Electronic Supplementary Information

Organomercury(II) and -tellurium(II) compounds with the pincer ligand 2,6- $[O(CH_2CH_2)_2NCH_2]_2C_6H_3$ – stabilization of an unusual organotellurium(II) cationic species

Anca Beleaga,^a Vilma R. Bojan,^a Alpar Pöllnitz,^a Ciprian I. Raț^{a,*} and Cristian Silvestru^{a,*}

^a Facultatea de Chimie si Inginerie Chimica, Universitatea Babes-Bolyai, RO-400028, Cluj-Napoca, Romania. Fax: (+40) 264-590818; Tel: (+40) 264-593833; E-mail: cristi@chem.ubbcluj.ro

$1,3-[O(CH_{2}CH_{2})_{2}NCH_{2}]_{2}C_{6}H_{4}(1)$

Figure S1. ORTEP representation at 30% probability and atom numbering scheme for the molecule of **1**.

C(1)–C(2)	1.396(9)	C(4)–C(5)	1.384(10)
C(2)–C(3)	1.392(9)	C(5)–C(6)	1.386(10)
C(3)–C(4)	1.379(10)	C(1)–C(6)	1.384(10)
C(1)-C(7)	1.511(9)	C(3)-C(12)	1.512(9)
N(1)-C(7)	1.478(8)	N(2)-C(12)	1.468(8)
N(1)–C(8)	1.460(9)	N(2)-C(13)	1.467(8)
N(1)–C(11)	1.449(9)	N(2)–C(16)	1.474(8)
C(8)–C(9)	1.508(11)	C(13)–C(14)	1.522(11)
C(10)–C(11)	1.508(11)	C(15)–C(16)	1.508(10)
O(1)–C(9)	1.441(10)	O(2)–C(14)	1.420(9)
O(1)–C(10)	1.436(11)	O(2)–C(15)	1.420(8)
C(3)-C(2)-C(1)	122.3(6)	C(6)-C(5)-C(4)	120.4(7)
C(4)-C(3)-C(2)	118.4(6)	C(5)-C(6)-C(1)	120.8(6)
C(3)–C(4)–C(5)	120.3(7)	C(6)–C(1)–C(2)	117.6(6)
C(2) $C(1)$ $C(7)$	101.0(6)	C(2) $C(2)$ $C(12)$	101 5(6)
C(2) - C(1) - C(7)	121.2(6)	C(2) - C(3) - C(12)	121.5(6)
C(6)-C(1)-C(7)	121.2(6)	C(4)-C(3)-C(12)	120.1(6)
N(1)-C(7)-C(1)	114.1(5)	N(2)-C(12)-C(3)	113.6(5)
C(7)-N(1)-C(8)	111.4(6)	C(13)-N(2)-C(12)	111.8(5)
C(11)-N(1)-C(7)	110.0(5)	C(12)-N(2)-C(16)	112.0(5)
C(11)–N(1)–C(8)	108.5(5)	C(13)–N(2)–C(16)	108.6(5)
N(1) - C(8) - C(9)	109 3(7)	N(2) = C(13) = C(14)	109 9(6)
N(1) - C(11) - C(10)	110 4(6)	N(2) = C(16) = C(15)	109.4(6)
$\Omega(1) = C(9) = C(8)$	111 7(7)	O(2) = C(10) = C(13)	110 9(6)
O(1) = O(1) = O(1)	111.7(7)	O(2) = O(17) = O(15) O(2) = O(15) = O(15)	110.7(0)
O(1) - C(10) - C(11)	111.7(7)	U(2) - U(13) - U(10)	112.1(0)
C(10) - O(1) - C(9)	108.3(6)	C(14) - O(2) - C(15)	110.0(5)

Table S1 Selected bond distances (Å) and angles (°) for compound 1

$[2,6-{O(CH_2CH_2)_2NCH_2}_2C_6H_3]HgOAc(2)$

- the crystal contains a 1:1 mixture of (S_{N1}, R_{N2}) and (R_{N1}, S_{N2}) isomers

Figure S2. Molecular structure of (S_{N1}, R_{N2}) -2 isomer (*left*) and (R_{N1}, S_{N2}) -2 isomer (*right*) in the crystal of 2 (hydrogen atoms are not shown).

