O(45)$ - $Er(1)$ - $O(1W)$ 71.8(5) $O(45)$ - $Er(1)$ - $O(2W)$ 146.7(4) $O(45)$ - $Er(1)$ - $O(3W)$ 100.9(6) $O(45)$ - $Er(1)$ - $O(4W)$ 76.7(5) $O(45)$ - $Er(1)$ - $O(5W)$ 73.9(4) $O(1W)$ - $Er(1)$ - $O(2W)$ 75.2(5) $O(1W)$ - $Er(1)$ - $O(3W)$ 71.8(5) $O(1W)$ - $Er(1)$ - $O(4W)$ 133.9(5) $O(1W)$ - $Er(1)$ - $O(5W)$ 121.8(5) $O(2W)$ - $Er(1)$ - $O(3W)$ 72.4(5) $O(2W)$ - $Er(1)$ - $O(4W)$ 126.0(5) $O(2W)$ - $Er(1)$ - $O(5W)$ 130.3(4) $O(3W)$ - $Er(1)$ - $O(5W)$ 78.7(4)	O(41)-Er(1)-O(5W)	75.3(5)	O(43)-Er(1)-O(45)	92.0(4)		
O(43)-Er(1)-O(3W)140.6(5) $O(43)-Er(1)-O(4W)$ 70.9(4) $O(43)-Er(1)-O(5W)$ 148.8(4) $O(45)-Er(1)-O(1W)$ 71.8(5) $O(45)-Er(1)-O(2W)$ 146.7(4) $O(45)-Er(1)-O(3W)$ 100.9(6) $O(45)-Er(1)-O(4W)$ 76.7(5) $O(45)-Er(1)-O(5W)$ 73.9(4) $O(1W)-Er(1)-O(2W)$ 75.2(5) $O(1W)-Er(1)-O(3W)$ 71.8(5) $O(1W)-Er(1)-O(4W)$ 133.9(5) $O(1W)-Er(1)-O(5W)$ 121.8(5) $O(2W)-Er(1)-O(3W)$ 72.4(5) $O(2W)-Er(1)-O(4W)$ 126.0(5) $O(2W)-Er(1)-O(5W)$ 130.3(4) $O(3W)-Er(1)-O(4W)$ 148.2(5) $O(3W)-Er(1)-O(5W)$ 70.4(5) $O(4W)-Er(1)-O(5W)$ 78.7(4)	O(43)-Er(1)-O(1W)	77.4(4)	O(43)-Er(1)-O(2W)	76.4(4)		
O(43)-Er(1)- $O(5W)$ 148.8(4) $O(45)$ -Er(1)- $O(1W)$ 71.8(5) $O(45)$ -Er(1)- $O(2W)$ 146.7(4) $O(45)$ -Er(1)- $O(3W)$ 100.9(6) $O(45)$ -Er(1)- $O(4W)$ 76.7(5) $O(45)$ -Er(1)- $O(5W)$ 73.9(4) $O(1W)$ -Er(1)- $O(2W)$ 75.2(5) $O(1W)$ -Er(1)- $O(3W)$ 71.8(5) $O(1W)$ -Er(1)- $O(4W)$ 133.9(5) $O(1W)$ -Er(1)- $O(5W)$ 121.8(5) $O(2W)$ -Er(1)- $O(3W)$ 72.4(5) $O(2W)$ -Er(1)- $O(4W)$ 126.0(5) $O(2W)$ -Er(1)- $O(5W)$ 130.3(4) $O(3W)$ -Er(1)- $O(4W)$ 148.2(5) $O(3W)$ -Er(1)- $O(5W)$ 70.4(5) $O(4W)$ -Er(1)- $O(5W)$ 78.7(4)	O(43)-Er(1)-O(3W)	140.6(5)	O(43)-Er(1)-O(4W)	70.9(4)		
