Supplementary

Supplementary Material (ESI) for Dalton Transactions This journal is © the Royal Society of Chemistry 2011

Fig. S1. Species distribution profiles of Ni²⁺ complexes of A) Ac-CC-NH₂, B) Ac-GSCCHTGNHD-NH₂ C) Ac-EEGCCHGHHE-NH₂, and D) Ac-CCSTSDSHHQ-NH₂. Ligand to metal ratio = 1:1.

Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{S}}$ the Royal Society of Chemistry 2011

Fig. S2. Species distribution profiles of Bi³⁺ complexes of A) Ac-CC-NH₂, B) Ac-GSCCHTGNHD-NH₂ C) Ac-EEGCCHGHHE-NH₂, and D) Ac-CCSTSDSHHQ-NH₂. Ligand to metal ratio = 2:1.

Fig. S3. Species distribution profiles of Zn²⁺ complexes of A) Ac-CC-NH₂, B) Ac-GSCCHTGNHD-NH₂ C) Ac-EEGCCHGHHE-NH₂, and D) Ac-CCSTSDSHHQ-NH₂. Ligand to metal ratio = 2:1 (A) and 1:1 (B,C,D).

Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ the Royal Society of Chemistry 2011

Fig. S4. Species distribution profiles of Cd^{2+} complexes A) Ac-CC-NH₂, B) Ac-GSCCHTGNHD-NH₂ C) Ac-EEGCCHGHHE-NH₂, and D) Ac-CCSTSDSHHQ-NH₂. Ligand to metal ratio = 2:1 (A) and 1:1 (B,C,D).

Fig. S5. The CD spectra of Ni²⁺ complexes of A) Ac-CC-NH₂, B) Ac-GSCCHTGNHD-NH₂ C) Ac-EEGCCHGHHE-NH₂, and D) Ac-CCSTSDSHHQ-NH₂.

Fig. S6. The Uv-ViS spectra of Ni²⁺ complexes of A) Ac-CC-NH₂, B) Ac-GSCCHTGNHD-NH₂ C) Ac-EEGCCHGHHE-NH₂, and D) Ac-CCSTSDSHHQ-NH₂.

Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{O}}$ the Royal Society of Chemistry 2011

Fig. S7. Mass spectra of a system containing Ni²⁺ ions A) Ac-CC-NH₂, B) Ac-GSCCHTGNHD-NH₂ C) Ac-EEGCCHGHHE-NH₂, and D) Ac-CCSTSDSHHQ-NH₂ in a 1:1 stoichiometry.

Supplementary Material (ESI) for Dalton Transactions This journal is $\textcircled{\sc c}$ the Royal Society of Chemistry 2011

Fig. S8. Mass spectra of a system containing Bi³⁺ ions and A) Ac-CC-NH₂, B) Ac-GSCCHTGNHD-NH₂ C) Ac-EEGCCHGHHE-NH₂, and D) Ac-CCSTSDSHHQ-NH₂ in a 1:2 stoichiometry.

Supplementary Material (ESI) for Dalton Transactions This journal is $\textcircled{\sc c}$ the Royal Society of Chemistry 2011

Fig. S9. Mass spectra of a system containing Zn²⁺ ions and A) Ac-CC-NH₂, B) Ac-GSCCHTGNHD-NH₂ C) Ac-EEGCCHGHHE-NH₂, and D) Ac-CCSTSDSHHQ-NH₂ in a 1:1 stoichiometry.

Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ the Royal Society of Chemistry 2011

Fig. S10. Mass spectra of a system containing Cd²⁺ ions and A) Ac-CC-NH₂, B) Ac-GSCCHTGNHD-NH₂ C) Ac-EEGCCHGHHE-NH₂, and D) Ac-CCSTSDSHHQ-NH₂ in a 1:1 stoichiometry.