Supporting Information

Spin crossover and polymorphism in a family of 1,2-bis(4-pyridyl)ethene-bridged binuclear iron(II) complexes. A key role of structural distortions.

G. S. Matouzenko,* E. Jeanneau, A. Yu. Verat, and A. Bousseksou

	1	1	1	2	3
Spin state	HS-HS	HS-LS	LS–LS	HS–HS	HS-HS
Formula	$C_{40}H_{36}N_{12}S_4Fe_2$	$C_{40}H_{36}N_{12}S_4Fe_2$	$C_{40}H_{36}N_{12}S_4Fe_2$	$C_{42}H_{44}N_{12}S_4O_2Fe_2$	$C_{40}H_{36}N_{12}S_4Fe_2$
M	924.79	924.79	924.79	988.87	924.79
<i>T</i> [K]	300	183	90	290	293
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic
Space group	C2/c	C2/c	C2/c	$P2_{1}/n$	$P2_{1}/c$
a/Å	20.813(1)	21.017(3)	20.759(1)	10.305(1)	17.092(5)
b/Å	12.745(1)	12.429(1)	12.249(1)	16.467(2)	16.804(5)
c/Å	18.935(1)	19.390(3)	19.400(1)	14.043(1)	16.316(5)
$\beta/^{\circ}$	111.389(2)	114.08(2)	114.008(2)	96.61(1)	106.911(5)
$V/\text{\AA}^3$	4676.8(3)	4624.3(1)	4506.2(3)	2367.1(4)	4484(2)
$ ho_{ m calcd}/ m g\ m cm^3$	1.313	1.328	1.363	1.387	1.371
Ζ	4	4	4	2	4
λ/Å	0.71069	0.71069	0.71069	0.71069	0.71069
$\mu(Mo_{K_{\alpha}})/mm^{-1}$	0.840	0.850	0.872	0.838	0.877
<i>F</i> (000)	1904	1904	1904	1024	1904
θ range/°	1.9–27.9	3.3–29.5	2.0-27.9	3.6-29.6	2.9–29.3
independent reflections	5097	5693	5252	5911	10295
independent	2823	3574	4197	3130	3229
reflections with <i>I</i> >2 <i>o</i> (<i>I</i>)					
parameters	280	262	262	280	523
$R[F^2 > 2\sigma(F)^2]$	0.0681	0.0670	0.0735	0.0527	0.0843
$wR_2(F^2)$	0.1687	0.0880	0.1964	0.1386	0.1837

Table S1. Crystallographic Data for 1, 2, and 3^[a]

^aEstimated standard deviations in the least significant digits are given in parentheses.

	1	1	1	2	3 (Fe1 site) ^[b]	3 (Fe2 site) ^[c]
	300 K	183 K	90 K	290 K	293 K	293 K
Fe(1)-N(1)	2.108(5)	2.014(4)	1.952(3)	2.111(4)	2.085(9)	2.106(10)
Fe(1)-N(2)	2.089(5)	1.991(4)	1.954(3)	2.093(5)	2.095(10)	2.129(9)
Fe(1)-N(3)	2.199(4)	2.073(4)	1.992(3)	2.208(4)	2.196(10)	2.202(10)
Fe(1)-N(4)	2.248(4)	2.114(3)	2.017(3)	2.239(4)	2.216(9)	2.201(10)
Fe(1)-N(5)	2.222(4)	2.075(3)	1.967(3)	2.163(4)	2.289(9)	2.198(10)
Fe(1)-N(6)	2.202(4)	2.081(3)	1.997(3)	2.219(4)	2.218(9)	2.220(9)
N(1)-Fe(1)-N(2)	95.8(2)	93.1(2)	90.6(1)	96.8(2)	101.7(5)	100.6(4)
N(1)-Fe(1)-N(3)	94.7(2)	94.0(2)	93.3(1)	94.9(2)	93.4(4)	92.8(4)
N(1)-Fe(1)-N(4)	166.1(2)	171.8(2)	175.4(1)	168.5(2)	158.1(4)	165.8(4)
N(1)-Fe(1)-N(5)	92.9(2)	93.8(1)	94.1(1)	96.6(2)	90.5(4)	94.2(4)
N(1)-Fe(1)-N(6)	96.7(2)	94.3(2)	92.0(1)	91.8(2)	97.7(4)	91.1(4)
N(2)-Fe(1)-N(3)	101.8(2)	97.7(1)	95.1(1)	93.3(2)	85.5(4)	94.0(4)
N(2)-Fe(1)-N(4)	96.2(2)	93.0(2)	91.6(1)	89.4(2)	96.6(4)	89.4(4)
N(2)-Fe(1)-N(5)	169.0(2)	172.0(1)	174.6(1)	166.6(2)	166.3(4)	164.7(4)
N(2)-Fe(1)-N(6)	87.9(2)	87.4(1)	87.4(1)	89.3(2)	86.9(4)	85.9(4)
N(3)-Fe(1)-N(4)	75.9(2)	79.7(1)	82.4(1)	75.1(2)	76.2(4)	76.3(4)
N(3)-Fe(1)-N(5)	84.1(2)	85.9(1)	87.3(1)	85.2(1)	100.0(3)	89.0(3)
N(3)-Fe(1)-N(6)	164.2(2)	170.0(1)	174.1(1)	172.5(2)	167.7(4)	176.0(4)
N(4)-Fe(1)-N(5)	76.1(2)	80.5(1)	83.9(1)	77.3(2)	72.9(3)	76.8(4)
N(4)-Fe(1)-N(6)	90.8(2)	91.5(1)	92.2(1)	98.0(2)	95.1(4)	99.7(4)
N(5)-Fe(1)-N(6)	84.4(2)	88.1(1)	89.7(1)	90.7(1)	85.4(3)	90.1(4)

