Supporting Information

Substituted Pyridazines As Ligands In Homoleptic (fac and mer) and Heteroleptic $\mathbf{R u}($ II) Complexes

${ }_{\text {s }}$ Gareth Cooke, Gearóid M. Ó Máille, Roberto Quesada, Longsheng Wang, Sunil Varughese, Sylvia M.
Draper*.

School of Chemistry, University of Dublin, Trinity, College, Dublin 2, Ireland

Table of Contents

Experimental Section... 2
Crystallographic Structural Data and Discussion... 14
5

Experimental Details

Unless otherwise stated all reactions were carried out in air. Solvents were dried as required according to standard techniques. Flash chromatography was performed using silica gel or activated alumina (Aldrich Chemicals) as the stationary phase. All ${ }_{10}$ chemicals were purchased from Aldrich Chemical Co. Ltd. and were used without further purification unless otherwise stated. MALDI-TOF mass spectra were recorded on a Waters MALDI-QTOF Premier spectrometer. Nuclear magnetic resonance spectra were recorded in deuterated acetonitrile or chloroform on a Bruker Avance DPX-400 MHz, AV-400 MHz, or AV-600 MHz spectrometers, the signals referenced to a TMS standard. UV-vis absorption spectra were recorded on a Shimadzu UV-2401PC UV-Vis recording spectrometer. The emission spectra were not corrected and were recorded at room temperature on a Varian ${ }_{15}$ Fluorescence Cary Eclipse spectrophotometer. IR spectra were obtained using a Perkin Elmer Diffuse Reflectance spe ctrometer in solid form in a KBr mixture. Elemental analyses were carried out using a Carlo Erba 1006 automatic analyser. Melting points a re given uncorrected and were on a Griffin melting point apparatus. Single crystal analyses were carried out on a Brük er SMART APEX CCD diffractometer using graphite monochromised $\operatorname{Mo}-\mathrm{K} \alpha(\lambda=0.71073 \AA)$ radiation at the temperatures given following data. Data reduction was performed using SAINT. Intensities were corrected for Lorentz and polarization effects and for 20 absorption by SADABS. The structures were solved by direct methods using SHELXS and refined on F^{2} using all data by fullmatrix least-squares procedures with SHELX-97. All non-hydrogen atoms were refined with anisotropic displacement parameters 1.3 times the isotropic equivalent of their carrier carbons.

Note: The following abbreviations are used to distinguish resonances in NMR analyses. Py $=$ pyridine, $\mathrm{ph}=\mathrm{phenyl}, \mathrm{pz}=$ ${ }_{25}$ pyridazine, $\mathrm{pm}=$ pyrimidine, $\mathrm{pr}=$ pyrazine, $\mathrm{bpy}=$ bipyridine, $\mathrm{C}^{\mathrm{Q}}=$ quaternary carbon, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\Psi \mathrm{t}=$ pseudo triplet (unresolved dd).

3,4,6-tri (2-pyridyl) pyridazine (1a)

The reaction was carried out in air by adding a 2.5% methanolic solution of $\mathrm{KOH}(1 \mathrm{~mL})$ to a THF solution
 ${ }_{30}(5 \mathrm{~mL})$ containing bptz $(0.500 \mathrm{~g}, 2.116 \mathrm{mmol})$ and 2 -acetyl pyridine $(400 \mu \mathrm{~L}, 3.567 \mathrm{mmol})$ at $40^{\circ} \mathrm{C}$. The mixture was stirred for 5 mins , allowed to cool, washed with water, and extracted into dichloromethane. The solvent was then reduced under vacuum, and the resulting mixture was run through a silica column (10% methanol in ethyl acetate) to give the product ($0.530 \mathrm{~g}, 1.702 \mathrm{mmol}$). This was further purified by recrystallisation from a mixture of ethyl acetate and petroleum ether (yield 80%).
${ }_{35}$ IR (KBr): vbar $3081 \mathrm{~m}, 3066 \mathrm{~m}, 3004 \mathrm{~m}, 1587 \mathrm{~s}, 1574 \mathrm{~s}, 1560 \mathrm{~m}, 1478 \mathrm{~m}, 1468 \mathrm{~s}, 1393 \mathrm{~s}, 1095 \mathrm{~m}, ~ 993 \mathrm{~s}, 788 \mathrm{~s}$, $769 \mathrm{~m}, 748 \mathrm{~m}, 619 \mathrm{~m}, 584 \mathrm{~m}, 537 \mathrm{~m} \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR: ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.82\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{9}\right), 8.75\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{3 \mathrm{~A}} \mathrm{~J}=8.0 \mathrm{~Hz}\right), 8.69\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{6 \mathrm{~A}} \mathrm{~J}=4.5 \mathrm{~Hz}\right)$, $8.51\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{6 \mathrm{~B}}, \mathrm{~J}=4.5 \mathrm{~Hz}\right), 8.31\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{6 \mathrm{C}}, \mathrm{J}=4.5 \mathrm{~Hz}\right), 8.13\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{3 \mathrm{~B}}, \mathrm{~J}=8.0 \mathrm{~Hz}\right), 7.88(\Psi \mathrm{td}, 1 \mathrm{H}$, $\left.\mathrm{H}^{4 \mathrm{~A}}, \mathrm{~J}=7.3,1.5 \mathrm{~Hz}\right), 7.82\left(\Psi \mathrm{td}, 1 \mathrm{H}, \mathrm{H}^{4 \mathrm{~B}}, \mathrm{~J}=7.5,1.5 \mathrm{~Hz}\right), 7.63\left(\Psi \mathrm{Td}, 1 \mathrm{H}, \mathrm{H}^{4 \mathrm{C}}, \mathrm{J}=7.5,1.5 \mathrm{~Hz}\right), 7.36(\mathrm{~m}$, $\left.{ }^{40} 1 \mathrm{H}, \mathrm{H}^{5 \mathrm{~A}}\right), 7.34\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{3 \mathrm{C}}, \mathrm{J}=8.0 \mathrm{~Hz}\right), 7.22 \mathrm{ppm}\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{H}^{5 \mathrm{~B}, 5 \mathrm{C}}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 157.7\left(\mathrm{C}^{7 / 10}\right)$, $157.5\left(\mathrm{C}^{7 / 10}\right)$, $155.3\left(\mathrm{C}^{2 \mathrm{~A}}\right)$, $155.1\left(\mathrm{C}^{2 \mathrm{~B}}\right), 152.8\left(\mathrm{C}^{2 \mathrm{C}}\right), 149.0\left(\mathrm{C}^{6 \mathrm{~A}, 6 \mathrm{~B}}\right), 148.1\left(\mathrm{C}^{6 \mathrm{C}}\right)$, $138.9\left(\mathrm{C}^{8}\right), 136.8\left(\mathrm{C}^{4 \mathrm{~A}}\right), 136.4\left(\mathrm{C}^{4 \mathrm{~B}}\right), 135.8\left(\mathrm{C}^{4 \mathrm{C}}\right), 125.3\left(\mathrm{C}^{9}\right), 124.4\left(\mathrm{C}^{3 \mathrm{~A}}\right), 124.2\left(\mathrm{C}^{5 \mathrm{~A}}\right), 123.6\left(\mathrm{C}^{3 \mathrm{~B}}\right), 123.0\left(\mathrm{C}^{5 \mathrm{~B}}\right), 122.4\left(\mathrm{C}^{5 \mathrm{C}}\right)$, $121.4 \mathrm{ppm}\left(\mathrm{C}^{3 \mathrm{C}}\right)$.
HRMS: $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$: calculated $[\mathrm{MH}]^{+} \mathrm{m} / \mathrm{z} 312.1250$, found: 312.1252
${ }_{45}$ Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~N}_{5}$: C 73.30, H 4.21; N 22.49. Found; C 72.87, H 4.32, N 22.33. m.p. $165^{\circ}-166^{\circ} \mathrm{C}$.

Synthesis of 3,6 di-(2-pyridyl) 4-pyrimidyl pyridazine (2a)

The reaction was carried out in air by refluxing bptz ($0.102 \mathrm{~g}, 0.433 \mathrm{mmol}$) and 5-ethynylpyrimidine
 $50(0.047 \mathrm{~g}, 0.451 \mathrm{mmol})$ in toluene $(2.5 \mathrm{~mL})$ for 24 hrs . The solvent was removed by rotary evaporation, and the reaction mixture purified on a silica column (ethyl acetate, 20% methanol). The product was recovered as a light yellow solid $(0.087 \mathrm{~g}, 0.279 \mathrm{mmol}, 65 \%)$.

$\mathrm{N}=2^{2} \cdot 3^{\prime}$
I.R. vbar $3093 \mathrm{~m}, 3065 \mathrm{~m}, 3039 \mathrm{~m}, 3022 \mathrm{~m}, 1582 \mathrm{~s}, 1571 \mathrm{~s}, 1555 \mathrm{~s}, 1477 \mathrm{~s}, 1419 \mathrm{~s}, 1393 \mathrm{~s}, 991 \mathrm{~s}, 793 \mathrm{~s}, 773 \mathrm{~s}, 724 \mathrm{~m}, 656 \mathrm{~m}, 629 \mathrm{~m}, 620 \mathrm{~m}$, $588 \mathrm{w}, 531 \mathrm{w} \mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}^{\mathrm{H}} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.21\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{10}\right), 8.81\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{3}, \mathrm{~J}=8.0 \mathrm{~Hz}\right), 8.73\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{6}, \mathrm{~J}=4.0 \mathrm{~Hz}\right), 8.68\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{8}\right), 8.67$ $\left(\mathrm{s}, 1 \mathrm{H}, \mathrm{H}^{13}\right), 8.36\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{6}, \mathrm{~J}=4.5 \mathrm{~Hz}\right), 8.32\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{3}, \mathrm{~J}=8.0 \mathrm{~Hz}\right), 7.94\left(\Psi \mathrm{td}, 1 \mathrm{H}, \mathrm{H}^{4}, \mathrm{~J}=8.0,2.0 \mathrm{~Hz}\right), 7.90\left(\Psi \mathrm{td}, 1 \mathrm{H}, \mathrm{H}^{4}, \mathrm{~J}=\right.$ $\left.{ }_{5} 8.0 \mathrm{~Hz}, 1.5 \mathrm{~Hz}\right), 7.45\left(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H}^{5^{\prime}}, \mathrm{J}=7.5,5.0,1.0 \mathrm{~Hz}\right), 7.31 \mathrm{ppm}\left(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H}^{5}, \mathrm{~J}=7.5,5.0,1.0 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 157.9\left(\mathrm{C}^{10}\right)$, $157.7\left(\mathrm{C}^{14}\right), 157.1\left(\mathrm{C}^{11}\right), 156.0\left(\mathrm{C}^{8,8}\right), 154.2\left(\mathrm{C}^{2}\right), 152.5\left(\mathrm{C}^{2^{2}}\right), 149.5\left(\mathrm{C}^{6}\right), 148.7$ $\left(\mathrm{C}^{6}\right), 137.3\left(\mathrm{C}^{4}\right), 137.2\left(\mathrm{C}^{4}\right), 134.1\left(\mathrm{C}^{12}\right), 132.0\left(\mathrm{C}^{7}\right), 126.0\left(\mathrm{C}^{13}\right)$, $125.2\left(\mathrm{C}^{5^{\prime}}\right), 124.7\left(\mathrm{C}^{3}\right), 124.2\left(\mathrm{C}^{5}\right), 121.8 \mathrm{ppm}\left(\mathrm{C}^{3^{\prime}}\right)$.
HRMS: $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$: calculated $[\mathrm{MH}]^{+} \mathrm{m} / \mathrm{z} 335.1021$, found: 335.1081
Anal. Calc. For $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{6}$; C, 69.22; H, 3.87; N, 26.91. Found: C, 68.93; H, 3.85; N, 26.71. m.p. $170^{\circ}-172^{\circ} \mathrm{C}$.
10

3,6-di(2-pyridyl)-4,5-diphenyl pyridazine (3a)

