Supplementary Information

Formation Mechanism of 2-Methyl-2-Buten-1,4-Diol and

2-Methyl-3-Buten-1,2-Diol from 2-Methyl-1,3-Butadiene on a Head-to-Head
Pivalamidato-Bridged cis-Diammineplatinum(III) Binuclear Complex
J. Nagashima, K. Shimazaki, H. Sekiya, S. Iwatsuki, K. Ishihara ${ }^{*}$ and K. Matsumoto*
\#\#\# Supplementary information (Figures, Equations, Schemes and The detailed discussion of the rate constants) in each section of Results and Discussion is presented under each heading. \#\#\#

Reactions of 1 and 7 with \boldsymbol{p}-styrenesulfonate in acidic aqueous solutions (eqn (S1), Scheme S1, and Figs. S1 and S2)

The expression of the conditional first-order rate constants ($k_{\text {obs } 1}-\boldsymbol{k}_{\text {obs4 }}$)
When the mechanisms for the reactions of complex $\mathbf{1}$ and 7 with p-styrenesulfonate are expressed as Schemes S1 and 2, respectively, the conditional rate constants ($k_{\mathrm{obs} 1}, k_{\mathrm{obs} 2}$ and $k_{\mathrm{obs} 3}$ for Schemes S 1 and 2 , and $k_{\mathrm{obs} 4}$ for Scheme S1) are expressed as the following equations, ${ }^{15}$

$$
\begin{align*}
& k_{\mathrm{obs} 1}=\frac{k_{1}+\frac{k_{1}^{\#} K_{\mathrm{h} 1}}{\left[\mathrm{H}^{+}\right]}}{1+\frac{K_{\mathrm{h} 1}}{\left[\mathrm{H}^{+}\right]}}[\mathrm{L}]+\frac{k_{-1}+\frac{k_{-1}^{\#} K_{\mathrm{h} 2}}{\left[\mathrm{H}^{+}\right]}}{1+\frac{K_{\mathrm{h} 2}}{\left[\mathrm{H}^{+}\right]}} \approx \frac{k_{1}+\frac{k_{1}^{\#} K_{\mathrm{h} 1}}{\left[\mathrm{H}^{+}\right]}}{1+\frac{K_{\mathrm{h} 1}}{\left[\mathrm{H}^{+}\right]}}[\mathrm{L}]+k_{-1}+\frac{k_{-1}^{\#} K_{\mathrm{h} 2}}{\left[\mathrm{H}^{+}\right]} \\
& k_{\mathrm{ob} 2}=k_{2}[\mathrm{~L}]+\frac{k_{3}[\mathrm{~L}]}{[\mathrm{L}]+\frac{k_{-3}}{k_{4}}} \tag{S2}\\
& k_{\mathrm{ob} 3}=\frac{\frac{k_{5} K_{\mathrm{h} 3}}{\left[\mathrm{H}^{+}\right]+K_{\mathrm{h} 3}}+\frac{k_{-5} k_{-6}[\mathrm{~L}]}{k_{6}}}{\frac{k_{-5}[\mathrm{~L}]}{k_{6}}+1} \tag{S3}\\
& k_{\mathrm{obs} 4}=k_{7} \tag{S4}
\end{align*}
$$

where $C_{\mathrm{L}} \approx[\mathrm{L}]$ since $C_{\mathrm{L}} \gg C_{\mathrm{Pt}}$.

Scheme S1. Reaction Mechanism for the Reaction of the HH PivalamidatoBridged Platinum(III) Dimer with Sodium p-Styrenesulfonate

Fig. S1. The absorbance change with time at 345 nm for the reaction of the HH pivalamidato-bridged $\operatorname{Pt}(\mathrm{III})$ binuclear complex (1) with p-styrenesulfonate at $I=2.0 \mathrm{M}$ and $T=25^{\circ} \mathrm{C} .\left(C_{\mathrm{Pt}}=2.0 \times 10^{-5} \mathrm{M}, C_{\mathrm{L}}=6.0 \times 10^{-3} \mathrm{M}\right.$, and $\left.\left[\mathrm{H}^{+}\right]=0.414 \mathrm{M}\right)$

Fig. S2. Dependence of the observed rate constants ($k_{\mathrm{obs} 1}, k_{\mathrm{obs} 2}, k_{\mathrm{obs} 3}$, and $k_{\mathrm{obs} 4}$) on C_{L} for the reaction of the $\mathrm{HH} \alpha$-pyrrolidonato-bridged $\mathrm{Pt}(\mathrm{III})$ binuclear complex (7) with p-styrenesulfonate at $I=2.0 \mathrm{M}, T=25^{\circ} \mathrm{C}$, and $\left[\mathrm{H}^{+}\right] / \mathrm{M}=0.201$ (circle), 0.401 (square), 0.603 (triangle), and 0.803 (wedge).

