Supplementary Information

New insights on the mechanism of Oxidation of D-galacturonic acid by Hypervalent

Chromium

Mangiameli, M.F.; González, J.C^{*}.; García, S.I.; Frascaroli, M.I.; Van Doorslaer, S.; Salas

Peregrin, J.M.; Sala, L.F.

1. Room-temperature CW-EPR spectrum

Figure S1. Typical room-temperature CW-EPR spectrum of Cr^{V} Galur complexes formed during the oxidation of Galur with Cr^{VI} . The spectrum consists of a central signal flanked by four weak signals originating from the ⁵³Cr hyperfine interaction (⁵³Cr, natural abundance 9.5%). Modulation amplitude is 0.4 mT. $[Cr^{VI}]_0 = [GSH]_0 = 0.67$ mM; $[Galur]_0 = 0.33$ mM; pH =3.

Figure S2. Comparison of the room-temperature CW-EPR spectra of the Cr^{VI} /Galur mixture at pH 3.0 in H₂O (black) and in ²H₂O (red). Only the central part of the spectrum is shown.[Cr^{VI}]₀ = [GSH]₀ = 0.67 mM, [Galur]₀ = 0.33 mM

2. DFT computations

Coordinates and total energy optimized structures:

[Cr^VO(O⁶,O⁵-galactofuranuronate)₂]⁻ - structure I

Total Energy = -71827.13188 eV

Н	-2.758510	0.244294	-0.624621
Н	3.386679	-0.566586	1.091619
0	-4.298821	-3.573716	-2.837159
0	-4.685058	0.007948	-2.050111
0	-5.254168	-3.064015	-0.288453
Н	-4.963736	-3.429862	0.571100
С	-3.860382	-2.253331	-2.653754
0	4.894679	1.848466	-2.845840
0	0.310965	-2.380475	1.635480
0	2.855781	1.277031	3.203058
С	-2.630544	-0.263119	1.484441
0	-1.510911	-0.285164	2.197339
С	-2.367444	-0.590204	0.000613
0	-0.975692	-0.709975	-0.178455
0	0.981056	0.162908	2.684635
С	2.174778	0.629032	2.398982
0	1.491391	-0.255258	0.293496
С	2.619769	0.241348	0.972256
Cr	0.084104	-0.851287	1.298337
0	-3.730723	-0.007542	1.964122
С	3.270639	1.389636	0.183570
С	-3.090400	-1.883721	-0.452757
С	4.594074	1.930936	0.783925
С	5.292851	2.446545	-0.468632
С	4.907859	1.392598	-1.527591
0	3.610254	0.905836	-1.128972
Н	4.812901	3.418139	-0.750759
Н	4.343434	2.659097	-2.880794
Н	5.641193	0.554602	-1.513004
Н	5.195445	1.068200	1.169567
0	-2.700898	-2.176043	-1.810144
С	-4.636000	-1.782960	-0.470688
С	-4.916283	-1.384421	-1.926684
Н	-5.014140	-1.033210	0.255020
Н	-4.746285	0.239385	-2.998032
Н	-5.946905	-1.672994	-2.232192
Н	-3.569987	-1.858848	-3.649836

Н	-4.698639	-3.834697	-1.969705
0	4.431807	2.929694	1.760663
0	6.683824	2.589880	-0.273073
Н	2.539169	2.229285	0.106071
Η	3.940028	2.471773	2.493102
Η	7.055998	2.974839	-1.091462
Η	-2.764153	-2.721043	0.205324

[Cr^VO(O⁶,O⁵-galactofuranuronate)₂]⁻ - Structure II

Total Energy = -71827.23735 eV

Н	1.202239	1.196082	0.292249
Н	2.361564	3.059852	2.065712
0	-3.707554	-0.940116	3.492891
С	-5.149968	-0.881731	3.458944
Н	3.531464	-0.097026	1.843139
0	3.009053	0.957365	-2.924058
0	1.562681	-2.783989	3.835509
0	2.182117	1.868516	3.360015
С	-1.951467	-2.438151	2.789182
0	-0.976651	-1.577729	3.334222
С	-1.294003	-3.229959	1.638892
0	0.001373	-3.024809	1.573162
0	1.092718	-0.072123	3.630937
С	1.893503	0.731308	2.969782
0	1.773644	-1.150115	1.502608
С	2.439062	0.080514	1.681059
Cr	0.769200	-1.817233	2.869956
С	2.286652	0.969915	0.436541
С	3.075141	2.301801	0.462898
С	3.231984	2.567015	-1.038662
С	3.458147	1.150952	-1.617788
0	2.806616	0.251452	-0.697134
0	2.437201	3.365071	1.123570
0	4.197460	3.524917	-1.413238
Н	2.255426	2.949441	-1.414134