3,6 di(2-pyridyl) 4,5-diphenyl-1,4-dihydropyridazine

 Bptz ($0.600 \mathrm{~g}, 2.540 \mathrm{mmol}$) and trans-stilbene $(0.469 \mathrm{~g}, 2.600 \mathrm{mmol})$ were refluxed in toluene (20
 15 mL) for 24 hrs. The colour of the solution changed from dark pink to a bright yellow. The solvent was removed in vacuo, and the reaction mixture was run through a silica column (10% diethyl ether in dichloromethane) to furnish the product as a light yellow solid ($0.9370 \mathrm{~g}, 2.210 \mathrm{mmol}$, 95\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.43\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{15}\right), 8.67\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{6}, \mathrm{~J}=3.8 \mathrm{~Hz}\right), 8.61\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{6}, \mathrm{~J}=\right.$ $\left.{ }_{20} 4.4 \mathrm{~Hz}\right), 8.10\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{3^{\prime}}, \mathrm{J}=7.9 \mathrm{~Hz}\right), 7.63\left(\Psi \mathrm{td}, 1 \mathrm{H}, \mathrm{H}^{4}, \mathrm{~J}=7.8,1.8 \mathrm{~Hz}\right), 7.57\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}^{8^{\prime}}, \mathrm{J}_{8^{\prime}, 9^{\prime}}=\right.$ $7.0 \mathrm{~Hz}), 7.40\left(\Psi \mathrm{td}, 1 \mathrm{H}, \mathrm{H}^{4}, \mathrm{~J}=7.8,1.5 \mathrm{~Hz}\right), 7.30-7.17\left(\mathrm{~m}, 11 \mathrm{H}, \mathrm{H}^{\left.3,5,5 ', ~ 9,10,8^{\prime}, 9^{\prime}, 10^{\prime}\right), 5.82 \mathrm{ppm}(\mathrm{s} \text {, }}\right.$ $1 \mathrm{H}, \mathrm{H}^{12}$).
${ }^{13} \mathrm{C}-$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 154.2\left(\mathrm{C}^{11}\right), 151.6\left(\mathrm{C}^{14}\right), 149.0\left(\mathrm{C}^{6}\right), 148.3\left(\mathrm{C}^{6}\right), 141.9\left(\mathrm{C}^{\mathrm{Q}}\right), 138.9$
$\left(\mathrm{C}^{\mathrm{Q}}\right), 136.1\left(\mathrm{C}^{4}\right), 135.9\left(\mathrm{C}^{4}\right), 135.1\left(\mathrm{C}^{\mathrm{Q}}\right), 129.9\left(2 \mathrm{C}^{\mathrm{Q}}\right), 128.5(2 \mathrm{C}), 128.3(4 \mathrm{C}), 128.3(1 \mathrm{C}), 127.2(1 \mathrm{C}), 126.7(1 \mathrm{C}), 125.5(1 \mathrm{C})$, ${ }_{25} 123.0(1 \mathrm{C}), 122.7(1 \mathrm{C}), 121.5(1 \mathrm{C}), 108.2\left(\mathrm{C}^{13}\right), 41.5 \mathrm{ppm}\left(\mathrm{C}^{12}\right)$.
HRMS: $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$; calculated $[\mathrm{MH}]^{+} \mathrm{m} / \mathrm{z} 389.1766$, found: 389.1782 .
Anal. Calc. For $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~N}_{4} ; \mathrm{C}: 80.39$; H: 5.19; N: 14.42. Found: C: 80.42; H: 5.26; N: 14.37
${ }_{30} 3,6$ di(2-pyridyl)-4,5-diphenyl pyridazine
A solution of $\mathrm{NaNO}_{2}(6 \mathrm{M}, 20 \mathrm{~mL})$ was added dropwise to a concentrated $\mathrm{HCl}(12 \mathrm{~mL})$. The gas evolved
 was passed through a dichloromethane solution (40 mL) of 3,6-di(2-pyridyl)-4,5-diphenyl-1,4dihydropyridazine which was maintained at $0^{\circ} \mathrm{C}$ until all the sodium nitrite had been added. The dihydropyridzine solution was then allowed to return to room temperature, with constant N_{2} bubbling to ${ }_{35}$ remove excess nitrous gas. The solvent was removed under vacuum and the reaction mixture dissolved in water and neutralized by the addition of 10% ammonia solution. The mixture was extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over MgSO_{4} and purified using a silica column (10% methanol in ethyl acetate). The product was recovered as a white solid ($0.598 \mathrm{~g}, 1.6 \mathrm{mmol}, 74 \%$).
I.R. vbar $3078 \mathrm{~m}, ~ 3054 \mathrm{~m}, ~ 3024 \mathrm{~m}, ~ 3003 \mathrm{~m}, ~ 1587 \mathrm{~s}, ~ 1569 \mathrm{~s}, ~ 1474 \mathrm{~s}, ~ 1377 \mathrm{~s}, ~ 1155 \mathrm{~s}, ~ 791 \mathrm{~s}, 793 \mathrm{~s}, 782 \mathrm{~s}, 771 \mathrm{~s}$, ${ }_{40} 746 \mathrm{~s}, 636 \mathrm{~s}, 624 \mathrm{~s}, 531 \mathrm{~m}, 486 \mathrm{~m} \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CH}_{3} \mathrm{CN}\right): \delta 8.42\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}^{6}, \mathrm{~J}=4.5 \mathrm{~Hz}\right), 7.64\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{3,4}\right) 7.17\left(\Psi \mathrm{td}, 2 \mathrm{H}, \mathrm{H}^{5}, \mathrm{~J}=\right.$ $6.5,1.5 \mathrm{~Hz}), 7.05\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}^{8}, \mathrm{H}^{10}\right), 6.87 \mathrm{ppm}\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{H}^{9}\right)$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.5\left(\mathrm{C}^{11}\right)$, $155.6\left(\mathrm{C}^{2}\right), 148.4\left(\mathrm{C}^{6}\right), 138.7\left(\mathrm{C}^{12}\right), 135.7\left(\mathrm{C}^{4}\right), 134.2\left(\mathrm{C}^{7}\right), 129.7\left(\mathrm{C}^{9}\right), 127.1\left(\mathrm{C}^{8}\right)$, $126.9\left(\mathrm{C}^{10}\right), 124.6\left(\mathrm{C}^{3}\right), 122.5 \mathrm{ppm}\left(\mathrm{C}^{5}\right)$.
${ }_{45}$ HRMS: $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$; calculated [MH] ${ }^{+} \mathrm{m} / \mathrm{z} 387.1596$ found: 387.1610.
Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{~N}_{4}$: C, 80.81; H, 4.69; N, 14.50. Found: C, 79.92; H, 4.64; N, 14.26. m.p. $189^{\circ}-191{ }^{\circ} \mathrm{C}$.

3,6-di(2-pyridyl) 4,5-di(4-pyridyl) pyridazine (4a)

so 3,6-di(2-pyridyl) 4,5-di(4-pyridyl)-1,4-dihydropyridazine
Bptz ($0.500 \mathrm{~g}, 2.116 \mathrm{mmol}$) and (E)-1,2-di(4'-pyridyl)ethene (0.410 g 2.251 mmol) were added to

toluene (10 mL) and heated in a sealed tube at $180^{\circ} \mathrm{C}$ for 24 hrs . The solvent was removed in vacuo and the reaction mixture purified on a silica column (20% methanol in diethyl ether). The product was isolated as a bright yellow solid $(0.619 \mathrm{~g}, 1.6 \mathrm{mmol}, 75 \%)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.50\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{14}\right), 8.72\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{6}, \mathrm{~J}=5.0 \mathrm{~Hz}\right), 8.61\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{6}, \mathrm{~J}=6.0 \mathrm{~Hz}\right), 8.50\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}^{9 / 9}, \mathrm{~J}=\right.$ $6.5 \mathrm{~Hz}), 8.41\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}^{9 / 9}, \mathrm{~J}=6.0 \mathrm{~Hz}\right), 8.13\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{3}, \mathrm{~J}=8.0 \mathrm{~Hz}\right), 7.66\left(\Psi \mathrm{td}, 1 \mathrm{H}, \mathrm{H}^{4}, \mathrm{~J}=7.8,1.5 \mathrm{~Hz}\right), 7.55\left(\Psi \mathrm{td}, 1 \mathrm{H}, \mathrm{H}^{4}, \mathrm{~J}=\right.$ $7.5,1.5 \mathrm{~Hz}), 7.46\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}^{8 / 8^{\prime}}, \mathrm{J}=6.0 \mathrm{~Hz}\right), 7.36\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{3}, \mathrm{~J}=6.0 \mathrm{~Hz}\right), 7.32\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{5}, \mathrm{~J}=2.0 \mathrm{~Hz}\right), 7.22\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{5^{\prime}}, \mathrm{J}=2.0\right.$ $\mathrm{Hz}), 7.06\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}^{8 / 8^{\prime}}, \mathrm{J}=6.0 \mathrm{~Hz}\right), 5.86 \mathrm{ppm}\left(\mathrm{s}, 1 \mathrm{H}, \mathrm{H}^{11}\right)$.
${ }_{5}^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 153.4\left(\mathrm{C}^{2^{\prime}}\right), 150.8\left(\mathrm{C}^{2}\right), 150.1\left(\mathrm{C}^{9 / 9}\right), 150.0\left(\mathrm{C}^{9 / 9}\right), 150.0\left(\mathrm{C}^{6}\right), 148.4\left(\mathrm{C}^{6}\right), 146.3\left(\mathrm{C}^{7^{\prime}}\right), 140.7\left(\mathrm{C}^{10}\right)$, $138.7\left(\mathrm{C}^{13}\right)$, $136.5\left(\mathrm{C}^{4}\right), 136.2\left(\mathrm{C}^{4}\right)$, $125.6\left(\mathrm{C}^{3}\right), 124.1\left(\mathrm{C}^{5}\right), 123.9\left(\mathrm{C}^{8 / 8}\right)$, $123.3\left(\mathrm{C}^{5}\right), 123.1\left(\mathrm{C}^{8 / 8}\right), 121.5\left(\mathrm{C}^{3}\right), 102.5\left(\mathrm{C}^{11}\right), 39.5$ ppm (C^{7}).
HRMS: $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$; calculated for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~N}_{6}$: $[\mathrm{MH}]^{+} \mathrm{m} / \mathrm{z} 391.1671$ found: 391.1667.
Anal. Calc. For $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{6}$; C: 73.83; H: 4.65; N: 21.52. Found: C: 73.85; H: 4.70; N: 20.93
10
3,6-di(2-pyridyl)-4,5-di(4-pyridyl) pyridazine
The same procedure was used as for $\mathbf{3 a}$. Purification was carried out using column chromatography $\left(\mathrm{SiO}_{2}\right.$,

50% ether, 50% methanol). The product was recovered as a white solid ($0.308 \mathrm{~g}, 50 \%$ yield).
I.R. vbar $3059 \mathrm{~m}, 3039 \mathrm{~m}, 3027 \mathrm{~m}, 1596 \mathrm{~s}, 1584 \mathrm{~s}, 1568 \mathrm{~s}, 1408 \mathrm{~s}, 1382 \mathrm{~s}, 1374 \mathrm{~s}, 1218 \mathrm{~m}, ~ 991 \mathrm{~s}, 813 \mathrm{~s}, 808 \mathrm{~s}, 796 \mathrm{~s}$, ${ }_{15} 786 \mathrm{~s}, 750 \mathrm{~s}, 648 \mathrm{~s}, 624 \mathrm{~s}, 538 \mathrm{~m}, 489 \mathrm{w} \mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.34\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}^{9}, \mathrm{~J}=5.5 \mathrm{~Hz}\right), 8.30\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}^{6}, \mathrm{~J}=4.5 \mathrm{~Hz}\right), 8.01\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}^{3}, \mathrm{~J}\right.$ $=7.6 \mathrm{~Hz}), 7.81\left(\Psi \mathrm{td}, 2 \mathrm{H}, \mathrm{H}^{4}, \mathrm{~J}=7.5,1.5 \mathrm{~Hz}\right), 7.23\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{5}\right), 6.85 \mathrm{ppm}\left(\mathrm{d}, 2 \mathrm{H}, \mathrm{H}^{8}, \mathrm{~J}=6.0 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 157.0\left(\mathrm{C}^{10}\right), 154.2\left(\mathrm{C}^{2}\right), 148.7\left(\mathrm{C}^{9}\right), 148.3\left(\mathrm{C}^{6}\right), 142.6\left(\mathrm{C}^{7}\right), 136.3\left(\mathrm{C}^{4}\right)$, $136.1\left(\mathrm{C}^{11}\right), 124.5\left(\mathrm{C}^{3}\right), 124.1\left(\mathrm{C}^{8}\right), 123.2 \mathrm{ppm},\left(\mathrm{C}^{5}\right)$.
${ }_{20}$ HRMS: $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$; calculated: $[\mathrm{MH}]^{+} \mathrm{m} / \mathrm{z} 387.1504$ found: 387.1515 .
Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{6}$: C, 74.21; H, 4.15; N, 21.64. Found: C, 75.23; H, 4.60; N, 20.88. m.p. 119-221
${ }^{\circ} \mathrm{C}$

${ }_{25}$ 3,6-di(2-pyridyl)-4,5-di-(3,5-dimethoxyphenyl)pyridazine (5a)

3,6-di(2-pyridyl)-4,5-di(3,5-dimethoxyphenyl)-1,4-dihydropyridazine
The same procedure was used as for 3,6-di(2-pyridyl) 4,5-diphenyl-1,4-dihydropyridazine (above) using
 bptz ($0.78 \mathrm{~g}, 3.29 \mathrm{mmol}$) and (E) -3, $3^{\prime}, 5,5$ 'tetramethoxy stilbene $(0.99 \mathrm{~g}, 3.29 \mathrm{mmol})$. The product was purified using column chromatography using diethylether as eluent. The product was isolated as a 30 yellow oil which solidified on standing ($1.03 \mathrm{~g}, 2.0 \mathrm{mmol}, 61 \%$).
${ }^{1} \mathrm{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.37\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{15}\right.$), $8.64\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{6 / 6^{\prime}}, \mathrm{J}=5.0 \mathrm{~Hz}\right), 8.60\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{6 / 6^{\prime}}, \mathrm{J}\right.$ $=4.5 \mathrm{~Hz},), 8.16\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{3 / 3^{3}}, \mathrm{~J}=8.0 \mathrm{~Hz}\right), 7.61\left(\Psi \mathrm{td}, 1 \mathrm{H}, \mathrm{H}^{4 / 4^{\prime}}, \mathrm{J}=7.5,1.8 \mathrm{~Hz}\right), 7.47(\Psi \mathrm{td}, 1 \mathrm{H}$, $\left.\mathrm{H}^{4 / 4^{\prime}}, \mathrm{J}=7.5,1.5 \mathrm{~Hz}\right), 7.37\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{3 / 3^{\prime}}, \mathrm{J}=8.0 \mathrm{~Hz}\right), 7.18\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{5 / 5^{\prime}}\right), 6.80\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}^{8,8^{\prime}}, \mathrm{J}=2.0\right.$ $\mathrm{Hz}), 6.41\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}^{8 / 8^{\prime}}, \mathrm{J}=2.0 \mathrm{~Hz}\right), 6.35\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}^{10 / 10^{\prime}}, \mathrm{J}=2.0 \mathrm{~Hz}\right), 6.32\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}^{10 / 10^{\prime}}, \mathrm{J}=2.0 \mathrm{~Hz}\right)$, ${ }_{35} 5.75\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{16}\right), 3.70(\mathrm{~s}, 6 \mathrm{H},-\mathrm{OMe}), 3.61 \mathrm{ppm}(\mathrm{s}, 6 \mathrm{H},-\mathrm{OMe})$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $160.3\left(\mathrm{C}^{\mathrm{Q}}\right), 159.9\left(\mathrm{C}^{\mathrm{Q}}\right), 154.2\left(\mathrm{C}^{\mathrm{Q}}\right), 151.5\left(\mathrm{C}^{\mathrm{Q}}\right), 148.5\left(\mathrm{C}^{6 / 6}\right), 147.8$ $\left(\mathrm{C}^{6 / 6^{\prime}}\right), 144.2\left(\mathrm{C}^{\mathrm{Q}}\right), 140.9\left(\mathrm{C}^{\mathrm{Q}}\right), 140.8\left(\mathrm{C}^{\mathrm{Q}}\right)$, $135.5\left(\mathrm{C}^{4 / 4^{3}}\right), 135.5\left(\mathrm{C}^{4 / 4}\right)$, $135.4\left(\mathrm{C}^{\mathrm{Q}}\right), 125.2\left(\mathrm{C}^{3 / 3^{\prime}}\right)$, $122.6\left(\mathrm{C}^{5 / 5^{\prime}}\right), 122.2\left(\mathrm{C}^{5 / 5^{\prime}}\right), 121.0\left(\mathrm{C}^{3 / 3^{\prime}}\right)$, $107.7\left(\mathrm{C}^{\mathrm{Q}}\right)$, $107.5\left(\mathrm{C}^{8 / 8}\right)$, $106.3\left(\mathrm{C}^{8 / 8^{\prime}}\right), 99.2\left(\mathrm{C}^{10 / 10^{\prime}}\right)$, $98.1\left(\mathrm{C}^{10 / 10}\right)$, $54.7(-\mathrm{OMe})$, $54.7(-$ OMe), $41.1 \mathrm{ppm}\left(\mathrm{C}^{12}\right)$.
${ }_{40}$ HRMS: $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$; calculated for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{4}:[\mathrm{MH}]^{+} \mathrm{m} / \mathrm{z} 509.2189$ found: 509.2221.
Anal. Calc. For $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{4}$; C: 70.85; H: 5.55; N: 11.02. Found: C: 70.89; H: 6.00; N: 11.00.

