Supporting Information

Peripherally Cyclometalated Iridium Complexes of Dipyridylporphyrin

^aKeita Yoshida, ^aTakumi Nakashima, ^bShigeru Yamaguchi, ^bAtsuhiro Osuka and ^aHiroshi Shinokubo*

^aDepartment of Nagoya University, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan. ^bDepartment of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.

E-mail: hshino@apchem.nagoya-u.ac.jp

Table of Contents

Spectra of Compounds	S2
Bond lengths and angles of 2 and 3	S4
Cyclic Voltammograms of 2 and 3	S 6
DFT Calculations	S 7

Figure S2. ¹H NMR spectrum of 3 in CDCl₃.

Figure S3. H–H COSY spectrum of **3** in CDCl₃. The signal at $\delta = -0.83$ ppm due to the C₈H₁₀O ligand has cross peaks in the circles with a signal around $\delta = 1.8$ ppm, which is overlapped with *tert*-butyl proton signals.

Table S1. Selected bond lengths (Å) and angles (°)			
2		3	
Ir-C20	1.969(7)	Ir-C20	1.994(7)
Ir-Cl1	2.3333(17)	Ir-C73	2.087(8)
Ir-Cl2	2.3490(17)	Ir-C76	2.351(10)
Ir–O1	2.250(5)	Ir-C77	2.213(10)
Ir–N5	2.045(7)	Ir–C78	2.143(9)
Ir-N6	2.049(6)	Ir-N5	2.134(7)
		Ir-N6	2.145(6)
C20-Ir-N5	92.2(3)	C20-Ir-N5	88.1(3)
C20-Ir-N6	92.4(3)	C20-Ir-N6	88.1(3)
N5-Ir-N6	175.3(2)	N5-Ir-N6	96.6(2)
C20-Ir-O1	176.9(2)	C20-Ir-C73	90.0(3)
N5-Ir-O1	88.0(2)	N5-Ir-C73	87.7(3)
N6-Ir-O1	87.4(2)	N6-Ir-C73	175.3(3)
C20-Ir-Cl2	91.91(18)	C20-Ir-C78	98.9(3)
N5-Ir-Cl2	90.32(17)	N5-Ir-C78	168.2(3)
N6-Ir-Cl2	90.27(16)	N6-Ir-C78	93.2(3)
O1-Ir-Cl2	84.99(14)	C73-Ir-C78	82.8(3)
C20-Ir-Cl1	92.23(18)	C73-Ir-C76	79.8(4)
N5-Ir-Cl1	90.50(17)	N5-Ir-C76	102.1(4)
N6-Ir-Cl1	88.58(16)	N6-Ir-C76	101.2(3)
O1-Ir-Cl1	90.87(14)	C73-Ir-C76	79.8(4)
Cl1-Ir-Cl2	175.78(6)	C76-Ir-C78	69.3(4)

Figure S4. Cyclic voltammograms (0.1 V·s⁻¹) of (a) **3** and (b) **2** in CH_2Cl_2 (0.1 M TBAPF₆). working electrode: Pt, counter electrode: Pt, reference electrode: Ag/AgClO₄.

Figure S5. MO diagrams for 1, 2 and 3 calculated at the B3LYP/LANL2DZ level.