Reactions of 1 with isoprene in acidic aqueous solutions

UV-vis spectrophotometric measurements (Figs. S3 and S4)

Fig. S3. The plot of $\left(1+K_{\mathrm{h}} /\left[\mathrm{H}^{+}\right]\right) k_{\mathrm{f}}$ against $\left[\mathrm{H}^{+}\right]^{-1}$ for the reaction of complex $\mathbf{1}$ with 2-metyl-1,3-butadiene under various acidic conditions.

Fig. S4. Dependence of the observed rate constants $k_{\text {obs } 4}$ obtained from UV-vis spectrophotometry on $\left[\mathrm{H}^{+}\right]$for the reaction of 1 with 2-methyl-1,3-butadiene in 50% $\mathrm{AN} / 50 \% \mathrm{H}_{2} \mathrm{O}(\mathrm{v} / \mathrm{v})$ at $30^{\circ} \mathrm{C}, I=1.0 \mathrm{M}$, and $C_{\mathrm{Pt}}=8.0 \times 10^{-5} \mathrm{M}$.

Reactions of 2 and 3 with water in acidic solutions

UV-vis spectrophotometry (Figs. S5 and S6)

Fig. S5. Dependence of the observed rate constants $k_{\text {obs3 }}$ obtained from UV-vis spectrophotometry on $\left[\mathrm{H}^{+}\right]$for the reaction of $\mathbf{2}$ and $\mathbf{3}$ with $\mathrm{H}_{2} \mathrm{O}$ in $50 \% \mathrm{AN} / 50 \% \mathrm{H}_{2} \mathrm{O}$ $(\mathrm{v} / \mathrm{v})$ at $30^{\circ} \mathrm{C}, I=1.0 \mathrm{M}$, and $C_{\mathrm{Pt}}=8.0 \times 10^{-5} \mathrm{M}$. The initial concentration ratio of $\mathbf{2}$ to $\mathbf{3}$ was ca. 6.8:3.2.

Fig. S6. Dependence of the observed rate constants $k_{\text {obs4 }}$ obtained from UV-vis spectrophotometry on $\left[\mathrm{H}^{+}\right]$for the reaction of $\mathbf{2}$ and $\mathbf{3}$ with $\mathrm{H}_{2} \mathrm{O}$ in $50 \% \mathrm{AN} / 50 \% \mathrm{H}_{2} \mathrm{O}$ $(\mathrm{v} / \mathrm{v})$ at $30^{\circ} \mathrm{C}, I=1.0 \mathrm{M}$, and $C_{\mathrm{Pt}}=8.0 \times 10^{-5} \mathrm{M}$.

${ }^{1}$ H NMR spectroscopy (Figs. S7-S10)

Fig. S7. Change in peak intensity of complex $2(\Delta)$, complex 3 (\square), diol 4 (O) and diol $\mathbf{5}(\diamond)$ with time after dissolving complexes 2 and $\mathbf{3}$ into $\mathrm{D}_{2} \mathrm{O}$ at $30^{\circ} \mathrm{C}$. The total concentration of complexes $\mathbf{2}$ and $\mathbf{3}$ is $1.5 \times 10^{-3} \mathrm{M}$. The relative initial concentrations are $C_{\text {complex 2 }}>C_{\text {complex 3. }} \mathrm{pD}=2.89$.

Fig. S8. Change in peak intensity of complex $2(\Delta)$, complex 3 (\square), diol 4 (O) and diol $\mathbf{5}(\diamond)$ with time after the reaction of complex $\mathbf{1}$ with isoprene was started at $30^{\circ} \mathrm{C}$. The initial concentration of complex $\mathbf{1}$ is $1.5 \times 10^{-3} \mathrm{M}$. The relative initial concentrations are $C_{\text {complex } 2}<C_{\text {complex 3. }} \mathrm{pD}=2.78$.