3,6-di(2-pyridyl)-4,5-di-(3,5-dimethoxyphenyl)pyridazine

${ }_{45}$ The same procedure was applied as for $\mathbf{3 a}$ using a dichloromethane solution (40 mL) containing 3,6-di(2-pyridyl)-4,5-di-(3,5-dimethoxyphenyl)-1,4-dihydropyridazine. The product was purified by column chromatography on silica (dichloromethane:ethanol, 5:1) and recovered as a yellow solid ($0.855 \mathrm{~g}, 1.68 \mathrm{mmol}, 75 \%$).
I.R. (KBr) vbar $3052 \mathrm{~s}, ~ 3005 \mathrm{~s}, 2941 \mathrm{~s}, 2839 \mathrm{~s}, ~ 1592 \mathrm{~s}, 1494 \mathrm{~s}, 1462 \mathrm{~s}, 1425 \mathrm{~s}, 1363 \mathrm{~s}, 1343 \mathrm{~s}, 1204 \mathrm{~s}$, ${ }_{50} 1145 \mathrm{~s}, 1064 \mathrm{~s}, 842 \mathrm{~s}, 805 \mathrm{~s}, 830 \mathrm{~s}, 749 \mathrm{~s}, 693 \mathrm{~s} \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.55\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}^{6}, \mathrm{~J}=5.0 \mathrm{~Hz}\right), 7.72\left(\Psi \mathrm{td}, 2 \mathrm{H}, \mathrm{H}^{4}, \mathrm{~J}=7.5,1.5 \mathrm{~Hz}\right), 7.61$ $\left(\mathrm{d}, 2 \mathrm{H}, \mathrm{H}^{3}, \mathrm{~J}=8.0 \mathrm{~Hz}\right), 7.23\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{5}\right), 6.22\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{H}^{13}, \mathrm{~J}=2.0 \mathrm{~Hz}\right), 6.10\left(\mathrm{~d}, 4 \mathrm{H}, \mathrm{H}^{11}, \mathrm{~J}=2.0 \mathrm{~Hz}\right)$, $3.67 \mathrm{ppm}(\mathrm{s}, 12 \mathrm{H},-\mathrm{OMe})$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 160.0\left(\mathrm{C}^{\mathrm{Q}}\right), 158.9\left(\mathrm{C}^{\mathrm{Q}}\right), 156.1\left(\mathrm{C}^{\mathrm{Q}}\right), 149.1\left(\mathrm{C}^{6}\right), 138.7\left(\mathrm{C}^{\mathrm{Q}}\right), 136.4$ ${ }_{55}\left(\mathrm{C}^{\mathrm{Q}}\right), 136.2\left(\mathrm{C}^{4}\right), 124.8\left(\mathrm{C}^{3}\right), 123.0\left(\mathrm{C}^{5}\right), 108.4\left(\mathrm{C}^{8}\right), 100.4\left(\mathrm{C}^{10}\right), 55.3 \mathrm{ppm}\left(\mathrm{CH}_{3},-\mathrm{OMe}\right)$.

HRMS: (PhMe) calculated for $[\mathrm{MH}]^{+} \mathrm{m} / \mathrm{z}$: 507.2028, found: 507.2032.

Anal. Calcd. for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{4}$.C 71.13, H 5.17, N 11.06. Found C 72.01, H 5.23, N 10.40. m.p. $120-124{ }^{\circ} \mathrm{C}$.

3,6-di-(2-pyrazinyl)-4-(2-pyridyl)-pyridazine (1b)

${ }_{5}$ The same procedure was used as for $\mathbf{1 a}$ using bpztz $(0.310 \mathrm{~g}, 1.30 \mathrm{mmol})$ and $(147 \mu \mathrm{~L}, 1.25 \mathrm{mmol})$ of 2 -acetyl pyridine. The product was purified by column chromatography (ethyl acetate: methanol, 10:1) and isolated as an off-white solid.
I.R. vbar $3062 \mathrm{~s}, 3016 \mathrm{~s}, 1698 \mathrm{~m}, ~ 1586 \mathrm{~s}, 1571 \mathrm{~s}, 1477 \mathrm{~s}, 1469 \mathrm{~s}, 1387 \mathrm{~s}, 1154 \mathrm{~s}, 1149 \mathrm{~s}, 1020,861 \mathrm{~s}, 805 \mathrm{~s}$, $785 \mathrm{~s}, 752 \mathrm{~s}, 621 \mathrm{~m}, 585 \mathrm{~m}, 503 \mathrm{~m}, 411 \mathrm{~s} \mathrm{~cm}{ }^{-1}$.
${ }_{10}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.02\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{3}, \mathrm{~J}=1.5 \mathrm{~Hz}\right), 9.42\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{3}, \mathrm{~J}=1.5 \mathrm{~Hz}\right), 8.81(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{H}^{14}\right), 8.73\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{6}, \mathrm{~J}=2.5 \mathrm{~Hz}\right), 8.70\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{5}, \mathrm{~J}=1.5 \mathrm{~Hz}\right), 8.58\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{6}, \mathrm{~J}=2.4 \mathrm{~Hz}\right), 8.53(\mathrm{~d}$, $\left.1 \mathrm{H}, \mathrm{H}^{11}, \mathrm{~J}=4.7 \mathrm{~Hz}\right), 8.32\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{5}, \mathrm{~J}=1.5 \mathrm{~Hz}\right), 7.75\left(\Psi \mathrm{td}, 1 \mathrm{H}, \mathrm{H}^{9}, \mathrm{~J}=8.0,1.5 \mathrm{~Hz}\right), 7.45\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{8}\right.$, $\mathrm{J}=7.4 \mathrm{~Hz}), 7.29 \mathrm{ppm}\left(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H}^{10}, \mathrm{~J}=7.5,1.5,0.9 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 156.5\left(\mathrm{C}^{12 / 15}\right), 155.9\left(\mathrm{C}^{12 / 15}\right), 154.3\left(\mathrm{C}^{7}\right), 150.7\left(\mathrm{C}^{2}\right), 149.3\left(\mathrm{C}^{11}\right), 147.8$ ${ }_{15}\left(\mathrm{C}^{2}\right), 145.4\left(\mathrm{C}^{6^{\prime}}\right), 145.3\left(\mathrm{C}^{3}\right), 144.0\left(\mathrm{C}^{6}\right), 143.6\left(\mathrm{C}^{5^{\prime}}\right), 143.4\left(\mathrm{C}^{3^{\prime}}\right), 142.5\left(\mathrm{C}^{5}\right), 139.6\left(\mathrm{C}^{13}\right), 136.3\left(\mathrm{C}^{9}\right)$, $125.5\left(\mathrm{C}^{14}\right), 123.5\left(\mathrm{C}^{8}\right), 123.0 \mathrm{ppm}\left(\mathrm{C}^{10}\right)$.
HRMS: $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$: calculated for $[\mathrm{MH}]^{+} \mathrm{m} / \mathrm{z}: 314.1154$, found: 314.1158.
Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~N}_{7} . \mathrm{C} 65.17$, H 3.54, N 31.29. Found C 65.31, H 3.63, N 30.60. m.p. $210-212{ }^{\circ} \mathrm{C}$

20

3,6-di-(2-pyrazinyl)-4-(pyrimidyl) pyridazine (2b)

The same procedure was used as for 2a using bpztz ($0.310 \mathrm{~g}, 1.30 \mathrm{mmol}$) and 5-ethynyl pyrimidine
 $(0.140 \mathrm{~g}, 1.39 \mathrm{mmol})$. The product was obtained after column chromatography on silica ($10: 1$ ethyl acetate:methanol) as an off-white solid ($0.214 \mathrm{~g}, 49 \%$).
${ }_{25}$ I.R. vbar $3130 \mathrm{~m}, 3098 \mathrm{~m}, 3033 \mathrm{~s}, 1575 \mathrm{~s}, 1556 \mathrm{~s}, 1434 \mathrm{~s}, 1380 \mathrm{~s}, 1161 \mathrm{~s}, 1101 \mathrm{~s}, 1019 \mathrm{~s}, 869 \mathrm{~s}, 860 \mathrm{~s}, 758 \mathrm{~m}$, $724 \mathrm{~s}, 631 \mathrm{~s}, 581 \mathrm{~m}, 482 \mathrm{~m} \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.02\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{3}, \mathrm{~J}=1.4 \mathrm{~Hz}\right), 9.64\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{3}, \mathrm{~J}=1.4 \mathrm{~Hz}\right), 9.28(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{H}^{10}\right), 8.79\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{6}, \mathrm{~J}=2.2 \mathrm{~Hz}\right), 8.73\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{8,5}\right), 8.66\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{6,13}\right), 8.36\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{5}, \mathrm{~J}=2.0 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 158.0\left(\mathrm{C}^{10}\right), 156.4\left(\mathrm{C}^{11}\right), 155.4\left(\mathrm{C}^{8,8}\right), 154.9\left(\mathrm{C}^{14}\right), 149.1\left(\mathrm{C}^{2}\right), 147.2$ ${ }_{30}\left(\mathrm{C}^{2^{\prime}}\right), 145.8\left(\mathrm{C}^{6^{6}}\right), 145.5,\left(\mathrm{C}^{3}\right), 144.80\left(\mathrm{C}^{6}\right), 143.7\left(\mathrm{C}^{5^{\prime}}\right), 143.4\left(\mathrm{C}^{3^{\prime}}\right), 142.5\left(\mathrm{C}^{5}\right), 134.6\left(\mathrm{C}^{7}\right), 130.7\left(\mathrm{C}^{12}\right)$, $126.09 \mathrm{ppm}\left(1 \mathrm{C}, \mathrm{C}^{13}\right)$.
HRMS: $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$: calculated for [MNa] ${ }^{+} \mathrm{m} / \mathrm{z}: 337.0926$, found: 337.0899 .
Anal. Calculated for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{8}$: C, 61.14, H, 3.21, N, 35.65. Found: C, 59.60; H, 3.17; N, 35.04. m.p. $226-228^{\circ} \mathrm{C}$.