Н	2.083726	1.276253	-2.979681
Н	4.545073	0.908672	-1.645571
Н	4.094316	2.100454	0.885953
0	-1.897581	-3.988858	0.871801
С	-3.195811	-1.650031	2.351362
С	-5.553933	-1.557238	2.137259
С	-4.386532	-2.507505	1.863330
Н	-5.555411	-1.456519	4.320921
0	-5.609817	0.423399	3.635013
Н	-5.549344	-0.783954	1.326958
0	-6.820755	-2.168996	2.263367
0	-4.346739	-2.900904	0.513175
Н	-4.499786	-3.384416	2.550233
Н	-5.380563	0.938472	2.832971
Н	5.060208	3.241668	-1.047282
Н	-2.272331	-3.185093	3.557447
Н	-2.900559	-0.936010	1.544483
Н	-3.540108	-3.477105	0.447200
Н	-7.032654	-2.567508	1.395808

 $[Cr^{V}O(O^{ring}, O^{6}\text{-}galactopyranuronate})(O^{5}, O^{6}\text{-}galactofuranuronate})] - structure III$

Total Energy = -71838.60307 eV

Н	-4.842822	-1.655943	2.753190
С	-1.169599	-0.884391	-0.293064
Н	3.184513	-1.258151	1.293382
0	2.081815	1.741104	-2.616184
0	-0.337949	-2.269080	3.282198
0	3.536220	0.572941	3.387536
С	-2.368401	0.737750	2.942869
0	-1.191271	0.404676	3.482644
С	-2.561189	0.186976	1.529700
0	-1.352978	-0.544348	1.202787
0	1.387919	-0.084714	3.573859

С	2.535183	0.053529	2.909602
0	1.133368	-1.016933	1.317481
С	2.419927	-0.466385	1.466709
Cr	-0.065733	-0.859414	2.655464
0	-3.197294	1.428861	3.506670
С	2.620999	0.677264	0.459771
С	4.079726	1.120714	0.244539
С	3.994089	1.748062	-1.155183
С	2.928091	0.916274	-1.888088
0	2.201060	0.199808	-0.831474
0	4.571298	2.041869	1.188910
0	5.196798	1.739473	-1.895512
Н	3.587277	2.780678	-1.033549
Н	1.631382	1.201927	-3.296867
Н	3.394125	0.133923	-2.524414
Н	4.722430	0.208713	0.169793
Н	-2.654864	1.028582	0.813795
С	-3.772816	-0.739207	1.373128
С	-3.570708	-1.663646	0.112867
С	-2.583428	-1.059848	-0.897767
Н	-4.668511	-0.101622	1.242965
0	-3.895150	-1.565244	2.530966
Н	-0.612627	-1.835309	-0.232258
0	-0.526824	0.124660	-0.928777
Н	-4.556538	-1.774851	-0.396884
0	-3.055616	-2.915804	0.519800
0	-3.107313	0.168397	-1.365185
Н	-2.452171	-1.789995	-1.732170
Н	0.475552	0.043446	-0.869690
Н	-3.309912	-2.974018	1.474903
Н	-2.360897	0.633646	-1.803105
Н	2.005736	1.556377	0.767958
Н	4.525878	1.593121	2.067206
Н	5.803228	2.377127	-1.469520

 $[Cr^{V}O(O^{1}, O^{6}- galactopyranuronate)(O^{6}, O^{5}- galactofuranuronate)]^{-} - structure IVa$

S-chirality on C¹ center.