Fig. S9. Dependence of the observed rate constants $k_{\text {obs3" }}$ obtained from ${ }^{1} \mathrm{H}$ NMR spectrophotometry on $\left[\mathrm{D}^{+}\right]$for the reaction of $\mathbf{2}$ and $\mathbf{3}$ with $\mathrm{D}_{2} \mathrm{O}$ in $50 \% \mathrm{AN}-\mathrm{d}_{3} / 50 \% \mathrm{D}_{2} \mathrm{O}$ $(\mathrm{v} / \mathrm{v})$ at $30^{\circ} \mathrm{C}, C_{\mathrm{Pt}}=2.0 \times 10^{-3} \mathrm{M}$, and $I=1.0 \mathrm{M}$.

Fig. S10. Dependence of the observed rate constants $k_{\text {obs4 } 4^{\prime}}$ obtained from ${ }^{1} \mathrm{H}$ NMR spectrophotometry on $\left[\mathrm{D}^{+}\right]$for the reaction of $\mathbf{2}$ and $\mathbf{3}$ with $\mathrm{D}_{2} \mathrm{O}$ in $50 \% \mathrm{AN}-\mathrm{d}_{3} / 50 \% \mathrm{D}_{2} \mathrm{O}$ $(\mathrm{v} / \mathrm{v})$ at $30^{\circ} \mathrm{C}, C_{\mathrm{Pt}}=2.0 \times 10^{-3} \mathrm{M}$, and $I=1.0 \mathrm{M}$.

Rate constants and mechanisms for the slow reaction steps of the reaction of 1 with isoprene
Rate constants $k_{\text {obs } 3}, k_{\text {obs } 4,} k_{\text {obs } 3}$, and $k_{\text {obs }}$, obtained by using UV-vis spectrophotometry

The detailed discussion on the rate constants $k_{\text {obs } 3,} \boldsymbol{k}_{\text {obs } 4,}, k_{\text {obs } 3^{\prime},}$, and $\boldsymbol{k}_{\text {obs } 4^{\prime}}$ obtained by using $U V$-vis spectrophotometry

The acid-independent rate constant $k_{\mathrm{f} 3}\left(=2.3 \times 10^{-4} \mathrm{~s}^{-1}\right)$ agrees with $k_{\mathrm{f} 3}\left(2.7 \times 10^{-4}\right.$ s^{-1}) within experimental uncertainty, and these rate constants are reasonably consistent with the acid-independent rate constant $k_{\mathrm{r} 3^{\prime}}\left(=k_{8}=1.8 \times 10^{-4} \mathrm{~s}^{-1}\right)$, taking into account the isotope effect; ${ }^{30}$ the attacking molecules in the process involving k_{8} are $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{D}_{2} \mathrm{O}$ in the UV-vis and ${ }^{1} \mathrm{H}$ NMR measurements, respectively, i.e., $k_{\mathrm{f} 3}=k_{\mathrm{f} 3}{ }^{\prime}=k_{\mathrm{r} 3^{\prime \prime}}=k_{8}$. In the spectrophotometric and ${ }^{1} \mathrm{H}$ NMR measurements, the acid-dependent paths (k_{7} and k_{-7}) could not be detected because σ-complexes $\mathbf{2}$ and $\mathbf{3}$ are in fast equilibrium, which will be discussed later.

On the other hand, both $k_{\text {obs } 4}$ and $k_{\text {obs } 4}$ involve an acid-dependent term $\left(k_{\mathrm{f} 4}\left[\mathrm{H}^{+}\right]\right.$and $k_{\mathrm{f} 4}\left[\mathrm{H}^{+}\right]$) and an acid-independent term ($k_{\mathrm{r} 4}$ and $k_{\mathrm{r}^{4}}$), whereas $k_{\text {obs4" }}$ involves only an acid-dependent term $\left(k_{\mathrm{f} 4}\left[\mathrm{D}^{+}\right]\right) . k_{\mathrm{f} 4}\left(=1.9 \times 10^{-4} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$ is greater than $k_{\mathrm{f} 4}\left(2.6 \times 10^{-5}\right.$ $\left.\mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$, and $k_{\mathrm{r} 4}\left(=1.9 \times 10^{-5} \mathrm{~s}^{-1}\right)$ is significantly greater than $k_{\mathrm{r} 4}\left(=1.1 \times 10^{-5} \mathrm{~s}^{-1}\right)$. In addition, $k_{\mathrm{f} 4}$ is smaller than $k_{\mathrm{f4}}\left(=7.6 \times 10^{-5} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$. All these results indicate that $k_{\text {obs } 4}$ and $k_{\text {obs4 }}$ in Table 2 correspond not to the rate constant for step 4 in Scheme 3, but, as will be mentioned below, to those for the decomposition of $\mathbf{6}$ into mononuclear complexes.