35
3,6-di-(2-pyrazinyl)-4,5-diphenylpyridazine (3b)
3,6-di-(2-pyrazinyl)-4,5-diphenyl-1,4-dihydropyridazine

3,6-di-(2-pyrazinyl)-4,5-diphenylpyridazine

${ }_{50}$ The same procedure was used as for 3a, using a dichloromethane (20 mL) suspension of 3,6-di(2-pyrazinyl)-4,5-dipheny-1,4-dihydropyridazine. After recrystallisation from ethyl acetate/petroluem, the product was obtained as a beige solid $(0.327 \mathrm{~g}, 84 \%)$.
I.R. vbar $3075 \mathrm{~s}, 3049 \mathrm{~s}, 2963 \mathrm{~s}, 2927 \mathrm{~s}, 1963 \mathrm{~m}, 1737 \mathrm{~m}, 1493 \mathrm{~s}, 1471 \mathrm{~s}, 1444 \mathrm{~s}, 1371 \mathrm{~s}, 1262 \mathrm{~s}, 1145 \mathrm{~s}, 1070 \mathrm{~s}$, $1064 \mathrm{~s}, 1036 \mathrm{~s}, 863 \mathrm{~s}, 772 \mathrm{~s}, 756 \mathrm{~s}, 701 \mathrm{~s}, 659 \mathrm{~s}, 639 \mathrm{~s}, 628 \mathrm{~s}, 536 \mathrm{~m}, 527 \mathrm{~m} \mathrm{~cm}^{-1}$.
${ }_{55}{ }^{1} \mathrm{H}-\mathrm{NMR}:\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.98\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{3}\right), 8.51\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}^{6}, \mathrm{~J}=2.0 \mathrm{~Hz}\right), 8.43\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{5}\right), 7.11(\mathrm{~m}$, $\left.6 \mathrm{H}, \mathrm{H}^{8,10}\right), 6.89 \mathrm{ppm}\left(\mathrm{dd}, 4 \mathrm{H}, \mathrm{H}^{9}, \mathrm{~J}=6.3,1.5 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 156.3\left(\mathrm{C}^{11}\right), 151.2\left(\mathrm{C}^{2}\right), 145.4\left(\mathrm{C}^{3}\right), 143.5\left(\mathrm{C}^{6}\right), 143.0\left(\mathrm{C}^{5}\right), 139.6\left(\mathrm{C}^{12}\right), 133.2\left(\mathrm{C}^{7}\right), 129.6\left(\mathrm{C}^{8}\right)$, $127.5\left(\mathrm{C}^{9,10}\right)$.
HRMS: $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ calculated for $[\mathrm{MH}]^{+} \mathrm{m} / \mathrm{z}: 389.1515$, found: 389.1515 .
Anal. Calcd. for C $74.21, \mathrm{H} 4.15$, N 21.64. Found: C $73.01, \mathrm{H} 4.35$, N 20.80. m.p. 161-162 ${ }^{\circ} \mathrm{C}$.
5

3,6-di(2-pyrazinyl)-4,5-di(4-pyridyl) pyridazine (4b)

3,6-di(2-pyrazinyl)-4,5-di(4-pyridyl)-1,4-dihydropyridazine
 The same procedure was used as for $4 \mathbf{a}$ using bpztz ($0.300 \mathrm{~g}, 1.26 \mathrm{mmol}$) and (E)-1,2-di(4-
 ${ }_{10}$ pyridyl)ethene ($0.238 \mathrm{~g}, 1.30 \mathrm{mmol}$). Purification via silica column chromatography (diethyl ether:methanol, 1:1) yielded the product as a bright yellow solid ($0.437 \mathrm{~g}, 0.76 \mathrm{mmol}, 60 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.48\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{14}\right), 9.41\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{3 / 3}, \mathrm{~J}=1.0 \mathrm{~Hz}\right), 8.70\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{3 / 3}, \mathrm{~J}\right.$ $=1.4 \mathrm{~Hz}), 8.51\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}^{5,5^{\prime}, 6,6^{\prime}, 9,9^{\prime}}\right), 7.44\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}^{8 / 8^{\prime}}, \mathrm{J}=5.9 \mathrm{~Hz}\right), 7.04\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}^{8 / 88^{\prime}}, \mathrm{J}=5.9 \mathrm{~Hz}\right)$, ${ }_{15} 5.68 \mathrm{ppm}\left(\mathrm{s}, 1 \mathrm{H}, \mathrm{H}^{11}\right)$.
HRMS: $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ calculated for $[\mathrm{MH}]^{+} \mathrm{m} / \mathrm{z}: 393.1576$, found: 393.1592
Anal. Calcd. for C 67.34, H 4.11, N 28.55. Found: C 67.53, H 4.10, N 27.80.

20 3,6-di(2-pyridyl)-4,5-di(4-pyridyl) pyridazine
The same procedure was used as for 3a using a dichloromethane (40 mL) solution containing 3,6-di(2-
 pyrazinyl)-4,5,-di(4-pyridyl)-1,4-dihydropyridazine. Purification was carried out by column chromatography on silica using diethyl ether: methanol (3:1) as eluent. The product was recovered as a yellow solid (0.175 g , $0.30 \mathrm{mmol}, 40 \%$).
${ }_{25}$ I.R. vbar $3069 \mathrm{~s}, 3036 \mathrm{~s}, 2987 \mathrm{~m}, 1597 \mathrm{~s}, 1409 \mathrm{~s}, 1371 \mathrm{~s}, 1154 \mathrm{~s}, 1016 \mathrm{~s}, ~ 991 \mathrm{~m}, ~ 849 \mathrm{~s}, 796 \mathrm{~s}, 762 \mathrm{~m}, 659 \mathrm{~s}, 645 \mathrm{~s}$, $627 \mathrm{~s}, 549 \mathrm{~m}, 509 \mathrm{~m} \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.37\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}^{3}, \mathrm{~J}=1.0 \mathrm{~Hz}\right), 8.56\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}^{5}, \mathrm{~J}=2.5 \mathrm{~Hz}\right), 8.40\left(\mathrm{~d}, 4 \mathrm{H}, \mathrm{H}^{9}, \mathrm{~J}=5.6 \mathrm{~Hz}\right)$, $8.29\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}^{6}, \mathrm{~J}=2.0 \mathrm{~Hz}\right), 6.88\left(\mathrm{~d}, 4 \mathrm{H}, \mathrm{H}^{8}, \mathrm{~J}=6.0 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 154.9\left(\mathrm{C}^{10}\right), 149.6\left(\mathrm{C}^{2}\right), 148.93\left(\mathrm{C}^{9}\right), 145.4\left(\mathrm{C}^{3}\right), 144.3\left(\mathrm{C}^{5}\right), 142.7\left(\mathrm{C}^{6}\right), 141.5\left(\mathrm{C}^{11}\right)$, ${ }_{30} 137.0\left(\mathrm{C}^{7}\right), 123.9\left(\mathrm{C}^{8}\right)$.
HRMS: $\left(\mathrm{CH}_{3} \mathrm{CN} \mathrm{m} / \mathrm{z}=391.1515\right.$, calculated for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{~N}_{8}:[\mathrm{MH}]^{+}=391.1515$.
Anal. Calculated for C, 67.68 ; H, 3.61; N, 28.70. Found: C, $66.86, H, 3.65, \mathrm{~N}, 28.41$. m.p. $216-218^{\circ} \mathrm{C}$.

${ }_{35}$ Ruthenium bis bipyridyl/ deuterated bis bipyridyl complexes

General Procedure:

Unless otherwise stated, ligand (1a, 2a, 3a, 4a, 5a, 6) and ruthenium(II) bisbipyridine dichloride were heated for 4 hrs at $80{ }^{\circ} \mathrm{C}$ in a mixture of ethylene glycol $(5 \mathrm{~mL})$ and water $(5 \mathrm{~mL})$. The reaction mixture was then diluted with water and washed with dichloromethane to remove excess ligand. The volume of the aqueous layer was reduced under vacuum and a saturated solution of ${ }_{40} \mathrm{KPF}_{6}$ was added. The mixture was filtered and the filtrate purified by column chromatography on silica, using the solvent systems outlined below.
$\left.[\operatorname{Ru}(b p y))_{2}(\mathbf{1 a})\right]\left[\mathrm{PF}_{6}\right]_{2}$

${ }_{45} \mathbf{1 a}(0.100 \mathrm{~g}, 0.320 \mathrm{mmol})$ and ruthenium(II) bisbipyridine dichloride ($0.156 \mathrm{~g}, 0.299$
 mmol). The compound was purified by column chromatography on silica (MeCN : $\mathrm{KNO}_{3}: \mathrm{H}_{2} \mathrm{O} 10: 1 / 2: 11 / 2$).
Product obtained as red solid ($0.222 \mathrm{~g}, 0.218 \mathrm{mmol}, 65 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta 8.99\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{10}\right), 8.71\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=7.9 \mathrm{~Hz}\right), 8.64(\mathrm{~d}$, $\left.{ }_{50} 2 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=7.4 \mathrm{~Hz}\right), 8.60\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=3.9 \mathrm{~Hz}\right), 8.57-8.50\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{\mathrm{py}}\right), 8.23\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}\right.$, $\mathrm{J}=4.0 \mathrm{~Hz}), 8.20\left(\Psi \mathrm{td}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=9.0,1.0 \mathrm{~Hz}\right), 8.17-8.08\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}^{\mathrm{py}}\right), 7.99\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}\right.$ $=4.7 \mathrm{~Hz}), 7.98\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{py}}\right), 7.92\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=5.4 \mathrm{~Hz}\right), 7.82\left(\Psi \mathrm{td}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=7.5,1.5\right.$ $\mathrm{Hz}), 7.80\left(\Psi \mathrm{td}, 1 \mathrm{H}, \mathrm{H}^{\text {py }}, \mathrm{J}=7.6,1.6 \mathrm{~Hz}\right), 7.79\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}\right), 7.63\left(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=1.0\right.$ $\mathrm{Hz}), 7.61-7.46\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{py}}\right), 7.45\left(\Psi \mathrm{td}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=1.0 \mathrm{~Hz}\right), 7.38\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}\right), 7.35(\mathrm{~d}$,
$\left.{ }_{55} 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=8.0 \mathrm{~Hz}\right), 7.32\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}\right), 7.27 \mathrm{ppm}\left(\mathrm{d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=8.0 \mathrm{~Hz}\right)$.
HRMS: $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \mathrm{m} / \mathrm{z}=362.5786\left[\mathrm{M}-2 \mathrm{PF}_{6}\right]^{2+}$ Calculated for $\mathrm{C}_{39} \mathrm{H}_{29} \mathrm{~N}_{9} \mathrm{Ru}: 362.5795$,

Anal. Calcd.: C 46.16, H 2.88, N 12.42. Found C 46.40, H 2.99 , N 12.40. m.p $>280^{\circ} \mathrm{C}$
$\left.\left.{ }_{5} \mathbf{R u}\left(\mathbf{b p y d}_{8}\right)_{\mathbf{2}}(\mathbf{1 a})\right] \mathbf{P F}_{6}\right]_{2}$
$\mathbf{1 a}(0.015 \mathrm{~g}, 0.049 \mathrm{mmol})$ and deuterated ruthenium bis bipyridine dichloride ($0.0075 \mathrm{~g}, 0.014 \mathrm{mmol}$). The product was purified by column chromatography on silica ($\mathrm{MeCN}: \mathrm{KNO}_{3}: \mathrm{H}_{2} \mathrm{O} 10: 1 / 2: 1^{1 / 2}$).

Red solid ($0.0092 \mathrm{~g}, 0.009 \mathrm{mmol}, 64 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta 8.47\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{D} 10}\right), 8.66\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{A} 3}, \mathrm{~J}=8.0 \mathrm{~Hz}\right), 8.57(\mathrm{~d}$, $\left.{ }_{10} 1 \mathrm{H}, \mathrm{H}^{\mathrm{B} 6}, \mathrm{~J}=4.3 \mathrm{~Hz}\right), 8.19\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{C} 6}, \mathrm{~J}=5.5 \mathrm{~Hz}\right), 8.15\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{A4}}, \mathrm{~J}=8.1 \mathrm{~Hz}\right), 7.94(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{H}^{\mathrm{A} 6}, \mathrm{~J}=5.7 \mathrm{~Hz}\right), 7.76\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{C} 4, \mathrm{~B} 4}\right), 7.56\left(\Psi \mathrm{td}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{A5}}, \mathrm{~J}=6.8,1.1 \mathrm{~Hz}\right), 7.39(\Psi \mathrm{td}, 1 \mathrm{H}$, $\left.\mathrm{H}^{\mathrm{B} 5}, \mathrm{~J}=6.2,1.3 \mathrm{~Hz}\right), 7.30\left(\Psi \mathrm{td}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{C} 5}, \mathrm{~J}=7.6,1.1 \mathrm{~Hz}\right), 7.29\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{B} 3}, \mathrm{~J}=8.1 \mathrm{~Hz}\right), 7.22$ ppm (d, 1H, $\mathrm{H}^{\mathrm{C} 3}, \mathrm{~J}=7.6 \mathrm{~Hz}$). m.p. $>280^{\circ} \mathrm{C}$
Anal. Calcd.: C 45.44, H 4.40, N 12.23. Found C 46.40, H 2.99, N 12.20. m.p >280 ${ }^{\circ} \mathrm{C}$
$\left[\mathbf{R u}(\mathbf{b p y})_{\mathbf{2}} \mathbf{(2 a)}\right]\left[\mathbf{P F}_{6}\right]_{\mathbf{2}}$
$\mathbf{2 a}(0.105 \mathrm{~g}, 0.337 \mathrm{mmol})$ and ruthenium(II) bisbipyridine dichloride $(0.157 \mathrm{~g}, 0.301 \mathrm{mmol})$. The product was purified by column chromatography on silica ($\mathrm{MeCN}: \mathrm{KNO}_{3}: \mathrm{H}_{2} \mathrm{O} 10: 1 / 2: 1^{1 / 2}$). Red solid ($0.222 \mathrm{~g}, 0.218 \mathrm{mmol}$,
 2073%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta 9.18\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{10}\right), 8.71\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{13,8}\right), 8.66-8.60(\mathrm{~m}, 2 \mathrm{H})$, $8.51(\mathrm{~m}, 2 \mathrm{H}), 8.24(\mathrm{~m}, 1 \mathrm{H}), 8.20-8.05(\mathrm{~m}, 5 \mathrm{H}), 7.98(\mathrm{~m}, 3 \mathrm{H}), 7.89(\mathrm{~m}, 2 \mathrm{H}), 7.77-7.73(\mathrm{~m}$, $2 \mathrm{H}), 7.58-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.25\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{3}, \mathrm{~J}=8.0 \mathrm{~Hz}\right)$.
HRMS: $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \mathrm{m} / \mathrm{z}=363.0775\left[\mathrm{M}-2 \mathrm{PF}_{6}\right]^{2+}$. Calculated for $\mathrm{C}_{38} \mathrm{H}_{28} \mathrm{~N}_{10} \mathrm{Ru}: 363.0771$.
25 Anal. Calcd.: C 44.94, H 2.78, N 13.79. Found C 45.00, H 2.90, N 13.50. m.p $>280{ }^{\circ} \mathrm{C}$
$.2 \mathrm{PF}_{6}$

$\left[\mathbf{R u}\left(\mathrm{bpyd}_{8}\right)_{2}(\mathbf{2 a})\right]\left[\mathrm{PF}_{6}\right]_{2}$