- the crystal of **2** contains pairs of isomers of same type, *i.e.* (S_{N1}, R_{N2}) or (R_{N1}, S_{N2}) , respectively, connected through weak O(4)····H(12Aa) contacts. No further inter-dimer contacts are present.

Figure S3. View along *c* axis of a dimer based on O···H_{methylene} contacts between (S_{N1}, R_{N2}) -2 isomers in the crystal of 2 (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms (1 - x, y, 0.5 - z) are given by "a"].

-	intramolecular distance	Hg(1)····O(4) 2.871(9) Å	$\sum r_{vdW}(Hg,O) 2.90 \text{ Å}$
-	intermolecular distance	O(4)…H(12Aa) 2.57 Å Hg(1)…Hg(1a) 3.614(6) Å	∑ <i>r</i> _{vdW} (O,H) 2.60 Å ∑ <i>r</i> _{vdW} (Hg,Hg) 3.00 Å

[2,6-{O(CH₂CH₂)₂NCH₂}₂C₆H₃]HgCl (3)

- the crystal contains a 1:1 mixture of (R_{N1}, R_{N2}) and (S_{N1}, S_{N2}) isomers

Figure S4. Molecular structure of (R_{N1}, R_{N2}) -3 isomer (*left*) and (S_{N1}, S_{N2}) -3 isomer (*right*) in the crystal of 3 (hydrogen atoms are not shown).

- the crystal of **3** contains parallel chains built from (R_{N1}, R_{N2}) and (S_{N1}, S_{N2}) isomers, respectively, connected through weak contacts between mercury and oxygen atoms $[Hg(1)\cdots O(1a) 2.878(5) \text{ Å}]$ from only one pendant arm per ligand unit.

Figure S5. View of a chain polymer association based on Hg···O contacts between (R_{N1}, R_{N2}) -**3** isomers in the crystal of **3** (hydrogen atoms are not shown) [symmetry equivalent atoms (-0.5 - *x*, -0.5 + *y*, 0.5 - *z*) and (-0.5 - *x*, 0.5 + *y*, 0.5 - *z*) are given by "a" and "b", respectively].

- intermolecular distance $Hg(1)\cdots O(1a) 2.878(5) \text{ Å} \qquad \sum r_{vdW}(Hg,O) 2.90 \text{ Å}$

Figure S6. View along chain polymer association between (R_{N1}, R_{N2}) -3 isomers in the crystal of 3 (hydrogen atoms are not shown) [symmetry equivalent atoms (-0.5 - x, -0.5 + y, 0.5 - z) and (-0.5 - x, 0.5 + y, 0.5 - z) are given by "a" and "b", respectively].

- weak inter-chain contacts between chlorine atoms and $H_{methylene}$ of the morpholinyl rings or aromatic hydrogen atoms results in a 3D supramolecular network.

Figure S7. View of the 3D network built through weak chlorine-hydrogen contacts between chain polymers of (R_{N1}, R_{N2}) -3 and (S_{N1}, S_{N2}) -3 isomers, respectively, in the crystal of 3 (only hydrogen atoms involved in intra- and intermolecular contacts are shown) [symmetry equivalent atoms (-0.5 + x, 1.5 - y, -0.5 + z) and (-x, 2 - y, -z) are given by "a prime" and "b prime", respectively].

-	intramolecular distance	Cl(1)…H(10A) 2.91 Å	∑ <i>r</i> _{vdW} (Cl,H) 3.01 Å
-	intermolecular distances	Cl(1)…H(15Bb') 2.83 Å Cl(1)…H(4a') 2.98 Å	

$[2,6-{O(CH_2CH_2)_2NCH_2}_2C_6H_3Te]_2[Hg_2Cl_6] (4)$

- the crystal contains a 1:1 mixture of (R_{N1}, R_{N2}) and (S_{N1}, S_{N2}) isomers of the cation

Figure S8. Structure of (R_{N1}, R_{N2}) cation (*left*) and (S_{N1}, S_{N2}) cation (*right*) in the crystal of **4** (hydrogen atoms are not shown).