We studied in detail the mechanism for the isomerization and decomposition reactions of $\mathrm{HH} \alpha$-pyridonato-bridged bis(ethylenediamine)platinum(II) binuclear complex in acidic aqueous solutions. ${ }^{31}$ It was found that the isomerization reaction proceeded preferentially at $\mathrm{pH} \sim 7$ and that the decomposition reaction proceeded exclusively at pH lower than 1 . The isomerization and decomposition reactions both occurred in moderately acidic aqueous solutions. Reaction intermediates in acid-base equilibrium, such as complexes $\mathbf{8}^{\prime}$ and $\mathbf{9}^{\prime}$ in Scheme S2a in which one of the oxygen atoms in the bridging ligands is dissociated, were postulated for both the isomerization and decomposition reaction mechanisms in order to explain these experimental results. ${ }^{31}$

It is well known that olefins easily coordinate to $\mathrm{Pt}(\mathrm{II})$ ions. ${ }^{32}$ Thus, in the presence of excess isoprene, the aqua ligands in $\mathbf{8}^{\prime}$ and $\mathbf{9}^{\prime}$ in Scheme S 2 a would be replaced almost completely by isoprene ($\mathbf{8}$ and $\mathbf{9}$ in Scheme S2b) since $k_{\text {obs } 4}$ did not depend on C_{L} (Fig. 7). Coordination of isoprene to $\mathbf{8}^{\prime}$ and $\mathbf{9}^{\prime}$ accelerates the decomposition of the dimer, explaining why $k_{\mathrm{f} 4}<k_{\mathrm{f} 4}$ and $k_{\mathrm{r} 4}<k_{\mathrm{r} 4}$. In Scheme S 2 , in the absence of isoprene (a) and in the presence of isoprene (b), $k_{\text {obs } 4}$ and $k_{\text {obs } 4}$ consist of acid-independent and acid-dependent terms, as shown in eqs 18 and 19 , respectively. Thus $k_{\mathrm{f} 4}^{\prime}=k_{12}^{\prime}, k_{\mathrm{r} 4}^{\prime}=$ $k_{11}^{\prime}, k_{\mathrm{f} 4}=k_{12}$, and $k_{\mathrm{r} 4}=k_{11}$.

$$
\begin{align*}
& k_{\text {obs } 4}=k_{11}^{\prime}+k_{12}^{\prime}\left[\mathrm{H}^{+}\right] \tag{18}\\
& k_{\text {obs } 4}=k_{11}+k_{12}\left[\mathrm{H}^{+}\right] \tag{19}
\end{align*}
$$

References

30 H. Fukushima, H. Mori, M. Arime, S. Iwatsuki, K. Ishihara and K. Matsumoto, Eur. J. Inorg. Chem., 2011, 1930-1936.

31 To be published elsewhere.
32 R. H. Crabtree, "The Organometallic Chemistry of the Transition Metals", 3rd ed., John Wiley \& Sons, New York, 2001.

Scheme S2. Reaction Mechanism for the Decomposition of the HH Pivalamidato-Bridged Platinum(II) Binuclear Complex in the absence (a) and the presence (b) of isoprene in acidic solution

Table S1. Rate constants (k_{obs}) determined by monitoring the absorbance change at 334 nm with time for the reaction of the HH pivalamidato-bridged cis-diammineplatinum(III) dimer (complex 1) with isoprene (L) in $50 \% \mathrm{AN} / 50 \% \mathrm{H}_{2} \mathrm{O}$ $(\mathrm{v} / \mathrm{v})$ at $25^{\circ} \mathrm{C}, I=1.0 \mathrm{M}$, and $C_{\mathrm{Pt}}=4.0 \times 10^{-5}$.