${ }_{30} \mathbf{2 a}(0.009 \mathrm{~g}, 0.028 \mathrm{mmol})$ and deuterated ruthenium (II) bisbipyridine dichloride were reacted as for $\left[\mathrm{Ru}(\mathrm{bpy})_{2}(1 \mathrm{a})\right]\left[\mathrm{PF}_{6}\right]_{2}$. The product was purified by chromatography on silica (MeCN: $\mathrm{KNO}_{3}: \mathrm{H}_{2} \mathrm{O} 10: 1 / 2: 1^{1 / 2}$). Red solid

($0.222 \mathrm{~g}, 0.218 \mathrm{mmol}, 68 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$: $\delta 9.20\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{10}\right), 8.71\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{13}\right), 8.69\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{8}\right), 8.62(\mathrm{~d}$, $\left.1 \mathrm{H}, \mathrm{H}^{3}, \mathrm{~J}=7.9 \mathrm{~Hz}\right), 8.24\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{6}, \mathrm{~J}=4.6 \mathrm{~Hz}\right), 8.17\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{4}, \mathrm{~J}=7.9,1.4 \mathrm{~Hz}\right), 7.95(\mathrm{~d}$, $\left.1 \mathrm{H}, \mathrm{H}^{6}, \mathrm{~J}=5.4 \mathrm{~Hz}\right), 7.77\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{4}, \mathrm{~J}=7.5,1.1 \mathrm{~Hz}\right), 7.58\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{5}\right), 7.38\left(\Psi \mathrm{td}, 1 \mathrm{H}, \mathrm{H}^{5}, \mathrm{~J}\right.$ $=4.6,0.8 \mathrm{~Hz}), 7.23 \mathrm{ppm}\left(\mathrm{d}, 1 \mathrm{H}, \mathrm{H}^{3}, \mathrm{~J}=7.9 \mathrm{~Hz}\right)$.
HRMS: $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \mathrm{m} / \mathrm{z}=371.1400\left[\mathrm{M}-2 \mathrm{PF}_{6}\right]^{2+}$. Calculated for $\mathrm{C}_{38} \mathrm{H}_{12} \mathrm{D}_{16} \mathrm{~N}_{10} \mathrm{Ru}: 371.1265$. Anal. Calcd.: C 44.94, H 4.30, N 13.58. Found C 45.01, H 4.46, N 13.47. m.p $>280^{\circ} \mathrm{C}$

40
$\left[\mathbf{R u}(\mathrm{bpy})_{2}(\mathbf{3 a})\right]\left[\mathrm{PF}_{6}\right]_{2}$
3a $(0.100 \mathrm{~g}, 0.258 \mathrm{mmol})$ and ruthenium(II) bisbipyridine dichloride $(0.114 \mathrm{~g}, 0.222 \mathrm{mmol})$. Purification was carried out by column chromatography on silica (acetonitrile:water: sat. $\mathrm{KNO}_{3} 10: 1.5: 1$). ($0.112 \mathrm{~g}, 0.1399$
 $\mathrm{mmol}, 63 \%$ yield)
${ }_{45}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta 8.60-8.52(\mathrm{~m}, 3 \mathrm{H}), 8.44\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=8.2 \mathrm{~Hz}\right), 8.19-8.11$ $(\mathrm{m}, 5 \mathrm{H}), 7.95(\mathrm{~m}, 2 \mathrm{H}), 7.90(\mathrm{~m}, 2 \mathrm{H}), 7.69\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=5.5,0.7 \mathrm{~Hz}\right), 7.68-7.56(\mathrm{~m}, 4 \mathrm{H})$, $7.53-7.30(\mathrm{~m}, 7 \mathrm{H}), 7.20(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.05(\mathrm{~m}, 5 \mathrm{H}) 6.92 \mathrm{ppm}\left(1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=7.9 \mathrm{~Hz}\right)$. HRMS: $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \mathrm{m} / \mathrm{z}=400.0990\left[\mathrm{M}-2 \mathrm{PF}_{6}\right]^{2+}$. Calculated for $\mathrm{C}_{46} \mathrm{H}_{34} \mathrm{~N}_{8} \mathrm{Ru}: 400.0975$. Anal. Calcd.: C 69.07, H 4.28, N 14.01 . Found C 69.00, H 4.30, N 13.90. m.p $>280^{\circ} \mathrm{C}$ 50

$\left[\mathbf{R u}\left(\mathbf{b p y d}_{8}\right)_{2}(\mathbf{3 a})\right]\left[\mathrm{PF}_{6}\right]_{2}$

3a $(0.005 \mathrm{~g}, 0.014 \mathrm{mmol})$ and deuterated ruthenium (II) bisbipyridine dichloride ($0.007 \mathrm{~g}, 0.014 \mathrm{mmol}$). Following ion exchange
 and filtration no further purification was required. Deep red solid $(0.012 \mathrm{~g}, 0.0109 \mathrm{mmol}$, 78% yield).
${ }_{5}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta 8.16\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{6}, \mathrm{~J}=4.7 \mathrm{~Hz}\right), 7.95\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{6}, \mathrm{~J}=5.8 \mathrm{~Hz}\right)$, $7.66\left(\Psi \mathrm{td}, 1 \mathrm{H}, \mathrm{H}^{4}, \mathrm{~J}=7.8,0.8 \mathrm{~Hz}\right), 7.56\left(\Psi \mathrm{td}, 1 \mathrm{H}, \mathrm{H}^{4}, \mathrm{~J}=7.5,0.7 \mathrm{~Hz}\right), 7.47-7.33(\mathrm{~m}, 5 \mathrm{H}$, $\left.\mathrm{H}^{7,8,5}\right), 7.20\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{5}\right), 7.13-7.06\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}^{8,9,3}\right), 6.93 \mathrm{ppm}\left(\mathrm{d}, 1 \mathrm{H}, \mathrm{H}^{3}, \mathrm{~J}=8.1 \mathrm{~Hz}\right)$.
HRMS: $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \mathrm{m} / \mathrm{z}=408.1601\left[\mathrm{M}-2 \mathrm{PF}_{6}\right]^{2+}$. Calculated for $\mathrm{C}_{46} \mathrm{H}_{18} \mathrm{D}_{16} \mathrm{~N}_{8} \mathrm{Ru}: 408.1601$. Anal. Calcd.: C 67.71, H 6.17, N 13.78. Found C 68.02, H 6.31, N 13.79. m.p $>280^{\circ} \mathrm{C}$

10

$\left[\mathbf{R u}(\mathbf{b p y})_{\mathbf{2}}(\mathbf{4 a})\right]\left[\mathrm{PF}_{6}\right]_{\mathbf{2}}$

${ }_{15} \mathbf{4 a}(0.102 \mathrm{~g}, 0.264 \mathrm{mmol})$ and ruthenium(II) bisbipyridine dichloride $(0.130 \mathrm{~g}, 0.251 \mathrm{mmol}$. The product was purified by column chromatography on silica (acetone:ammonia:Sat. KNO_{3} 20:3:0.5)
 Red solid ($0.144 \mathrm{~g}, 0.136 \mathrm{mmol}, 54 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta 8.67-8.55\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{4-\mathrm{py}}, \mathrm{H}^{\mathrm{py}}\right), 8.49\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=8.0 \mathrm{~Hz}\right)$, 8.41-8.08 (m, 6H), 8.04-8.00 (m, 2H), $7.92\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=5.4 \mathrm{~Hz}\right), 7.88\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=5.4\right.$ $\left.{ }_{20} \mathrm{~Hz}\right), 7.71-7.67(\mathrm{~m}, 3 \mathrm{H}), 7.59-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.46(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.14(\mathrm{~m}$, $5 \mathrm{H}), 6.82 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H})$.
HRMS: $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \mathrm{m} / \mathrm{z}=401.0940\left[\mathrm{M}-2 \mathrm{PF}_{6}\right]^{2+}$. Calculated for $\mathrm{C}_{44} \mathrm{H}_{32} \mathrm{~N}_{10} \mathrm{Ru}: 401.0928$.
Anal. Calcd.: C 65.91, H 4.02, N 17.47. Found C 66.10 , H 4.20, N 17.56 . m.p $>280^{\circ} \mathrm{C}$

$\left.\mathbf{R u}\left(\text { bpyd }_{8}\right)_{2}(\mathbf{4 a})\right]\left[\mathrm{PF}_{6}\right]_{2}$

4a ($0.006 \mathrm{~g}, 0.015 \mathrm{mmol}$) and ruthenium(II) bisbipyridine dichloride ($0.008 \mathrm{~g}, 0.015 \mathrm{mmol}$). The product was purified by chromatography on silica (acetone:ammonia:sat. KNO_{3} 20:3:0.5).

${ }_{30}$ Red solid ($0.012 \mathrm{~g}, 0.011 \mathrm{mmol}, 75 \%$ yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta 8.67\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{4 \mathrm{py}}, \mathrm{J}=4.4 \mathrm{~Hz}\right), 8.62\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{4 \mathrm{py}}, \mathrm{J}=4.7\right.$ $\mathrm{Hz}), 8.29\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{4 \mathrm{py}}\right), 8.12\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=3.9 \mathrm{~Hz}\right), 7.98\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=5.5 \mathrm{~Hz}\right), 7.67(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{H}^{\mathrm{py}}\right), 7.40\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{py}}\right), 7.26\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=5.0 \mathrm{~Hz}, 1.0 \mathrm{~Hz}\right), 7.13\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{H}^{4 \mathrm{py}}\right)$, $6.78 \mathrm{ppm}\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}^{4 \mathrm{py}}\right)$.
35 HRMS: $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \mathrm{m} / \mathrm{z}=409.1554\left[\mathrm{M}-2 \mathrm{PF}_{6}\right]^{2+}$. Calculated for $\mathrm{C}_{44} \mathrm{H}_{16} \mathrm{D}_{16} \mathrm{~N}_{10} \mathrm{Ru}: 409.1034$. Anal. Calcd.: C 64.61, H 5.91, N 17.12. Found C 64.80, H 5.98, N 17.10. m.p >280 ${ }^{\circ} \mathrm{C}$

$\left[\mathbf{R u}(\mathbf{b p y})_{2}(\mathbf{5 a})\right]\left[\mathrm{PF}_{6}\right]_{2}$

${ }_{40} \mathbf{5 a}(0.020 \mathrm{~g}, 0.040 \mathrm{mmol})$ and ruthenium(II) bis bipyridine dichloride $(0.021 \mathrm{~g}, 0.040 \mathrm{mmol})$ in mixture of ethylene glycol (3 mL)
 and water $(3 \mathrm{~mL})$. The product was purified by chromatography on silica (acetone:ammonia:sat. $\mathrm{KNO}_{3} 20: 2: 2$). Red solid ($0.027 \mathrm{~g}, 0.022 \mathrm{mmol}, 56 \%$ yield).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta 8.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{py}}\right), 8.53\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=7.9 \mathrm{~Hz}\right), 8.43(\mathrm{~d}$, $\left.1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=8.1 \mathrm{~Hz}\right), 8.23\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=4.7,1.0 \mathrm{~Hz}\right), 8.20-8.15(\mathrm{~m}, 3 \mathrm{H}), 8.08(\mathrm{dd}, 1 \mathrm{H}$, $\left.{ }_{45} \mathrm{H}^{\text {py }}, \mathrm{J}=5.5,0.8 \mathrm{~Hz}\right), 7.97(\mathrm{~m}, 3 \mathrm{H}), 7.89\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\text {py }}, \mathrm{J}=5.0 \mathrm{~Hz}\right), 7.71(\mathrm{~m}, 3 \mathrm{H}), 7.61-7.49$ $(\mathrm{m}, 3 \mathrm{H}), 7.37\left(\Psi \mathrm{td}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=5.6,1.2 \mathrm{~Hz}\right), 7.22(\mathrm{~m}, 3 \mathrm{H}), 7.10\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=7.8 \mathrm{~Hz}\right)$, $6.58\left(\Psi \mathrm{t}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{ph}}, \mathrm{J}=1.5 \mathrm{~Hz}\right), 6.34\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{ph}}\right), 6.24\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{ph}}, \mathrm{J}=2.3 \mathrm{~Hz}\right), 3.73(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{H}^{\mathrm{OMe}}$), $3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}^{\mathrm{OMe}}\right), 3.56 \mathrm{ppm}\left(\mathrm{s}, 6 \mathrm{H}, \mathrm{H}^{\mathrm{OMe}}\right)$.
HRMS: $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \mathrm{m} / \mathrm{z}=460.1170\left[\mathrm{M}-2 \mathrm{PF}_{6}\right]^{2+}$. Calculated for $\mathrm{C}_{50} \mathrm{H}_{42} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{Ru}: 460.1185$.
${ }_{50}$ Anal. Calcd.: C 65.28 , H 4.60, N 12.18. Found C 66.00 , H 4.70, N 12.50. m.p $>280^{\circ} \mathrm{C}$

$\left[\mathbf{R u}(\text { bpy })_{2}(\mathbf{6})\right]\left[\mathrm{PF}_{6}\right]_{2}$