O(45)- $Er(1)$ - $O(2W)$ 146.7(4) $O(45)$ - $Er(1)$ - $O(3W)$ 100.9(6) $O(45)$ - $Er(1)$ - $O(4W)$ 76.7(5) $O(45)$ - $Er(1)$ - $O(5W)$ 73.9(4) $O(1W)$ - $Er(1)$ - $O(2W)$ 75.2(5) $O(1W)$ - $Er(1)$ - $O(3W)$ 71.8(5) $O(1W)$ - $Er(1)$ - $O(4W)$ 133.9(5) $O(1W)$ - $Er(1)$ - $O(5W)$ 121.8(5) $O(2W)$ - $Er(1)$ - $O(3W)$ 72.4(5) $O(2W)$ - $Er(1)$ - $O(4W)$ 126.0(5) $O(2W)$ - $Er(1)$ - $O(5W)$ 130.3(4) $O(3W)$ - $Er(1)$ - $O(4W)$ 148.2(5) $O(3W)$ - $Er(1)$ - $O(5W)$ 70.4(5) $O(4W)$ - $Er(1)$ - $O(5W)$ 78.7(4)	O(43)-Er(1)-O(5W)	148.8(4)	O(45)-Er(1)-O(1W)	71.8(5)		
O(45)-Er(1)- $O(4W)$ 76.7(5) $O(45)$ -Er(1)- $O(5W)$ 73.9(4) $O(1W)$ -Er(1)- $O(2W)$ 75.2(5) $O(1W)$ -Er(1)- $O(3W)$ 71.8(5) $O(1W)$ -Er(1)- $O(4W)$ 133.9(5) $O(1W)$ -Er(1)- $O(5W)$ 121.8(5) $O(2W)$ -Er(1)- $O(3W)$ 72.4(5) $O(2W)$ -Er(1)- $O(4W)$ 126.0(5) $O(2W)$ -Er(1)- $O(5W)$ 130.3(4) $O(3W)$ -Er(1)- $O(4W)$ 148.2(5) $O(3W)$ -Er(1)- $O(5W)$ 70.4(5) $O(4W)$ -Er(1)- $O(5W)$ 78.7(4)	O(45)-Er(1)-O(2W)	146.7(4)	O(45)-Er(1)-O(3W)	100.9(6)		
O(1W)-Er(1)-O(2W)75.2(5) $O(1W)$ -Er(1)-O(3W)71.8(5) $O(1W)$ -Er(1)-O(4W)133.9(5) $O(1W)$ -Er(1)-O(5W)121.8(5) $O(2W)$ -Er(1)-O(3W)72.4(5) $O(2W)$ -Er(1)-O(4W)126.0(5) $O(2W)$ -Er(1)-O(5W)130.3(4) $O(3W)$ -Er(1)-O(4W)148.2(5) $O(3W)$ -Er(1)-O(5W)70.4(5) $O(4W)$ -Er(1)-O(5W)78.7(4)	O(45)-Er(1)-O(4W)	76.7(5)	O(45)-Er(1)-O(5W)	73.9(4)		
O(1W)-Er(1)-O(4W)133.9(5)O(1W)-Er(1)-O(5W)121.8(5)O(2W)-Er(1)-O(3W)72.4(5)O(2W)-Er(1)-O(4W)126.0(5)O(2W)-Er(1)-O(5W)130.3(4)O(3W)-Er(1)-O(4W)148.2(5)O(3W)-Er(1)-O(5W)70.4(5)O(4W)-Er(1)-O(5W)78.7(4)	O(1W)-Er(1)-O(2W)	75.2(5)	O(1W)-Er(1)-O(3W)	71.8(5)		
O(2W)-Er(1)-O(3W)72.4(5)O(2W)-Er(1)-O(4W)126.0(5)O(2W)-Er(1)-O(5W)130.3(4)O(3W)-Er(1)-O(4W)148.2(5)O(3W)-Er(1)-O(5W)70.4(5)O(4W)-Er(1)-O(5W)78.7(4)	O(1W)-Er(1)-O(4W)	133.9(5)	O(1W)-Er(1)-O(5W)	121.8(5)		
O(2W)-Er(1)-O(5W)130.3(4)O(3W)-Er(1)-O(4W)148.2(5)O(3W)-Er(1)-O(5W)70.4(5)O(4W)-Er(1)-O(5W)78.7(4)	O(2W)-Er(1)-O(3W)	72.4(5)	O(2W)-Er(1)-O(4W)	126.0(5)		
O(3W)-Er(1)-O(5W) 70.4(5) O(4W)-Er(1)-O(5W) 78.7(4)	O(2W)-Er(1)-O(5W)	130.3(4)	O(3W)-Er(1)-O(4W)	148.2(5)		
	O(3W)-Er(1)-O(5W)	70.4(5)	O(4W)-Er(1)-O(5W)	78.7(4)		