$\left[\mathrm{H}^{+}\right] / \mathrm{M}$	$\mathrm{C}_{\mathrm{L}} / 10^{-3} \mathrm{M}$	$k_{\text {obs }} / 10^{-2} \mathrm{~s}^{-1}$		
0.191	1.62	2.49	2.59	2.34
	3.23	3.98	4.12	4.13
	6.45	8.48	8.57	8.11
	9.68	12.8	13.3	10.8
	19.4	23.2	24.4	26.4
0.304	1.62	1.44	1.52	1.43
	3.23	3.22	3.14	3.09
	6.45	6.53	6.66	6.52
	9.68	9.8	11.2	9.9
	19.4	16.9	15.3	17.3
0.380	1.62	1.21	1.35	1.21
	3.23	2.88	2.69	2.66
	6.45	5.55	5.41	5.32
	9.68	7.88	7.69	8.12
	19.4	11.9	13.5	13.9
0.570	1.62	0.69	0.64	0.63
	3.23	1.92	1.75	1.80
	6.45	3.19	3.33	3.30
	9.68	5.98	5.78	5.97
	19.4	9.44	9.12	9.15

Table S2. Rate constants ($k_{\text {obs } 2}$) determined by monitoring the absorbance change at 334 nm with time for the reaction of complex 1 with isoprene (L) in 50% AN / 50% $\mathrm{H}_{2} \mathrm{O}(\mathrm{v} / \mathrm{v})$ at $25^{\circ} \mathrm{C}, I=1.0 \mathrm{M}$, and $C_{\mathrm{Pt}}=4.0 \times 10^{-5}$.

$\left[\mathrm{H}^{+}\right] / \mathrm{M}$	$\mathrm{C}_{\mathrm{L}} / 10^{-3} \mathrm{M}$	$k_{\text {obs } 2} / 10^{-3} \mathrm{~s}^{-1}$		
0.191	1.01	1.98	2.03	1.69

	2.03	2.42	2.78	2.63
	4.06	3.35	3.56	3.56
	8.12	4.75	4.89	5.00
	10.1	4.98	5.12	5.08
	20.3	6.72	6.99	7.02
	0.50	0.97	1.11	1.07
0.304	1.01	2.31	2.18	2.50
	2.03	2.69	2.99	2.93
	4.06	3.64	3.77	3.48
	8.12	4.88	4.97	5.09
	10.1	5.88	5.95	5.87
	20.3	7.52	7.56	7.57
	0.50	0.95	0.96	0.93
0.380	1.01	2.65	2.88	2.75
	2.03	3.32	3.45	3.16
	4.06	4.08	4.33	4.07
	8.12	5.61	5.88	5.61
	10.1	6.77	6.57	6.79
	20.3	7.69	7.88	8.01
	0.50	1.22	1.15	1.17
0.570	1.01	2.69	2.98	2.85
	2.03	3.31	3.48	3.26
	4.06	4.78	4.69	4.72
	8.12	4.99	4.71	4.58
	10.1	6.28	6.32	6.45
	20.3	7.98	7.78	8.09
	0.50	0.71	0.70	0.70

Table S3. Rate constants ($k_{\text {obs } 3}$ and $k_{\text {obs4 }}$) determined by monitoring the absorbance change at 334 nm with time for the reaction of complex 1 with isoprene (L) in $50 \% \mathrm{AN}$ $/ 50 \% \mathrm{H}_{2} \mathrm{O}(\mathrm{v} / \mathrm{v})$ at $30^{\circ} \mathrm{C}, I=1.0 \mathrm{M}$, and $C_{\mathrm{Pt}}=8.0 \times 10^{-5} \mathrm{M}$.

$\left[\mathrm{H}^{+}\right] / \mathrm{M}$	$\mathrm{C}_{\mathrm{L}} / 10^{-2} \mathrm{M}$	$k_{\text {obs } 3} / 10^{-4} \mathrm{~s}^{-1}$		$k_{\text {obs } 4} / 10^{-5} \mathrm{~s}^{-1}$	
0.20	0.40	2.16	1.95	5.73	4.61
	0.80	2.21	2.16	5.79	5.44
	1.20	2.18	2.16	5.45	5.53
	1.60	2.24	2.18	5.89	5.42
0.30	0.40	2.16	1.89	7.35	6.44
	0.80	2.33	2.17	7.52	7.41
	1.20	2.38	2.25	7.58	7.69
	1.60	2.29	1.99	7.37	6.76
0.40	0.40	2.48		9.52	
	0.80	2.72		9.72	
	1.20	3.00		9.90	
	1.60	2.49		9.49	
0.60	0.40	2.17		12.93	
	0.80	2.44		12.54	
	1.20	2.34		12.81	
	1.60	2.21		12.98	