Figure S9. View of the Te···Cl and Cl···H_{methylene} contacts between pairs of (R_{N1}, R_{N2}) -[RTe]⁺ and (S_{N1}, S_{N2}) -[RTe]⁺ cations and the $[Hg_2Cl_6]^{2-}$ dianion in the crystal of **4** (only hydrogen atoms involved in cation-anion contacts are shown) [symmetry equivalent atoms (1 - x, -y, -z) are given by "prime"].

-	cation-anion distances	$Te(1)\cdots Cl(1a) 3.869(3) Å$	∑ <i>r</i> _{vdW} (Te,Cl) 3.90 Å
		Cl(1)…H(10Aa) 2.92 Å	$\sum r_{vdW}$ (Cl,H) 3.01 Å
		Cl(3)…H(13Ba) 2.98 Å	

- additional weak $Cl\cdots H$ contacts between anions and cations result in stacked layers with no inter-layers contacts.

Figure S10. View along *a* axis of the layers built through weak chlorine-hydrogen contacts between $[RTe]_2[Hg_2Cl_6]$ units in the crystal of **4** (only hydrogen atoms involved in intra- and inter-units contacts are shown) [symmetry equivalent atoms (*x*, *y*, -1 + z) are given by "double prime"].

Figure S11. View along *c* axis of the layers built through weak chlorine-hydrogen contacts between $[RTe]_2[Hg_2Cl_6]$ units in the crystal of **4** (only hydrogen atoms involved in intra- and inter-units contacts are shown) [symmetry equivalent atoms (-0.5 + x, 1.5 - y, -0.5 + z) are given by "prime"].

- cation-anion distances

Cl(2)…H(15A') 2.93 Å Cl(3)…H(5'') 2.91 Å $\sum r_{vdW}$ (Cl,H) 3.01 Å

$[1,3-{O(CH_2CH_2)_2NHCH_2}_2C_6H_4][HgCl_4]\cdot H_2O(5\cdot H_2O)$

Figure S12. ORTEP representation at 30% probability and atom numbering scheme for the dication and the dianion in the crystal of $5 \cdot H_2O$.

C(1)–C(2)	1.373(9)	C(4) - C(5)	1.375(9)
C(2)–C(3)	1.387(9)	C(5) - C(6)	1.390(10)
C(3)–C(4)	1.372(9)	C(1) - C(6)	1.389(10)
C(1)–C(7)	1.510(9)	C(3)-C(12)	1.503(9)
N(1)-C(7)	1.485(8)	N(2)-C(12)	1.491(8)
N(1)–C(8)	1.495(8)	N(2)–C(13)	1.494(8)
N(1)–C(11)	1.508(8)	N(2)–C(16)	1.503(8)
N(1)–H(17)	0.853(19)	N(2)–H(18)	0.86(2)
C(8)–C(9)	1.496(9)	C(13)–C(14)	1.520(9)
C(10)–C(11)	1.481(10)	C(15)–C(16)	1.504(9)
O(1)–C(9)	1.432(8)	O(2)–C(14)	1.420(8)
O(1)–C(10)	1.400(10)	O(2)–C(15)	1.386(8)
$H_{\sigma}(1) - CI(1)$	2 411(2)	$H_{\sigma}(1) - C^{1}(3)$	2 5130(18)
$H_{g}(1) Cl(2)$	2.111(2) 2 $4475(18)$	$H_{g}(1) Cl(3)$	2.5130(10) 2.5614(10)
$\operatorname{Hg}(1)$ -CI(2)	2.4473(18)	$\operatorname{IIg}(1) = \operatorname{CI}(4)$	2.3014(19)
O(3)–H(19)	0.89(6)	O(3)–H(20)	0.89(6)
C(3)-C(2)-C(1)	121.4(6)	C(6)-C(5)-C(4)	121.4(7)
C(4)-C(3)-C(2)	119.3(6)	C(5)-C(6)-C(1)	118.6(6)
C(3)–C(4)–C(5)	119.8(6)	C(6)-C(1)-C(2)	119.6(6)
C(2) C(1) C(7)	110 5(7)	C(2) $C(2)$ $C(12)$	110.2(6)
C(2) - C(1) - C(7)	119.3(/)	C(2) - C(3) - C(12)	119.3(0)
C(6) - C(1) - C(7)	120.9(6)	C(4) - C(3) - C(12)	121.4(6)
N(1)-C(7)-C(1)	113.9(5)	N(2)-C(12)-C(3)	112.7(5)