Total Energy = -71826.78924 eV

0	-1.171500	-0.515148	3.542011
0	-1.635496	0.370228	0.917425
Н	-2.775821	-2.236410	1.832398
С	-1.382923	-0.879860	0.265746
Н	3.355739	-1.051833	1.289356
0	2.844413	0.895833	-3.209754
0	0.439548	-2.801920	3.223790
0	3.223267	1.033678	3.180482
С	-2.339443	0.048952	3.298952
С	-2.741117	0.326437	1.833989
0	1.337550	-0.161392	3.391468
С	2.391690	0.244017	2.720049
0	1.291241	-1.151937	1.130949
С	2.458548	-0.385679	1.317023
Cr	0.153400	-1.420764	2.529805
0	-3.110739	0.364103	4.203196
С	2.606270	0.662101	0.201602
С	3.930674	1.459273	0.215161
С	4.026848	1.873362	-1.254769
С	3.488476	0.638828	-1.999707
0	2.607235	-0.018326	-1.063629
0	3.966952	2.575821	1.070875
0	5.322892	2.197710	-1.712896
H	3.311697	2.721410	-1.408401
H	2.160366	1.579758	-3.050792
Н	4.326148	-0.048723	-2.251795
Н	4.771935	0.749492	0.419817
H	-3.174931	1.346978	1.822301
С	-3.857980	-0.675135	1.424276
С	-3.917457	-0.811042	-0.105987
С	-2.558058	-1.294283	-0.666373
Н	-4.825514	-0.275383	1.787411
0	-3.722100	-1.974477	2.007032
0	-1.147309	-1.869526	1.227038
Н	-0.470949	-0.696982	-0.344787
Н	-4.112677	0.185400	-0.556953
0	-4.988821	-1.666530	-0.475138
0	-2.409880	-0.726981	-1.961450
Н	-2.567223	-2.407074	-0.712084
Н	-4.936146	-2.411082	0.165296

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2011

Н	-1.697956	-1.213772	-2.421403
Н	1.745354	1.371028	0.266312
Н	3.865740	2.196973	1.982686
Н	5.608058	2.994877	-1.223529

 $[Cr^{V}O(O^{1}, O^{6}-galactopyranuronate)(O^{6}, O^{5}-galactofuranuronate)]^{-} - structure IVb$

R-chirality on C^1 center.

Total Energy = -71825.34647 eV

0	-2.171265	-1.779966	1.140035
Н	-4.087216	-1.858749	3.801036
С	-2.461024	-1.430282	-0.266889
Н	2.619227	-0.002669	1.608528
0	5.902482	-0.390183	-2.033730
0	0.101919	-3.177740	0.746240
0	1.133298	2.385308	1.122516
С	-1.510191	-1.159695	3.271123
0	-0.318321	-1.487102	2.800697
С	-2.471276	-0.762211	2.147229
0	-0.220078	0.585661	1.116157
С	0.915492	1.161366	0.980389
0	1.466248	-1.057287	0.248440
С	2.053292	0.148906	0.653628
Cr	-0.174707	-1.617212	0.814641
0	-1.813043	-1.142102	4.464365
С	3.052203	0.630334	-0.409609
С	3.884423	1.876309	-0.027688
С	5.113231	1.684366	-0.918371
С	5.332385	0.162678	-0.885570
0	4.033423	-0.404501	-0.618339
0	3.264977	3.115949	-0.251343
0	6.280826	2.361462	-0.499462
Н	4.818462	1.979047	-1.958164
Н	5.395955	-0.070779	-2.809846
Н	6.023702	-0.105600	-0.055812
Н	4.222709	1.761072	1.035010
Н	-2.103711	0.219303	1.783230
С	-3.971461	-0.623638	2.287349
С	-4.585246	-0.595085	0.823061

С	-3.530444	-0.315985	-0.294738
Н	-4.171609	0.350785	2.784199
0	-4.606503	-1.686725	2.986936
Н	-2.862620	-2.366739	-0.710048
0	-1.202902	-1.084047	-0.734337
Н	-5.336842	0.226638	0.780399
0	-5.185636	-1.843680	0.526796
0	-2.957513	0.971414	-0.142085
Н	-4.067376	-0.397378	-1.268592
Н	-5.228695	-2.311124	1.396280
Н	-1.991115	0.868135	-0.315300
Н	2.494868	0.836567	-1.355476
Н	2.430142	3.059567	0.301596
Н	6.084528	3.318610	-0.541479