Table S4. Rate constants ($k_{\text {obs } 3}$ and $k_{\text {obs4 }}$) determined by monitoring the absorbance change at 334 nm with time for the reaction of complexes 2 and 3 with $\mathrm{H}_{2} \mathrm{O}$ in $50 \% \mathrm{AN}$ $/ 50 \% \mathrm{H}_{2} \mathrm{O}(\mathrm{v} / \mathrm{v})$ at $30^{\circ} \mathrm{C}, I=1.0 \mathrm{M}$, and $C_{\mathrm{Pt}}=8.0 \times 10^{-5} \mathrm{M}$.

$\left[\mathrm{H}^{+}\right] / \mathrm{M}$	$k_{\text {obs } 3} / 10^{-4} \mathrm{~s}^{-1}$		$k_{\text {obs } 4} / 10^{-5} \mathrm{~s}^{-1}$
0.20		2.68	
0.30	2.68	1.60	
0.40	2.74	1.89	
0.60		2.76	2.15

Table S5. Rate constants ($k_{\mathrm{obs} 3}$ and $k_{\mathrm{obs} 4}$) determined by monitoring the integrated peak intensity changes of complex 2, diol 4, and diol 5 with time for the reactions of complexes 2 and 3 with $\mathrm{D}_{2} \mathrm{O}$ in $50 \% \mathrm{AN}-\mathrm{d}_{3} / 50 \% \mathrm{D}_{2} \mathrm{O}(\mathrm{v} / \mathrm{v})$ at $30^{\circ} \mathrm{C}$ and $I=1.0 \mathrm{M}$. The total concentration of complexes $\mathbf{2}$ and $\mathbf{3}$ is $2.0 \times 10^{-3} \mathrm{M}$, and the initial concentration ratio of complex $\mathbf{2}$ to complex $\mathbf{3}$ is ca. $6.8: 3.2$.

$\left[\mathrm{DClO}_{4}\right] / \mathrm{M}$	$k_{\text {obs } 3} / \mathrm{s}^{1}$	$k_{\text {obs } 4} / \mathrm{s}^{1}$
0.20	1.9×10^{4}	1.4×10^{5}
0.30	2.1×10^{4}	2.2×10^{5}
0.40	2.1×10^{4}	3.1×10^{5}
0.50	2.2×10^{4}	3.8×10^{5}

Table S6. The conditional rate constants ($k_{\mathrm{obs} 1}, k_{\mathrm{obs} 2}$ and $k_{\mathrm{obs} 3}$) for the reaction of the HH pivalamidato-bridged cis-diammineplatinum(III) dimer with p-styrenesulfonate at $I=$ 2.0 M and $25^{\circ} \mathrm{C}$.

Step 1	$C_{\mathrm{HH}}=2.0 \times 10^{-5} \mathrm{M}$	
$\left[\mathrm{H}^{+}\right] / \mathrm{M}$	$C_{\mathrm{L}} / 10^{-3} \mathrm{M}$	$k_{\text {obsı }} / \mathrm{s}^{-1}$
0.207	0.500	$0.706,0.686,0.707,0.699$
	1.00	$1.01,1.00,0.999,1.00$
	1.50	$1.27,1.27,1.28,1.28$
	2.00	$1.54,1.53,1.54,1.54$
	4.00	$2.66,2.64,2.61,2.62$
	6.00	$3.70,3.67,3.68,3.69$
	8.00	$4.80,4.75,4.75,4.80$
	10.0	$5.66,5.65,5.72,5.68$
	0.500	$0.476,0.466,0.452,0.457,0.455,0.454,0.441,0.451,0.467$
	1.00	$0.630,0.621,0.635,0.633,0.642,0.634,0.636,0.636$
	2.00	$0.994,0.954,0.949,0.933,0.946,0.945,0.947,0.971$
	4.00	$1.63,1.63,1.64,1.65,1.64,1.64,1.63,1.63,1.64$
	6.00	$2.31,2.34,2.33,2.36,2.33,2.33,2.34,2.33,2.33$
	8.00	$3.04,3.01,3.01,3.01,2.96,2.99,2.98,3.03,3.01$
	11.5	$3.96,4.07,4.02,4.06,4.13,4.05,4.05,4.06,4.10$