Table S2. Selected Bond Distances (Å) and Angles (deg) for 1, 2, and 3^[a]

^a Estimated standard deviations in the least significant digits are given in parentheses
^b N(1), N(2), N(3), N(4), N(5), and N(6) correspond to N(101), N(102), N(103), N(104), N(105), and N(106), respectively

^c N(1), N(2), N(3), N(4), N(5), and N(6) correspond to N(201), N(202), N(203), N(204), N(205), and N(206), respectively

	δ	Г/2	ΔE_q	δ	Г/2	ΔE_q	
$T(\mathbf{K})$	(mms^{-1})	(mms^{-1})	(mms^{-1})	(mms^{-1})	(mms^{-1})	(mms^{-1})	A_{HS}/A_{tot}
		[HS-HS]			[LS–LS]		
293	1.013(2)	0.159(4)	1.625(5)	0.43	0.6(2)	<u>0.22</u>	0.95(3)
220	1.069(4)	0.231(5)	1.89(7)	0.458(3)	0.204(6)	0.16(2)	0.57(2)
200	1.086(5)	0.301(7)	1.984(9)	0.455(3)	0.225(5)	0.253(6)	0.452(9)
150	1.146(6)	0.245(9)	2.23(2)	0.455(3)	0.225(5)	0.253(6)	0.151(6)
80	1.07(2)	0.16(2)	2.68(3)	0.490(5)	0.186(2)	0.196(2)	0.032(3)

Table S3. Least-squares-fitted Mössbauer dat	aa
--	----

^a δ : isomer shift (with reference to metallic iron at 293 K), ΔE_q : quadrupole splitting, Γ : half-height width, A_{HS} : area of HS doublet, A_{tot} : total Mössbauer spectrum area. The error bars of statistical origin are given in parentheses. Values without error bars have been fixed for the fit.

	[{Fe(dpia)(NCS) ₂ } ₂ (bpy)]	[{Fe(bt)(NCS) ₂ } ₂ bpym]	$\{[(Fe(bztpen)]_2[N(CN)_2]\}(PF_6)_3]$ Fe1 site	$\{[(Fe(bztpen)]_2[N(CN)_2]\}(PF_6)_3]$ Fe2 site
Fe(1)-N(1)	2.069	2.171	2.131	2.120
Fe(1)-N(2)	2.046	2.211	2.128	2.128
Fe(1)-N(3)	2.174	2.237	2.204	2.173
Fe(1)-N(4)	2.226	2.201	2.204	2.228
Fe(1)-N(5)	2.191	2.075	2.218	2.225
Fe(1)-N(6)	2.198	2.027	2.048	2.055
N(1)-Fe(1)-N(2)	97.7	73.8	91.3	91.1
N(1)-Fe(1)-N(3)	92.1	94.6	168.2	167.7
N(1)-Fe(1)-N(4)	165.8	157.8	95.2	96.3
N(1)-Fe(1)-N(5)	93.6	95.8	79.7	78.9
N(1)-Fe(1)-N(6)	93.8	98.7	95.5	95.9
N(2)-Fe(1)-N(3)	97.3	84.4	91.4	91.0
N(2)-Fe(1)-N(4)	93.0	86.0	155.0	155.0
N(2)-Fe(1)-N(5)	168.2	164.8	76.4	76.3
N(2)-Fe(1)-N(6)	90.7	95.2	105.7	106.7
N(3)-Fe(1)-N(4)	77.5	74.1	78.2	77.7

Table S4. Calculated Bond Distances ((Å) and Angles (deg) for the HS site in the	[HS-LS] pairs
---------------------------------------	------------------	-----------------------------	---------------

Figure S1. Stick representation of **1** showing a twist of the bridging bpe ligand.

Figure S2. Representation of the two modes of π stacking interactions at 300 K.

Figure S3. Projection of the structure of **2** on the *ab* plane showing the hydrogen bonding with the corresponding atom-numbering scheme.