Table S3. Selected bond lengths (Å) and angles (deg) of compound 3

Symmetry transformations used to generate equivalent atoms: #1 -x-1,-y+1,-z+1; #2 -x+1,-y+1,-z; #3 -x,-y+2,-z

3 Additional physical measurements for compounds 1, 2 and 3

Fig. S7 Cyclic voltammogram of **1**-CPE in a 1M H_2SO_4 solution at a scan rate of 100 mV/s; the reference electrode was Ag/AgCl.

Fig. S8 (a) Cyclic voltammograms (CV) of **2-**CPE in 1 M H_2SO_4 at scan rate of 100 mV/s, the reference electrode was Ag/AgCl; (b) CVs of the **2-**CPE in 1 M H_2SO_4 at different scan rates (from inner to outer: 50, 75, 100, 125, 150, 175 and 200 mV/s); (c) plots of the dependence of anodic peak and cathodic peak (II–II') current on scan rate; (d) CVs of **2-**CPE in 1 M H_2SO_4 containing 0.0-0.8 mM KNO₂ and a bare CPE in 0.50 mM KNO₂ + 1 M H_2SO_4 solution.

Fig. S9 (a) Cyclic voltammogram (CV) of **3-**CPE in the 1 M H_2SO_4 solution at a scan rate of 100 mV/s; the reference electrode was Ag/AgCl; (b) CVs of **3-**CPE in 1 M H_2SO_4 at different scan rates (from inner to outer: 50, 75, 100, 125, 150, 175 and 200 mV/s); (c) plots of the dependence of anodic peak and cathodic peak (II–II') current on scan rate; (d) CVs of **3-**CPE in 1 M H_2SO_4 containing 0.0-0.8 mM KNO₂ and a bare CPE in 0.50 mM KNO₂ + 1 M H_2SO_4 solution.

IR spectra

The IR spectra of compounds **1-3** show four characteristic peaks of the polyoxoanion $[PMo_{12}O_{40}]^{3-}$ in the range of 1000-700 cm⁻¹. The peaks at ca. 1063 cm⁻¹, 957 cm⁻¹, 878 cm⁻¹, and 800 cm⁻¹ are ascribed to the vibrations of v(P-O), $v(Mo=O_{terminal})$ and $v(Mo-O_{bridge}-Mo)$, respectively. [4a] In addition, characteristic bands at ca. 1634 and 1384 cm⁻¹ are the vibrations of the $v_{as}(-COO)$ and $v_s(-COO)$ in L ligand, respectively. The peaks at ca. 3118 and 3059 cm⁻¹ are attributed to the vibrations of the v(C-H) in phenyl and pyridyl rings of L ligand. Peaks in the regions of 1570-1457 cm⁻¹ may belong to the vibrations of the v(C=C) in phenyl and pyridyl rings of L ligand. The peaks at ca. 3436 cm⁻¹ are attributed to the vibrations of $v(H_2O)$.

Fig. S10. IR spectra of compound **1** (black), compound 2 (red) and compound 3 (blue) measured at room temperature.

TG Analyses

The TG curve of compound **1** shows two continuous weight loss steps (Fig. S11). The first weight loss of 6.90 % in the temperature range of $45 \sim 212^{\circ}$ C corresponds to the loss of the solvent acetonitrile and water molecules as well as five coordinated water molecules (calcd. 6.96%). The second weight loss of 19.60% occurring from 212 to 535 °C is mainly ascribed to the decomposition and loss of L ligands (calcd. 19.37%). The whole weight loss of 26.50 % is in agreement with the calculated value 26.33%.

The TG curve of compound **2** (Fig. S12) shows the first weight loss of 6.85 % from 45 to 221 °C, which is assigned to the removal of all solvent acetonitrile and water molecules together with five coordinated water molecules (calcd. 6.97 %). The second weight loss of 19.60 % from 221 to 536 °C is ascribed to decomposition and loss of L ligands (calcd. 19.39%). The whole weight loss of 26.45% is in agreement with the calculated value 26.36%.

The TG curve of compound **3** also shows two continuous weight loss steps (Fig. S13). The first weight loss of 6.75 % in the temperature range of 45 ~ 220 °C corresponds to the loss of solvent acetonitrile and water molecules as well as five coordinated water molecules (calcd. 6.94%). The second weight loss in the range of 220 ~ 553 °C is 19.45% and attributed to the loss of L ligands (calcd. 19.34%). The whole weight loss of 26.20 % is in agreement with the calculated value 26.28%.

Fig. S11 TG curve of compound 1

Fig. S12 TG curve of compound 2