0.622	0.500	$0.401,0.391,0.396,0.393$
	1.00	$0.527,0.534,0.516,0.532$
	2.00	$0.728,0.728,0.689,0.691$
	4.00	$1.23,1.30,1.28,1.30$
	6.00	$1.91,1.87,1.90,1.94$
	8.00	$2.22,2.38,2.30,2.23$
	10.0	$2.88,2.74,2.56,2.69$
	0.500	$0.243,0.242,0.245,0.240$
	0.750	$0.313,0.317,0.306,0.308$
	1.00	$0.364,0.369,0.370,0.366,0.356$
	2.00	$0.543,0.556,0.586,0.561$
	4.00	$0.873,0.857,0.884,0.875$
	6.00	$1.27,1.29,1.28,1.31$
	10.00	$1.59,1.53,1.53,1.55$
		$1.86,1.85,1.84,1.82$

Step2	$C_{\mathrm{HH}}=2.0 \mathrm{x} 10^{-5} \mathrm{M}$	
$\left[\mathrm{H}^{+}\right] / \mathrm{M}$	$C_{\mathrm{L}} / 10^{-3} \mathrm{M}$	$k_{\mathrm{obs} 2} / \mathrm{s}^{-1}$
0.207	0.500	$0.149,0.153$
	1.00	$0.224,0.202,0.235$
	1.50	$0.301,0.305,0.312$
	2.00	$0.373,0.364,0.382$
	4.00	$0.623,0.645,0.610$
	6.00	$0.884,0.861,0.890$
	8.00	$1.15,1.20,1.18$
	10.0	$1.35,1.34,1.36$
	0.500	$0.140,0.129,0.135$
	1.00	$0.230,0.220,0.225$
	2.00	$0.400,0.412,0.395$
	4.00	$0.650,0.664,0.638$
	6.00	$0.902,0.935,0.921$
	8.00	$1.13,1.08,1.13$

	10.0	1.29, 1.30, 1.32
0.414	0.500	$0.139,0.142,0.142$
	1.00	$0.226,0.225,0.226,0.225,0.227$
	2.00	0.378, 0.364, 0.374, 0.380
	4.00	0.624, 0.615, 0.602, 0.641
	6.00	0.864, 0.846, 0.834, 0.865
	8.00	1.05, 0.990, 1.08
	11.5	1.43, 1.43, 1.45
0.622	0.500	$0.120,0.130,0.123$
	1.00	0.197, 0.202, 0.204
	2.00	$0.363,0.350,0.372$
	4.00	$0.613,0.612,0.601$
	6.00	0.870, 0.889, 0.869
	8.00	1.11, 1.16, 1.08
	10.0	1.34, 1.23, 1.38

Step3	$C_{\mathrm{HH}}=2.0 \mathrm{x} 10^{-5} \mathrm{M}$	
$\left[\mathrm{H}^{+}\right] / \mathrm{M}$	$C_{\mathrm{L}} / 10^{-3} \mathrm{M}$	$k_{\mathrm{obs} 3} / 10^{-5} \mathrm{~s}^{-1}$
0.103	1.00	23.3
	2.00	$19.5,19.5$
	4.00	16.7
	8.00	13.6
	12.0	11.5
	16.0	10.2
	20.0	9.05
	1.00	21.1
	4.00	15.0
	8.00	12.1
	12.0	10.2
	16.0	9.30
	20.0	8.55
	1.00	18.0

2.00	15.7	
4.00	13.3	
8.00	9.95	
1.24	12.0	8.27
	20.0	7.62
	1.50	6.82
2.00	9.04	
4.00	6.95	
	8.00	5.57
12.0	4.98	
16.0	4.92	
	20.0	4.72

Table S7. The conditional rate constants ($k_{\mathrm{obs} 1}, k_{\mathrm{obs} 2}, k_{\mathrm{obs} 3}$ and $k_{\mathrm{obs} 4}$) for the reaction of the HH α-pyrrolidonato-bridged cis-diammineplatinum(III) dimer with p-styrenesulfonate at $I=2.0 \mathrm{M}$ and $25^{\circ} \mathrm{C}$.