Principal g values and dominant ¹H and ⁵³Cr couplings for non-exchangeable protons in structures IVa and IVb:

a) Structure IVa

g tensor

 g_1 =-1.9755, g_2 =1.9854, g_z =1.9854

Carbinolic proton on galactofuranuronate side

A₁=-5.93 MHz, A₂=0.13 MHz, A_z=-6.33 MHz, a_{iso} = -4.04 MHz

<u>H on C^1 of galactopyranuronate</u>

A₁=6.96 MHz, A₂=15.58 MHz, A_z=6.18 MHz, **a**_{iso} = 9.57 MHz

<u>Cr</u>

 A_1 =13.63 MHz, A_2 =19.88 MHz, A_z =97.28 MHz, a_{iso} = 43.60 MHz

b) Structure IVb

<u>g tensor</u>

g₁=-1.9755, g₂=1.9854, g_z=1.9854

Carbinolic proton on galactofuranuronate side

A₁=20.18 MHz, A₂=12.84 MHz, A_z=12.42 MHz, **a**_{iso} = 15.15 MHz

<u>H on C^1 of galactopyranuronate</u>

A₁=-4.39 MHz, A₂=3.20 MHz, A_z=-4.73 MHz, **a**_{iso} = -1.97 MHz

<u>Cr</u>

A₁=26.38 MHz, A₂=10.54 MHz, A_z=93.15 MHz, **a**_{iso} = **43.36 MHz**

[HClO ₄]/M	0.10	0.15	0.20	0.25	0.30
			$10^2 k_4^{[b]}/s^{-1}$		
$10^3 \times [Galur]/M$					
1.0	3.9 ± 0.20	3.0 ± 0.10	2.5 ± 0.12	2.3 ± 0.11	2.0 ± 0.10
1.5	5.8 ± 0.30	4.6 ± 0.23	4.0 ± 0.20	3.4 ± 0.17	3.0 ± 0.15
2.0	$8.0\pm~0.40$	6.0 ± 0.30	5.1 ± 0.25	4.5 ± 0.22	3.8 ± 0.19
3.0	12 ± 0.60	8.9 ± 0.44	7.4 ± 0.37	6.6 ± 0.33	6.1 ± 0.30
4.0	15 ± 0.70	11 ± 0.55	9.8 ± 0.49	8.6 ± 0.43	8.0 ± 0.40

Table S1. Observed pseudo-first-order rate constant, k_4 , for different [HClO₄] and [Galur].^[a]

^[a] $T = 15^{\circ}$ C; [Cr^{IV}]₀= 0.075 mM; I = 1.0 M ^[b]Mean values from multiple determinations.

[HClO ₄]/M	0.20	0.40	0.63	0.80	0.97
10×[galur]/M			$10^3 k_6 / \mathrm{s}^{-1 \mathrm{b}}$		
0.48	0.092 ± 0.010	0.20 ± 0.020	0.52 ± 0.050	1.0 ± 0.10	1.6 ± 0.20
0.96	0.18 ± 0.020	0.47 ± 0.050	1.1 ± 0.10	2.3 ± 0.20	3.4 ± 0.30
1.44	$0.27{\pm}0.030$	0.78 ± 0.080	1.9 ± 0.20	3.6 ± 0.40	5.4 ± 0.50
1.92	0.40 ± 0.040	1.0 ± 0.10	2.6 ± 0.30	4.6 ± 0.50	7.1 ± 0.70
2.40	0.50 ± 0.050	1.2 ± 0.10	3.1 ± 0.30	5.8 ± 0.60	8.7 ± 0.90
3.00	$0.54{\pm}0.050$	1.5 ± 0.10	4.0 ± 0.40	7.0 ± 0.70	10 ± 1.0
3.60	-	-	-	8.4 ± 0.80	12 ± 1.0
			$10^3 k_5/s^{-1 b}$		
0.48	0.26 ± 0.030	0.39 ± 0.040	0.55 ± 0.060	0.77 ± 0.080	0.95 ± 0.010
0.96	0.52 ± 0.050	0.73 ± 0.070	1.1 ± 0.10	1.5 ± 0.10	1.8 ± 0.20
1.44	0.74 ± 0.070	1.1 ± 0.10	1.6 ± 0.20	2.3 ± 0.20	2.8 ± 0.30
1.92	0.94 ± 0.090	1.4 ± 0.20	2.0 ± 0.20	3.0 ± 0.30	3.6 ± 0.30
2.40	$1.1\pm\ 0.10$	1.7 ± 0.20	2.6 ± 0.30	3.6 ± 0.40	4.5 ± 0.40
3.00	1.4 ± 0.20	2.2 ± 0.20	3.2 ± 0.30	4.5 ± 0.50	5.8 ± 0.60
3.60	-	-	-	5.4 ± 0.50	7.0 ± 0.70

Table S2: Observed pseudo-first-order rate constants (k_6 and k_5) for different [HClO₄] and [Galur]^a

^a T = 33 °C; $[Cr^{VI}]_0 = 6 \times 10^{-4}$ M; I = 1.0 M. ^b Mean values from multiple determinations.