$6(0.046 \mathrm{~g}, 0.128 \mathrm{mmol})$ and ruthenium(II) bis bipyridine dichloride $(0.066 \mathrm{~g}, 0.127 \mathrm{mmol})$ were heated for 5 hrs at $80{ }^{\circ} \mathrm{C}$ in a $\left[\begin{array}{l}\text { mixture of ethylene glycol }(3 \mathrm{~mL}) \text { and water }(3 \mathrm{~mL}) \text {. The reaction was allowed to cool, }\end{array}\right.$
was removed in vacuo to yield a red solid, which was recrystallised from acetone/hexane ($0.074 \mathrm{~g}, 0.097 \mathrm{mmol}, 76 \%)$.
${ }^{1} H$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta: 9.29\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{3}, \mathrm{~J}=8.0 \mathrm{~Hz}\right), 8.92\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{a}}, \mathrm{J}=7.4 \mathrm{~Hz}\right), 8.87\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{6}, \mathrm{~J}=4.3 \mathrm{~Hz}\right), 8.63(\mathrm{~d}$, $\left.1 \mathrm{H}, \mathrm{H}^{\mathrm{a}}, \mathrm{J}=7.3 \mathrm{~Hz}\right), 8.48\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\text {bpy }}, \mathrm{J}=8.2 \mathrm{~Hz}\right), 8.46\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\text {bpy }}, \mathrm{J}=7.6 \mathrm{~Hz}\right), 8.44\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{c}}, \mathrm{J}=8.0 \mathrm{~Hz}\right), 8.37\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{c}}, \mathrm{J}\right.$ $\left.{ }_{5}=8.2 \mathrm{~Hz}\right), 8.25\left(\Psi \mathrm{td}, 1 \mathrm{H}, \mathrm{H}^{4}, \mathrm{~J}=8.0,1.4 \mathrm{~Hz}\right), 8.16\left(\Psi \mathrm{td}, 1 \mathrm{H}, \mathrm{H}^{\text {bpy }}, \mathrm{J}=8.0,1.4 \mathrm{~Hz}\right), 8.03\left(\mathrm{~m}, 3 \mathrm{H}, 2 \mathrm{H}^{\text {bpy }}, 1 \mathrm{H}^{6}\right), 7.98(\mathrm{~m}, 3 \mathrm{H}$, $\left.2 H^{\text {bpy }}, 1 \mathrm{H}^{\mathrm{b}}\right), 7.88\left(\Psi \mathrm{td}, 1 \mathrm{H}, \mathrm{H}^{4}, \mathrm{~J}=7.8,1.3 \mathrm{~Hz}\right), 7.84\left(\Psi \mathrm{t}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{b}}, \mathrm{J}=7.8 \mathrm{~Hz}\right), 7.72\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\text {bpy }}, \mathrm{J}=5.6 \mathrm{~Hz}\right), 7.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{5}, 5^{\prime}\right)$, $7.52\left(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H}^{\text {bpy }} \mathrm{J}=7.6,5.6,1.1 \mathrm{~Hz}\right), 7.42\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{\text {bpy }}\right), 7.35\left(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H}^{\text {bpy }}, \mathrm{J}=7.5,5.7,1.3 \mathrm{~Hz}\right), 7.22 \mathrm{ppm}\left(\mathrm{d}, 1 \mathrm{H}, \mathrm{H}^{3}, \mathrm{~J}=\right.$ 7.9 Hz).

HRMS: $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \mathrm{m} / \mathrm{z}=386.0819\left[\mathrm{M}-2 \mathrm{PF}_{6}\right]^{2+}$ Calculated for $\mathrm{C}_{44} \mathrm{H}_{30} \mathrm{~N}_{8} \mathrm{Ru}: 386.0819$.
${ }_{10}$ Anal. Calcd.: C 68.47, H 3.92, N 14.52 . Found C 69.04, H 4.00, N 14.90. m.p $>280^{\circ} \mathrm{C}$

Ruthenium tris homoleptic complexes

General procedure:

${ }_{15}$ Unless otherwise stated, the ligand ($\mathbf{3 a}, \mathbf{4 a}, \mathbf{5 a}$) was added to ruthenium(III) chloride hydrate in ethylene glycol (5 mL). N-Ethyl morpholine (6 drops) was added and the mixture was degassed by bubbling with argon for 30 mins. The mixture was then heated at $170^{\circ} \mathrm{C}$ for 72 hrs , cooled and extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The facial and meridional isomers were isolated as described.

$\left[\mathbf{R u}(\mathbf{3 a})_{3}\right]\left[\mathrm{PF}_{6}\right]_{2}$

${ }_{20} \mathbf{3 a}(0.0209 \mathrm{~g}, 0.0542 \mathrm{mmol})$ was added to ruthenium(III) chloride hydrate $(0.0029 \mathrm{~g}, 0.0142 \mathrm{mmol})$. The facial isomer was separated using a preparative silica TLC plate (acetone:water:sat. $\left.\mathrm{KNO}_{3}, 120: 12: 0.5\right)\left(2.70 \mathrm{mg}, 12 \%\right.$ yield, $\left.\mathrm{R}_{\mathrm{f}}=0.35\right)$. The residue remaining on the plate was collected and the meridional isomer was isolated from this mixture using a second preparative TLC plate (acetonitrile:ammonia:sat. $\left.\mathrm{KNO}_{3}, 20: 2: 4\right)$. ($6.45 \mathrm{mg}, 29 \%$ yield, $\mathrm{R}_{\mathrm{f}}=0.15$).
Mer isomer:
${ }_{25}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta 8.64\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=5.0 \mathrm{~Hz}\right), 8.40\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=4.6 \mathrm{~Hz}\right), 8.34\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=5.1 \mathrm{~Hz}\right), 8.26(\mathrm{~d}$, $2 H, J=4.6 \mathrm{~Hz}), 8.18\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\text {py }}, \mathrm{J}=4.2 \mathrm{~Hz}\right), 7.72-6.97(\mathrm{~m}, 26 \mathrm{H}), 6.98\left(1 \mathrm{H}, \mathrm{H}^{\text {py }}, \mathrm{J}=7.4 \mathrm{~Hz}\right), 6.89\left(1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=7.9 \mathrm{~Hz}\right), 6.86$ $\left(1 \mathrm{H}, \mathrm{H}^{\text {py }}, \mathrm{J}=7.9 \mathrm{~Hz}\right), 6.48 \mathrm{ppm}\left(1 \mathrm{H}, \mathrm{H}^{\text {py }}, \mathrm{J}=7.4 \mathrm{~Hz}\right)$.
HRMS: $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \mathrm{m} / \mathrm{z}=630.1813\left[\mathrm{M}-2 \mathrm{PF}_{6}\right]^{2+}$. Calculated for $\mathrm{C}_{78} \mathrm{H}_{54} \mathrm{~N}_{12} \mathrm{Ru}: 630.1819$. m.p. $>280{ }^{\circ} \mathrm{C}$
${ }_{30}$ Fac isomer:
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta 8.46\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{H}^{6}, \mathrm{~J}=4.0 \mathrm{~Hz}\right), 8.43\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{H}^{61}, \mathrm{~J}=6.0 \mathrm{~Hz}\right), 7.72\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{H}^{4}, \mathrm{~J}=7.7 \mathrm{~Hz}\right), 7.71(\mathrm{~d}$, $\left.3 \mathrm{H}, \mathrm{H}^{4}, \mathrm{~J}=8.0 \mathrm{~Hz}\right), 7.57\left(\Psi \mathrm{t}, 3 \mathrm{H}, \mathrm{H}^{5}, \mathrm{~J}=6.3 \mathrm{~Hz}\right), 7.42\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}^{7^{\prime / 18 / 9}}\right), 7.31\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}^{5,7 / 18^{\prime} / 9^{\prime}}\right), 7.20\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{H}^{3}, \mathrm{~J}=7.7 \mathrm{~Hz}\right), 7.09$ $\left(\mathrm{m}, 9 \mathrm{H}, \mathrm{H}^{7 / 8 / 9}\right), 6.98\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{H}^{3 \prime}, \mathrm{~J}=8.6 \mathrm{~Hz}\right), 6.68\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{7^{1 / 8 / 9}}\right), 6.10 \mathrm{ppm}\left(\mathrm{m}, 6 \mathrm{H}, \mathrm{H}^{7 / 8 / 9}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta 159.4\left(\mathrm{C}^{\mathrm{Q}}\right), 157.1\left(\mathrm{C}^{\mathrm{Q}}\right), 155.4\left(\mathrm{C}^{\mathrm{Q}}\right), 154.4\left(\mathrm{C}^{\mathrm{Q}}\right), 155.8\left(\mathrm{C}^{6}\right), 149.1\left(\mathrm{C}^{6}\right), 143.1\left(\mathrm{C}^{\mathrm{Q}}\right), 139.3\left(\mathrm{C}^{\mathrm{Q}}\right)$,
 $\left(\mathrm{C}^{3^{\prime}}\right), 127.8\left(\mathrm{C}^{78 / 9}\right), 127.6\left(\mathrm{C}^{5^{\prime}}\right), 127.2\left(2 \mathrm{C}^{7 / 8 / 9}\right), 124.3\left(\mathrm{C}^{3}\right), 123.7 \mathrm{ppm}\left(\mathrm{C}^{5}\right)$.
HRMS: $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \mathrm{m} / \mathrm{z}=630.1809\left[\mathrm{M}-2 \mathrm{PF}_{6}\right]^{2+}$. Calculated for $\mathrm{C}_{78} \mathrm{H}_{54} \mathrm{~N}_{12} \mathrm{Ru}: 630.1819$. m.p. $>280{ }^{\circ} \mathrm{C}$

Mer

Fac
$4 \mathbf{a}(0.0212 \mathrm{~g}, 0.0546 \mathrm{mmol})$ and ruthenium(III) chloride hydrate $(0.0032 \mathrm{~g}, 0.0156 \mathrm{mmol})$. The facial isomer was separated using a TLC plate (acetone:water:sat. $\left.\mathrm{KNO}_{3}, 20: 5: 1\right)\left(2.5 \mathrm{mg}\left(10 \%\right.\right.$ yield, $\left.\mathrm{R}_{\mathrm{f}}=0.33\right)$. The residue from the previous plate was purified on a second plate (acetonitrile:ammonia:sat. $\mathrm{KNO}_{3}, 20: 3: 1$) from which the meridional isomer was isolated. (3.4 mg , 14% yield, $\mathrm{R}_{\mathrm{f}}=0.70$).
${ }_{5}$ Mer isomer:
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta 8.73\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{6}, \mathrm{~J}=5.7 \mathrm{~Hz}\right), 8.68\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{6}, \mathrm{~J}=4.5 \mathrm{~Hz}\right), 8.67\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{6}, \mathrm{~J}=5.7 \mathrm{~Hz}\right), 8.60\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{4-\mathrm{pyr}}, \mathrm{J}\right.$ $=4.5 \mathrm{~Hz}), 8.56\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{6}, \mathrm{~J}=4.9 \mathrm{~Hz}\right), 8.52\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{6}, \mathrm{~J}=5.3 \mathrm{~Hz}\right), 8.41-8.26(\mathrm{~m}, 5 \mathrm{H}), 8.17(\mathrm{~m}, 1 \mathrm{H}), 7.81\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{4}\right), 7.68(\mathrm{~m}$, $3 \mathrm{H}), 7.64(\mathrm{~m}, 1 \mathrm{H}), 7.43(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{~m}, 2 \mathrm{H}), 7.07\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{3}, \mathrm{~J}=8.0\right), 6.99(\mathrm{~m}, 2 \mathrm{H}), 6.83(\mathrm{~m}, 2 \mathrm{H})$, $6.37 \mathrm{ppm}\left(\mathrm{d}, 1 \mathrm{H}, \mathrm{H}^{3}, \mathrm{~J}=4.9 \mathrm{~Hz}\right)$.
${ }_{10}$ HRMS: $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \mathrm{m} / \mathrm{z}=633.17\left[\mathrm{M}-2 \mathrm{PF}_{6}\right]^{2+}$. Calculated for $\mathrm{C}_{72} \mathrm{H}_{48} \mathrm{~N}_{18} \mathrm{Ru}: 1266.3353$, found: 1266.3354. m.p. $>280{ }^{\circ} \mathrm{C}$

Fac isomer:

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta 8.65\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{H}^{8^{\prime}}, \mathrm{J}=4.7 \mathrm{~Hz}\right), 8.53\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{8^{\prime}}\right) 8.40\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}^{6}, 6\right), 8.28\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}^{8}\right), 7.81(\mathrm{~m}$, $\left.6 \mathrm{H}, \mathrm{H}^{4},{ }^{4}\right), 7.64\left(\Psi \mathrm{t}, 3 \mathrm{H}, \mathrm{H}^{5}, \mathrm{~J}=6.5 \mathrm{~Hz}\right), 7.38\left(\Psi \mathrm{td}, 3 \mathrm{H}, \mathrm{H}^{5}, \mathrm{~J}=4.5,2.4 \mathrm{~Hz}\right), 7.29\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}^{3,7}\right), 7.20\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{H}^{3 \prime}, \mathrm{~J}=8.5 \mathrm{~Hz}\right)$, ${ }_{15} 6.69\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{7}\right), 6.61 \mathrm{ppm}\left(\mathrm{m}, 6 \mathrm{H}, \mathrm{H}^{7}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta 157.7\left(\mathrm{C}^{\mathrm{Q}}\right), 156.2\left(\mathrm{C}^{\mathrm{Q}}\right), 154.0\left(\mathrm{C}^{\mathrm{Q}}\right), 152.7\left(\mathrm{C}^{\mathrm{Q}}\right), 152.4\left(\mathrm{C}^{6}\right), 150.8\left(\mathrm{C}^{8}\right), 150.7\left(\mathrm{C}^{8}\right)$, $149.1\left(\mathrm{C}^{6}\right)$, $147.0\left(2 \mathrm{C}^{8}\right), 140.5\left(\mathrm{C}^{\mathrm{Q}}\right), 139.8\left(\mathrm{C}^{\mathrm{Q}}\right), 138.3\left(\mathrm{C}^{4}\right), 137.2\left(\mathrm{C}^{4}\right), 128.6\left(\mathrm{C}^{3}\right), 128.4\left(\mathrm{C}^{5}\right), 124.6\left(\mathrm{C}^{7^{\prime}}\right), 124.4\left(\mathrm{C}^{7^{7}}\right), 123.9\left(\mathrm{C}^{\mathrm{Q}}\right), 123.0$ ppm ($\left.\mathrm{C}^{\mathrm{Q}}\right)$.
HRMS: $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \mathrm{m} / \mathrm{z}=633.1663\left[\mathrm{M}-2 \mathrm{PF}_{6}\right]^{2+}$. Calculated for $\mathrm{C}_{72} \mathrm{H}_{48} \mathrm{~N}_{18} \mathrm{Ru}$: 633.1677. m.p. $>280{ }^{\circ} \mathrm{C}$ 20

$\left[\operatorname{Ru}(5 a)_{3}\right]\left[\mathrm{PF}_{6}\right]_{2}$

$\mathbf{5 a}(0.100 \mathrm{~g}, 0.197 \mathrm{mmol})$ and ruthenium(III) chloride hydrate $(0.0146 \mathrm{~g}, 0.0706 \mathrm{mmol})$. The facial isomer was isolated by column ${ }_{25}$ chromatography, (acetone:water:sat. $\mathrm{KNO}_{3} 12: 1: 0.2$) ($0.012 \mathrm{~g}, 3 \%$ yield, $\mathrm{R}_{\mathrm{f}}=0.34$). The meridional isomer was isolated by purifying the run-off from the column on a silica TLC plate (acetonitrile:ammonia:sat. $\left.\mathrm{KNO}_{3} 20: 1: 1.5\right)\left(0.0207 \mathrm{~g}, 5 \%\right.$ yield, $\mathrm{R}_{\mathrm{f}}=$ 0.12).