Step 1	$C_{\mathrm{HH}}=2.0 \times 10^{-5} \mathrm{M}$	
$\left[\mathrm{H}^{+}\right] / \mathrm{M}$	$C_{\mathrm{L}} / 10^{-3} \mathrm{M}$	$k_{\text {obs } 1} / \mathrm{s}^{-1}$
0.201	1.49	$0.329,0.319,0.331,0.323,0.334,0.348,0.320$
	3.01	$0.670,0.655,0.663,0.680,0.641,0.648$
	5.00	$1.10,1.09,1.12,1.10,1.08,1.09,1.11$
	7.45	$1.64,1.66,1.64,1.63,1.64,1.65,1.64,1.64$
	8.98	$1.97,1.97,1.97,1.95,1.97,2.00$
	1.49	$0.301,0.324,0.292,0.309,0.314,0.316,0.301,0.289$
	3.03	$0.615,0.630,0.621,0.605,0.594,0.619$
	5.04	$1.02,0.991,1.11,1.00,0.961,1.05$
	7.49	$1.55,1.55,1.54,1.48,1.47,1.60$
	8.97	$1.81,1.84,1.84,1.84,1.84,1.82,1.85$
	1.52	$0.312,0.316,0.309,0.287,0.295,0.309,0.287$
	3.00	$0.600,0.590,0.580,0.601,0.602,0.604$

5.01	$0.997,0.961,0.949,1.00,1.01,0.996,1.03,0.972$	
	7.47	$1.52,1.48,1.51,1.48,1.45,1.48$
	9.00	$1.78,1.79,1.74,1.80,1.84,1.81$
	1.49	$0.297,0.319,0.281,0.283,0.294,0.288,0.276$
3.01	$0.582,0.586,0.595,0.571,0.579$	
	5.00	$0.976,0.974,0.963,1.00,0.980,1.01,0.971,0.980$
	7.50	$1.54,1.40,1.45,1.43,1.54,1.45,1.44$
	8.98	$1.77,1.78,1.72,1.79,1.77,1.77$

Step $2 \quad C_{\text {HH }}=2.0 \times 10^{-5} \mathrm{M}$

$\left[\mathrm{H}^{+}\right] / \mathrm{M}$	$C_{\mathrm{L}} / 10^{-3} \mathrm{M}$	$k_{\text {obs } 2} / \mathrm{s}^{-1}$
0.201	1.50	0.221
	3.01	0.343
	5.00	0.489
	7.49	0.675
	9.02	0.743
	9.98	0.812
0.401	1.49	0.220
	3.03	0.349
	5.04	0.487
	7.49	0.676
	8.97	0.753
0.602	1.52	0.218
	3.00	0.337
	5.01	0.487
	7.47	0.677
	9.00	0.753
0.803	1.49	0.217
	3.01	0.346
	5.00	0.493
	7.50	0.670
	8.98	0.746

Step $3 C_{\text {HH }}=2.0 \times 10^{-5} \mathrm{M}$		
$\left[\mathrm{H}^{+}\right] / \mathrm{M}$	$C_{\mathrm{L}} / 10^{-3} \mathrm{M}$	$k_{\text {obs } 3} / 10^{-4} \mathrm{~s}^{-1}$
0.201	3.00	3.34
	6.00	2.69
	9.00	2.46
	12.0	2.24
	15.0	2.18
0.401	3.00	2.53
	6.00	1.98
	9.00	1.88
	12.0	1.72
	15.0	1.72
0.603	3.00	2.15
	6.00	1.78
	9.00	1.64
	12.0	1.54
	15.0	1.50
0.803	3.00	1.84
	6.00	1.48
	9.00	1.37
	12.0	1.32
	15.0	1.29

Step $4 \quad C_{\mathrm{HH}}=2.0 \times 10^{-5} \mathrm{M}$

$\left[\mathrm{H}^{+}\right] / \mathrm{M}$	$C_{\mathrm{L}} / 10^{-3} \mathrm{M}$	$k_{\text {obs } 4} / 10^{-5} \mathrm{~s}^{-1}$
0.201	3.00	5.54
	6.00	5.45
	9.00	5.89
	12.0	5.13
	15.0	5.33
0.401	3.00	5.38

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2011

	6.00	5.03
	9.00	5.29
	12.0	5.76
	15.0	5.61
	3.00	5.19
	6.00	5.76
	9.00	5.01
	12.0	5.04
	15.0	5.38
	3.00	5.61
	6.00	5.35
	9.00	5.37
	12.0	5.03
	15.0	5.64