Table S2. Selected bond distances (Å) and angles (°) for compound $5 \cdot H_2O$

C(7)–N(1)–C(8)	115.7(5)	C(13)–N(2)–C(12)	113.5(5)
C(11)–N(1)–C(7)	111.5(5)	C(12)–N(2)–C(16)	112.8(5)
C(11)–N(1)–C(8)	107.8(5)	C(13)–N(2)–C(16)	109.5(5)
C(7)–N(1)–H(17)	109(4)	C(12)–N(2)–H(18)	110(4)
C(8)–N(1)–H(17)	111(4)	C(13)–N(2)–H(18)	103(4)
C(11)–N(1)–H(17)	101(4)	C(16)–N(2)–H(18)	107(4)
N(1)-C(8)-C(9)	111.6(5)	N(2)–C(13)–C(14)	110.3(5)
N(1)-C(11)-C(10)	112.7(6)	N(2)–C(16)–C(15)	109.5(5)
O(1)-C(9)-C(8)	110.7(6)	O(2)–C(14)–C(13)	112.2(6)
O(1)-C(10)-C(11)	112.5(6)	O(2)–C(15)–C(16)	113.0(5)
C(10)-O(1)-C(9)	110.4(5)	C(14)–O(2)–C(15)	109.8(5)
Cl(1)–Hg(1)–Cl(2) Cl(1)–Hg(1)–Cl(3) Cl(1)–Hg(1)–Cl(4) H(19)–O(3)–H(20)	119.23(7) 111.48(6) 111.40(9) 109(7)	Cl(2)–Hg(1)–Cl(3) Cl(2)–Hg(1)–Cl(4) Cl(3)–Hg(1)–Cl(4)	107.35(6) 104.28(6) 101.43(6)

- two polymeric chains of alternating water molecules and $[HgCl_4]^{2-}$ dianions are bridged by $[1,3-{O(CH_2CH_2)_2NHCH_2}_2C_6H_4]^{2+}$ dications

Figure S13. View along *b* axis of the polymeric chains of alternating water molecules and $[HgCl_4]^{2-}$ dianions bridged by $[1,3-{O(CH_2CH_2)_2NHCH_2}_2C_6H_4]^{2+}$ dications in the crystal of **5**·H₂O (only hydrogen atoms involved in hydrogen bonding are shown) [symmetry equivalent atoms (-0.5 + *x*, 1.5 - *y*, 1 - *z*), (0.5 + *x*, 1.5 - *y*, 1 - *z*) and (*x*, *y*, 1 + *z*) are given by "a", "b" and "c", respectively].

- hydrogen bonding

Cl(3b)…H(19b) 2.47 Å Cl(4b)…H(20a) 2.42 Å Cl(4b)…H(18) 2.37 Å O(3c)…H(17) 1.98 Å $\sum r_{vdW}(Cl,H)$ 3.01 Å

 $\sum r_{vdW}(O,H) 2.60 \text{ Å}$

Figure S14. View along *a* axis of the polymeric chains of alternating water molecules and $[HgCl_4]^{2-}$ dianions bridged by $[1,3-{O(CH_2CH_2)_2NHCH_2}_2C_6H_4]^{2+}$ dications in the crystal of $5 \cdot H_2O$.

	X-ray	3b	%
Hg(1)-C(1)	2.066(6)	2.079	0.6
Hg(1)-Cl(1)	2.3152(17)	2.332	0.7
Hg(1)-N(1)	2.840(5)	2.952	3.9
Hg(1)-N(2)	2.877(5)	3.011	4.6
C(2)-C(7)-N(1)	116.5(6)	114.0	-2.1
C(6)-C(12)-N(2)	114.5(5)	113.7	-0.7
C(1)-C(2)-C(7)-N(1)	41.5(9)	47.1	13.5
C(1)-C(6)-C(12)-N(2)	41.1(10)	50.0	21.6

- **Table S3**. Comparison of selected experimental (X-ray) and theoretical (BP86/def2-TZVP) bond lengths (Å) and bond angles (°) of **3**.