Mer isomer:
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta 8.47\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{6}, \mathrm{~J}=4.9 \mathrm{~Hz}\right), 8.43\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{6}, \mathrm{~J}=3.7 \mathrm{~Hz}\right), 8.27\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{6}, \mathrm{~J}=4.3 \mathrm{~Hz}\right), 8.26(\mathrm{~d}$, $\left.{ }_{30} 1 \mathrm{H}, \mathrm{H}^{6}, \mathrm{~J}=4.6 \mathrm{~Hz}\right), 8.23\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{6}, \mathrm{~J}=6.1 \mathrm{~Hz}\right), 8.17\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{6}, \mathrm{~J}=5.8 \mathrm{~Hz}\right), 7.81-7.62(\mathrm{~m}, 8 \mathrm{H}), 7.38-7.11(\mathrm{~m}, 11 \mathrm{H}), 6.60(\mathrm{~m}$, $\left.3 \mathrm{H}, \mathrm{H}^{7 / 9}\right), 6.55\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{7 / 9}\right), 6.52\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{7 / 9}\right), 6.49\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{7 / 9}\right), 6.40\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{7 / 9}\right), 6.31\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{7 / 9}\right), 6.27\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{7 / 9}\right)$, $6.22\left(\mathrm{~m}, 2 \mathrm{H}^{2}, \mathrm{H}^{7 / 9}\right), 3.75\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}^{\mathrm{OMe}}\right), 3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}^{\mathrm{OMe}}\right), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}^{\mathrm{OMe}}\right), 3.68\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}^{\mathrm{OMe}}\right), 3.55 \mathrm{ppm}\left(\mathrm{m}, 17 \mathrm{H}, \mathrm{H}^{\mathrm{OMe}}\right)$.
HRMS: $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \mathrm{m} / \mathrm{z}=810.2451\left[\mathrm{M}-2 \mathrm{PF}_{6}\right]^{2+}$. Calculated for $\mathrm{C}_{90} \mathrm{H}_{78} \mathrm{~N}_{12} \mathrm{O}_{12} \mathrm{Ru}: 810.2453$. m.p. $>280{ }^{\circ} \mathrm{C}$

${ }_{35}$ Fac isomer:

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta 8.47\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{H}^{6}, \mathrm{~J}=4.7 \mathrm{~Hz}\right), 8.40\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{H}^{6}, \mathrm{~J}=5.5 \mathrm{~Hz}\right), 7.81\left(\Psi \mathrm{td}, 3 \mathrm{H}, \mathrm{H}^{4}, \mathrm{~J}=7.6,1.5 \mathrm{~Hz}\right)$, $7.71\left(\Psi \mathrm{td}, 3 \mathrm{H}, \mathrm{H}^{4}, \mathrm{~J}=7.8,1.7 \mathrm{~Hz}\right), 7.60\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{5}\right), 7.30\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{5}\right), 7.27\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{H}^{3}, \mathrm{~J}=7.7 \mathrm{~Hz}\right), 7.15\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{H}^{31}, \mathrm{~J}=7.7\right.$ $\mathrm{Hz}), 6.56\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{H}^{9}, \mathrm{~J}=2.3 \mathrm{~Hz}\right), 6.43\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{H}^{7^{\prime}}, \mathrm{J}=2.3 \mathrm{~Hz}\right), 6.24\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{9}\right), 5.94\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{7^{\prime}}\right), 3.70\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}^{\mathrm{OMe}}\right), 3.66(\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{H}^{\mathrm{OMe}}\right), 3.55\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{H}^{\mathrm{OMe}}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta 161.65\left(\mathrm{C}^{\mathrm{Q}}\right), 159.82\left(\mathrm{C}^{\mathrm{Q}}\right), 159.06\left(\mathrm{C}^{\mathrm{Q}}\right), 156.68\left(\mathrm{C}^{\mathrm{Q}}\right), 155.16\left(\mathrm{C}^{\mathrm{Q}}\right), 15426\left(\mathrm{C}^{\mathrm{Q}}\right), 151.59\left(\mathrm{C}^{6}\right), 149.09\left(\mathrm{C}^{6}\right)$, $142.50\left(\mathrm{C}^{\mathrm{Q}}\right), 138.60\left(\mathrm{C}^{\mathrm{Q}}\right), 137.65\left(\mathrm{C}^{4}\right), 136.46\left(\mathrm{C}^{4}\right), 134.77\left(\mathrm{C}^{\mathrm{Q}}\right), 134.42\left(\mathrm{C}^{\mathrm{Q}}\right), 128.52\left(\mathrm{C}^{3}\right), 127.66\left(\mathrm{C}^{5}\right), 124.16\left(\mathrm{C}^{3}\right), 123.87$ $\left(\mathrm{C}^{5}\right), 117.26\left(\mathrm{C}^{7}\right), 107.64\left(\mathrm{C}^{7^{7}}\right), 106.71\left(\mathrm{C}^{7^{7}}\right), 100.47\left(\mathrm{C}^{9}\right), 99.58\left(\mathrm{C}^{9}\right), 55.39\left(2 \mathrm{C}^{\mathrm{OMe}}\right), 55.16\left(3 \mathrm{C}, \mathrm{C}^{\mathrm{OMe}}\right)$
HRMS: $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \mathrm{m} / \mathrm{z}=810.25\left[\mathrm{M}-2 \mathrm{PF}_{6}\right]^{2+}$. Calculated for $\mathrm{C}_{90} \mathrm{H}_{78} \mathrm{~N}_{12} \mathrm{O}_{12} \mathrm{Ru}: 1620.4906$, found: 1620.4956. m.p. $>280{ }^{\circ} \mathrm{C}$ 5

Iron(II) tris homoleptic complexes - General procedure:

Unless otherwise stated, the ligand ($\mathbf{3 a}, \mathbf{4 a}, \mathbf{5 a}$) was added to a solution of acetonitrile (5 mL) containing $\mathrm{Fe}\left(\mathrm{BF}_{4}\right)_{2}$. The solution 10 was then heated at $60^{\circ} \mathrm{C}$ for two hrs. The solvent was removed in vacuo and water was added to the reaction mixture. A saturated solution of KPF_{6} was added and the resulting precipitate extracted into dichloromethane and dried over MgSO_{4}. This was purified by silica column chromatography or on preparative TLC plates as outlined below.

$\left[\mathrm{Fe}(\mathbf{3 a})_{3}\right]\left[\mathrm{PF}_{6}\right]_{2}$

${ }_{15} \mathbf{3 a}(0.080 \mathrm{~g}, 0.21 \mathrm{mmol})$ and $\mathrm{Fe}\left(\mathrm{BF}_{4}\right)_{2}(0.112 \mathrm{~g}, 0.0355 \mathrm{mmol})$. Purification was by column chromatography on silica (acetone:water:sat. $\mathrm{KNO}_{3}, 100: 10: 1$). Two purple products were isolated: mer isomer ($0.069 \mathrm{~g}, 24 \%$ yield, $\mathrm{R}_{\mathrm{f}}=0.74$), fac isomer ($0.032 \mathrm{~g}, 11 \%, \mathrm{R}_{\mathrm{f}}=0.26$)

Mer isomer

${ }_{20}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta 8.58\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=4.4 \mathrm{~Hz}\right), 8.38\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=4.1 \mathrm{~Hz}\right), 8.26\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=4.1 \mathrm{~Hz}\right), 8.17(\mathrm{~d}$, $\left.1 \mathrm{H}, \mathrm{H}^{\text {py }}, \mathrm{J}=4.4 \mathrm{~Hz}\right), 8.10\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=3.8 \mathrm{~Hz}\right), 7.76(\mathrm{~m}, 4 \mathrm{H}), 7.63-6.94(\mathrm{~m}, 42 \mathrm{H}), 6.90\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=7.60 \mathrm{~Hz}\right), 6.81(\mathrm{~m}, 2 \mathrm{H})$, $6.42\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=7.60 \mathrm{~Hz}\right)$.
HRMS: $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \mathrm{m} / \mathrm{z}=607.1972\left[\mathrm{M}-2 \mathrm{PF}_{6}\right]^{2+}$. Calculated for $\mathrm{C}_{78} \mathrm{H}_{54} \mathrm{~N}_{12} \mathrm{Fe}$: 607.1972 .
Anal. Calculated for $\mathrm{C}_{78} \mathrm{H}_{54} \mathrm{~F}_{12} \mathrm{~N}_{12} \mathrm{P}_{2} \mathrm{Fe}: \mathrm{C}, 62.24$; H, 3.62; N, 11.17. Found: C, 61.46, H, 4.61, N, 9.36. m.p. $>280{ }^{\circ} \mathrm{C}$
Fac isomer
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta 8.45\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=5.0 \mathrm{~Hz}\right), 8.16\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=5.6 \mathrm{~Hz}\right), 7.74\left(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{H}^{\mathrm{py}}\right), 7.57(\mathrm{~m}, 3 \mathrm{H}$, $\left.\mathrm{H}^{\mathrm{py}}\right), 7.43\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}^{\mathrm{ph}}\right), 7.33\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}^{\mathrm{ph}, 5}\right), 7.21\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=7.5 \mathrm{~Hz}\right), 7.01\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{H}^{\mathrm{ph}}\right), 6.94\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=8.1 \mathrm{~Hz}\right), 6.65$ $\left(\mathrm{m}, 3 \mathrm{H}, \mathrm{H}^{\mathrm{ph}}\right), 6.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}^{\mathrm{ph}}\right)$.
${ }_{30}$ HRMS: $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \mathrm{m} / \mathrm{z}=607.1969\left[\mathrm{M}-2 \mathrm{PF}_{6}\right]^{2+}$. Calculated for $\mathrm{C}_{78} \mathrm{H}_{54} \mathrm{~N}_{12} \mathrm{Fe}$: 607.1969.
Anal. Calculated for $\mathrm{C}_{78} \mathrm{H}_{54} \mathrm{P}_{2} \mathrm{~F}_{12} \mathrm{~N}_{12} \mathrm{Fe}$: C, 62.24; H, 3.62; N, 11.17. Found: C, 59.74, H, 3.55, N, 10.17. m.p. > $280^{\circ} \mathrm{C}$

Mer

Fac

$\left[\mathrm{Fe}(\mathbf{4 a})_{3}\right]\left[\mathrm{PF}_{6}\right]_{2}$

$4 \mathbf{a}(0.0201 \mathrm{~g}, 0.0515 \mathrm{mmol})$ and $\mathrm{Fe}\left(\mathrm{BF}_{4}\right)_{2}(0.0138 \mathrm{~g}, 0.06 \mathrm{mmol})$. The mixture was separated on a silica preparative TLC plate 5 (acetone:ammonia:sat. $\mathrm{KNO}_{3}, 20: 4: 4$). Mer isomer ($3.35 \mathrm{mg}, 16 \%$ yield, $\mathrm{R}_{\mathrm{f}}=0.77$), fac isomer ($8.80 \mathrm{mg}, 42 \%$ yield, $\mathrm{R}_{\mathrm{f}}=0.63$).

