Probing the influence of steric bulk on anion binding by triarylboranes: comparative studies of FcB(*o*-Tol)₂, FcB(*o*-Xyl)₂ and FcBMes₂

Inke Siewert, Philip Fitzpatrick, Alexander E.J. Broomsgrove, Michael Kelly, Dragoslav Vidovic and Simon Aldridge

Supporting Information

(1) Determination of binding constants for FcB(o-Tol)₂, 1

(a) Fluoride: 3.5 mg of $FcB(o-Tol)_2$, 1, (9.25 µmol) were dissolved in 20 mL of dichloromethane. Subsequently, portions of 10 or 20 µL of a solution made up from 11.9 mg of $[^nBu_4N]F4H_2O$ (35.7 µmol), $[^{S11}]$ in 4 mL dichloromethane were added sequentially to 3 mL of the stock solution of 1 placed in the UV-vis cell. After adding each aliquot of the fluoride solution, the mixture was stirred for 1 min before the UV-vis measurement was carried out.

Figure S1: Calculated concentration profile, M = 1, $L = [^{n}Bu_{4}N]F4H_{2}O$, $ML = [^{n}Bu_{4}N][1F]$.

(b) Cyanide: 4.3 mg of 1 (11.4 μ mol) were dissolved in 20 mL of dichloromethane. Subsequently, portions of 10 or 20 μ L of a solution made up from 12.5 mg of [^{*n*}Bu₄N]CN·2H₂O (41.0 μ mol),^[S1] in 2.8 mL dichloromethane were added sequuentially to 3 mL of the stock solution of 1 placed in the UV-vis cell. After adding each aliquot of the cyanide solution the mixture was stirred for 1 min before the UV-vis measurement was carried out.

Figure S2: Calculated concentration profile, M = 1, $L = [^{n}Bu_{4}N]CN 2H_{2}O$, $ML = [^{n}Bu_{4}N][1 CN]$.

(2) Determination of CN⁻ binding constants for FcB(o-Xyl)₂, 2, and FcBMes₂, 3

(a) Synthetic details for 2 can be found in ref S2. The binding constant was calculated within the wavelength range of 460 nm to 560 nm using the program ReactLabTM equilibria.^[S3]

Figure S3: The response of **2** to exposure to $[^{n}Bu_{4}N]CN^{2}H_{2}O$ in $CH_{2}Cl_{2}$ as monitored by UV-vis spectroscopy.

Figure S4: Experimental data (points) obtained at $\lambda = 500$ nm as a function of added cyanide, and the best-fit line obtained using ReactLabTM equilibria.^[S3]

Figure S5: Concentration profile, M = 2, $L = [^{n}Bu_{4}N]CN H_{2}O$, $ML = [^{n}Bu_{4}N][2CN]$.

(b) 5.5 mg of **3** (12.7 µmol) were dissolved in 20 mL of dichloromethane. Subsequently, 10, 20 or 50 µL of a solution made up from 15.5 mg of $[^{n}Bu_{4}N]CN^{2}H_{2}O$ (50.9 µmol),^[S1] in 3 mL dichloromethane were added sequentially to 3 mL of the stock solution of **3** placed in the UV-viscell. After adding each aliquot of the cyanide solution the mixture was stirred for 1 min before the UV-vis measurement was carried out. The binding constant was calculated within the wavelength range of 476 nm to 536 nm using the program ReactLabTM equilibria.^[S3]

Figure S6: Response of **3** to exposure to $[^{n}Bu_{4}N]CN^{2}H_{2}O$ in $CH_{2}Cl_{2}$ as monitored by UV-vis spectroscopy.

Figure S7: Experimental data (points) obtained at $\lambda = 506$ nm as a function of added cyanide, and the best-fit line obtained using ReactLabTM equilibria.

Figure S7: Concentration profile, M = 3, $L = [^{n}Bu_{4}N]CN * 2H_{2}O$, $ML = [^{n}Bu_{4}N][3^{\circ}CN]$.

(3) References supporting information

- [S1] The compositions of the tetra^{*n*} butylammonium fluoride and cyanide hydrates used in anion binding studies (and prepared by prolonged drying *in vacuo*) were determined to be [^{*n*}Bu₄N]F·4H₂O and [^{*n*}Bu₄N]CN·2H₂O by elemental microanalysis.
- [S2] A. E. J. Broomsgrove, D. A. Addy, A. Di Paolo, I. R. Morgan, C. Bresner, V. Chislett, I. A. Fallis, A. L. Thompson, D. Vidovic and S. Aldridge, *Inorg. Chem.*, 2010, 49, 157.
- [S3] ReactLabTM equibria, Version 1.0, JPlus Consulting Pty Ltd., 2010.