Mer isomer

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta 8.75\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{4 \mathrm{py}}, \mathrm{J}=5.3 \mathrm{~Hz}\right), 8.69\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{4 \mathrm{py}}, \mathrm{J}=4.5 \mathrm{~Hz}\right), 8.66\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{4 \mathrm{py}}, \mathrm{J}=5.0 \mathrm{~Hz}\right), 8.58$ $\left(\mathrm{d}, 1 \mathrm{H}, \mathrm{H}^{4 \mathrm{py}}, \mathrm{J}=5.0 \mathrm{~Hz}\right), 8.50\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=5.0 \mathrm{~Hz}\right), 8.47\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{4 \mathrm{py}}, \mathrm{J}=5.2 \mathrm{~Hz}\right), 8.43\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{4 \mathrm{py}}, \mathrm{J}=5.2 \mathrm{~Hz}\right), 8.33(\mathrm{~m}, 6 \mathrm{H}$, $\left.{ }_{10} \mathrm{H}^{\mathrm{py}}\right), 8.16\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=4.8 \mathrm{~Hz}\right), 8.03\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=6.0 \mathrm{~Hz}\right), 7.87\left(\Psi \mathrm{t}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=7.6 \mathrm{~Hz}\right), 7.80\left(\Psi \mathrm{t}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=7.9 \mathrm{~Hz}\right)$, $7.76\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=5.9 \mathrm{~Hz}\right), 7.67(\mathrm{~m}, 4 \mathrm{H}), 7.63\left(\Psi \mathrm{t}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=6.9 \mathrm{~Hz}\right), 7.46\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{4 \mathrm{py}}, \mathrm{J}=4.8 \mathrm{~Hz}\right), 7.39(\mathrm{~m}, 3 \mathrm{H}), 7.30(\mathrm{~m}$, $2 \mathrm{H}), 7.26\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=5.0 \mathrm{~Hz}\right), 7.19\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{4 \mathrm{py}}\right), 7.12(\mathrm{~m}, 2 \mathrm{H}), 7.06\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=7.6 \mathrm{~Hz}\right), 6.99(\mathrm{~m}, 3 \mathrm{H}), 6.88\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}\right.$ $=5.1 \mathrm{~Hz}), 6.35\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=4.5 \mathrm{~Hz}\right)$.
HRMS: $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \mathrm{m} / \mathrm{z}=610.1832\left[\mathrm{M}-2 \mathrm{PF}_{6}\right]^{2+}$. Calculated for $\mathrm{C}_{72} \mathrm{H}_{48} \mathrm{~N}_{18} \mathrm{Fe}$: 610.1830. m.p. $>280^{\circ} \mathrm{C}$

Fac isomer
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta 8.67\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{H}^{8}, \mathrm{~J}=5.2 \mathrm{~Hz}\right), 8.55\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{H}^{8}, \mathrm{~J}=4.6 \mathrm{~Hz}\right), 8.40\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{H}^{6}, \mathrm{~J}=4.3 \mathrm{~Hz}\right), 8.27(\mathrm{br}$. $\left.\mathrm{s}, 6 \mathrm{H}, \mathrm{H}^{8}\right), 8.12\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{H}^{8}, \mathrm{~J}=5.2 \mathrm{~Hz}\right), 7.88\left(\Psi \mathrm{td}, 3 \mathrm{H}, \mathrm{H}^{4}, \mathrm{~J}=8.2,1.2 \mathrm{~Hz}\right), 7.82\left(\Psi \mathrm{td}, 3 \mathrm{H}, \mathrm{H}^{4}, \mathrm{~J}=7.4,1.3 \mathrm{~Hz}\right), 7.63(\Psi \mathrm{t}, 3 \mathrm{H}$, $\left.H^{5}, \mathrm{~J}=6.4 \mathrm{~Hz}\right), 7.38\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{5}\right), 7.31\left(\mathrm{dd}, 3 \mathrm{H}, \mathrm{H}^{7}\right), 7.26\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{H}^{3}, \mathrm{~J}=7.9 \mathrm{~Hz}\right), 7.21\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{H}^{3}, \mathrm{~J}=7.6 \mathrm{~Hz}\right), 6.67\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{7^{\prime}}\right)$, $206.15\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}^{7}\right)$. m.p. $>280^{\circ} \mathrm{C}$

$\left[\mathrm{Fe}(5 \mathrm{a})_{3}\right]\left[\mathrm{PF}_{6}\right]_{2}$

$\mathbf{5 a}(0.0916 \mathrm{~g}, 0.181 \mathrm{mmol})$ and $\mathrm{Fe}\left(\mathrm{BF}_{4}\right)_{2}(0.0674 \mathrm{~g}, 0.201 \mathrm{mmol})$. The meridional and facial isomers were separated by column ${ }_{25}$ chromatography on silica (1:1:0.1 of methanol:water:sat. KNO_{3}). Mer isomer ($0.039 \mathrm{~g}, 37 \%$ yield, $\mathrm{R}_{\mathrm{f}}=0.51$), fac isomer (0.021 g , 20% yield, $\mathrm{R}_{\mathrm{f}}=0.14$).

Mer isomer
${ }_{5}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta 8.42\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=4.2 \mathrm{~Hz}\right), 8.37\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=5.6 \mathrm{~Hz}\right), 8.30\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=4.4 \mathrm{~Hz}\right), 8.26(\mathrm{~d}$, $\left.1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=4.2 \mathrm{~Hz}\right), 7.89\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=5.0 \mathrm{~Hz}\right), 7.86\left(\Psi \mathrm{td}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=9.2,1.5 \mathrm{~Hz}\right), 7.75(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{~m}, 5 \mathrm{H}), 7.40(\mathrm{~d}, 1 \mathrm{H}$, $\left.H^{\text {py }}, \mathrm{J}=8.3 \mathrm{~Hz}\right), 7.36\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=8.0 \mathrm{~Hz}\right), 7.35(\mathrm{~m}, 3 \mathrm{H}), 7.31(\mathrm{~m}, 2 \mathrm{H}), 7.26\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=8.3 \mathrm{~Hz}\right), 7.15\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=7.9\right.$ $\mathrm{Hz}), 7.10\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=7.8 \mathrm{~Hz}\right), 7.06\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{py}}, \mathrm{J}=8.4 \mathrm{~Hz}\right), 6.64(\mathrm{~m}, 3 \mathrm{H}), 6.55\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{ph}}, \mathrm{J}=1.2 \mathrm{~Hz}\right), 6.53\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{ph}}, \mathrm{J}=\right.$ $2.0 \mathrm{~Hz}), 6.50\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{ph}}, \mathrm{J}=1.2 \mathrm{~Hz}\right), 6.37\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{ph}}, \mathrm{J}=2.2 \mathrm{~Hz}\right), 6.29\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{\mathrm{ph}}\right), 6.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{ph}}\right), 6.23\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{ph}}\right), 5.75$ ${ }_{10}\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{ph}}\right), 3.76\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}^{\mathrm{OMe}}\right), 3.71\left(\mathrm{~s}, 3 \mathrm{H} \mathrm{H}^{\mathrm{OMe}}\right), 3.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}^{\mathrm{OMe}}\right), 3.64\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{\mathrm{OMe}}\right), 3.57\left(\mathrm{~s}, 7 \mathrm{H}, \mathrm{H}^{\mathrm{OMe}}\right), 3.54(\mathrm{~s}, 7 \mathrm{H}$, $\mathrm{H}^{\mathrm{OMe}}$).
HRMS: $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \mathrm{m} / \mathrm{z}=787.2571\left[\mathrm{M}-2 \mathrm{PF}_{6}\right]^{2+}$. Calculated for $\mathrm{C}_{90} \mathrm{H}_{78} \mathrm{~N}_{12} \mathrm{O}_{12} \mathrm{Fe}: 787.2606$. m.p. $>280{ }^{\circ} \mathrm{C}$
Fac isomer
${ }_{15}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta 8.46\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{H}^{6}, \mathrm{~J}=4.2 \mathrm{~Hz}\right), 8.12\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{H}^{6}, \mathrm{~J}=5.6 \mathrm{~Hz}\right), 7.87\left(\Psi \mathrm{td}, 3 \mathrm{H}, \mathrm{H}^{4}, \mathrm{~J}=7.0,1.7 \mathrm{~Hz}\right)$, $7.73\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{H}^{4}, \mathrm{~J}=8.1,1.4 \mathrm{~Hz}\right), 7.60\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{H}^{5}, \mathrm{~J}=1.5 \mathrm{~Hz}\right), 7.31\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{H}^{5}, \mathrm{~J}=1.3 \mathrm{~Hz}\right), 7.25\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{H}^{3}, \mathrm{~J}=8.1 \mathrm{~Hz}\right), 7.17(\mathrm{~d}$, $\left.3 \mathrm{H}, \mathrm{H}^{3}, \mathrm{~J}=7.8 \mathrm{~Hz}\right), 6.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}^{7}\right), 6.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}^{9}\right), 6.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}^{7}\right), 5.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}^{9}\right), 3.72\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{OMe}}\right), 3.66\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{OMe}^{\prime}}\right)$, 3.55 (s, $\left.5 \mathrm{H}, \mathrm{H}^{\mathrm{OMe}}\right)$.

HRMS: $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \mathrm{m} / \mathrm{z}=787.26\left[\mathrm{M}-2 \mathrm{PF}_{6}\right]^{2+}$. Calculated for $\mathrm{C}_{90} \mathrm{H}_{78} \mathrm{~N}_{12} \mathrm{O}_{12} \mathrm{Fe}: 787.2606$. m.p. $>280{ }^{\circ} \mathrm{C}$
20

Crystallographic Structural Data and Discussion

Table S1: Data for compounds 1a, 2a, 3a, 6

Compound reference	1a	2a	3a	6
Chemical formula	$\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{6}$	$\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~N}_{5}$	$\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{~N}_{4}$	$\mathrm{C}_{24} \mathrm{H}_{14} \mathrm{~N}_{4}$
Formula Mass	312.34	311.34	386.44	358.39
Crystal system	Orthorhombic	Monoclinic	Triclinic	Orthorhombic
a / \AA Å	11.061(2)	9.484(9)	10.4655(5)	21.426(2)
b / \AA	18.238(4)	11.136(2)	12.1742(6)	10.013(1)
c/Å	7.349(5)	14.432(3)	15.8820(8)	7.9162(8)
$\alpha /^{\circ}$	90.00	90.00	93.674(1)	90.00
$\beta 1^{\circ}$	90.00	90.87(3)	91.256(1)	90.00
$\gamma 1^{\circ}$	90.00	90.00	101.750(1)	90.00
Unit cell volume/ \AA^{3}	1482.6(5)	1524.1(5)	1975.8(7)	1698.3(3)
Temperature/K	153(2)	153(2)	153(2)	153(2)
Space group	Pca2(1)	P2(1)/n	P1	Pbcn
No. of formula units per unit cell, Z	4	4	4	-
No. of reflections measured	14602	15793	25705	9267
No. of independent reflections	2914	2691	9068	1757
$R_{\text {int }}$	0.0200	0.0180	0.0330	0.0586
Final R_{l} values ($I>2 \sigma(I)$)	0.0282	0.0321	0.0459	0.0489
Final $w R\left(F^{2}\right)$ values ($I>2 \sigma(I)$)	0.0771	0.0821	0.1069	0.1065
Final R_{I} values (all data)	0.0291	0.0344	0.0713	0.0769
Final $w R\left(F^{2}\right)$ values (all data)	0.0780	0.0845	0.1189	0.1178

(a)

(b)

(c)

Fig. S1 Asymmetric units (top) and representations of the lattice interactions in ligands 1a, 2a and 3a in molecular structure (centre) and schematic (bottom) forms.

Single crystals of $\mathbf{1 a}$ were grown from dichloromethane and had a $P 2_{1} / n$ centrosymmetric space group. One molecule is found in the asymmetric unit, as shown in Figure $S 1$ (a). Rings A and B are almost coplanar, with a dihedral angle of 7.13° between them. The angle between the central pyridazine ring (B) and ring C is 55.04°, with an angle of 29.05° between rings B and D . The collective interactions of the pyridazine and the 2 -pyridyl units leads to the formation of infinite chains giving a herringbone arrangement which is represented schematically in Figure S1 (a). In the three-dimensional arrangement, these chains are held by $C-H^{\cdots} \pi\left(H^{\cdots} \pi, 2.83 \AA\right)$ interactions.

Colourless rod-like crystals of $\mathbf{2 a}$ were obtained from a dichloromethane-hexane solution. Single crystal X-ray analysis revealed that the compound crystallises in an orthorhombic crystal system with one molecule of $\mathbf{2 a}$ in the asymmetric unit. There is a small dihedral angle between the rings labelled A and B of 5.02°. The angles between B and C , and C and D , are 31.47° and 48.18° respectively. In the crystal lattice, the molecules are stabilised by $\mathrm{C}-\mathrm{H}^{\cdots} \mathrm{N}$ hydrogen bonds involving both pyridyl units $\left(\mathrm{H}^{\cdots} \mathrm{N}, 2.64 \AA\right.$) as well as the pyrimidyl ring ($\mathrm{H}^{\cdots} \mathrm{N}, 2.68 \AA$). This interaction leads to the formation of an undulated layer as shown in Figure S1 (b) (bottom). Unlike 2a, the pyridazine ring plays no significant role in the hydrogen bond formation or stabilisation of the molecular assembly. The layers form an $A B A B$ pattern and a zig-zag architecture.

Crystals of 3a were grown from a dichloromethane solution. The asymmetric unit (containing two independent molecules) and representations of the lattice packing are shown in Figure S1 (c). The dihedral angle between the central ring (B) and the two 2-pyridyl rings (A and C) is 45.19° and 43.06° respectively. The torsion angles between ring B and the two phenyl rings D and E are 55.60° and 68.01°. The molecules interact with each other through C $\mathrm{H}^{\cdots} \mathrm{N}$ Hydrogen bonds (2.5-2.6 \AA) and $\mathrm{C}^{-} \mathrm{H}^{\cdots} \pi$ interactions (3.0-3.2 \AA) to form linear chains with branches on one side. This interaction can be viewed pictorially as two interlocking branched chains as is represented in Figure S 1 (c).

Fig. S2 Left: Molecular structure of the $\mathbf{6}$ (Black: carbon, blue: nitrogen). Right: Lattice arrangement of 6, showing N \cdots H interactions both between and within layers.

Crystals of 6 were obtained from a saturated dichloromethane solution. The compound crystallised in the orthorhombic Pben space group, the asymmetric unit consisting of half a molecule of $\mathbf{6}$ owing to the crystallographically imposed two-fold symmetry. The pyridazine ring forms intermolecular non-centrosymmetric hydrogen bonds ($\left(\mathrm{C}^{-} \mathrm{H}^{\cdots} \mathrm{N}, 3.466 \AA\right.$) with the fluoranthene moiety, as shown in Figure S2. This, along with $\mathrm{C}-\mathrm{H}^{\cdots} \mathrm{N}$ interactions between neighbouring pyridyl rings ($3.490 \AA$), results in the corrugated sheet structure observed in the lattice.

Fig. S3 ORTEP representation of $f a c-\left[\mathrm{Ru}(\mathbf{3 a})_{3}\right]\left[\mathrm{PF}_{6}\right]_{2}$ (ellipsoids shown at 50% probability). Fluorine: pink, phosphorus: orange, carbon: black, nitrogen: purple, ruthenium: grey. P-F bonds have been shaded a lighter colour for clarity. See article for discussion.