Table S4. Comparison of selected experimental (X-ray) and theoretical (BP86/def2-
TZVP) bond lengths (Å) and bond angles (°) of 4, 4a, 4b and 4e.

	X-ray	4 a	%	4b	%	4 e	%
Te(1)–C(1)	2.074(8)	2.108	1.6	2.095	1.0		
Te(1) - N(1)	2.392(7)	2.475	3.5	2.443	2.1		
Te(1) - N(2)	2.354(7)	2.448	4.0	2.443	3.6		
C(2)-C(7)-N(1)	110.7(7)	111.1	0.4	111.2	0.4		
C(6)-C(12)-N(2)	108.5(7)	110.7	2.1	111.2	2.4		
C(1)-C(2)-C(7)-N(1)	30.3(12)	35.9	18.5	33.9	10.6		
C(1)-C(6)-C(12)-N(2)	37.0(11)	36.8	-0.5	34.0	-8.9		
$Te(1)\cdots Cl(1a)$	3.869(3)	3.240	-16.3				
$Te(1)\cdots Cl(2)$	4.029(3)	3.950	-2.0				
$H_{\sigma}(1_{a}) - Cl(1_{a})$	2373(3)	2 597	95			2 484	47
Hg(1a)– $Cl(2a)$	2.373(3) 2.382(3)	2.412	1.3			2.486	4.4
Hg(1a)– $Cl(3a)$	2.586(3)	2.597	0.4			2.656	2.7
Hg(1a)-Cl(3)	2.748(3)	2.690	-2.1			2.703	-1.7
Cl(1a)-Hg(1a)-Cl(2a)	133.02(11)	113.4	-14.8			118.4	-11.0

Table S5. Cartesian coordinates (Å) of the optimized structure (BP86/def2-TZVP) of the anion **RHgCl** (**3a**); both nitrogen atoms coordinated to the mercury atom.

0 1 1	<u> </u>		
Atom	X	У	Z
С	3.166177	3.850364	4.280954
С	3.309341	5.245680	4.373955
С	3.556041	5.824239	5.627922
Н	3.678167	6.907899	5.700786
С	3.641970	5.033704	6.773474
Н	3.829281	5.494798	7.744473
С	3.486672	3.651159	6.672920
Н	3.548393	3.027090	7.567985
С	3.255176	3.044562	5.429818
С	3.146651	6.153557	3.164020
Н	2.077384	6.198384	2.893004

Н	3.441351	7.187418	3.447846
С	3.149961	1.529513	5.353321
Н	4.048670	1.130231	4.851681
Н	3.156052	1.115249	6.385352
С	5.325077	5.823069	2.127285
Н	5.643877	5.240696	3.005436
Н	5.612865	6.884251	2.300724
С	6.030300	5.307474	0.877638
Н	7.113931	5.473103	0.952653
Н	5.842458	4.221592	0.762850
С	4.181057	5.848850	-0.452452
Н	3.928938	4.781626	-0.603044
Н	3.909496	6.410559	-1.356683
С	3.425938	6.388356	0.757536
Н	3.591011	7.486179	0.834312
Н	2.345728	6.216521	0.626383
С	0.723426	1.338680	5.278120
Η	0.643397	2.422678	5.452136
Η	0.689724	0.832161	6.269057
С	-0.449634	0.861567	4.429143
Η	-1.395690	0.994115	4.972122
Η	-0.492657	1.446811	3.489238
С	0.876902	-0.795107	3.437807
Η	0.887073	-0.263410	2.466936
Н	0.899656	-1.877532	3.251459
С	2.084380	-0.370007	4.266511
Н	2.134151	-0.991941	5.188248
Н	3.007366	-0.543026	3.690605
Ν	3.869609	5.698632	1.975759
Ν	1.991118	1.058143	4.592910
0	5.595021	6.000948	-0.292394
0	-0.347821	-0.530977	4.129125
Hg	2.833943	2.971776	2.426777
Cl	2.486073	1.971967	0.348694

Table S6. Cartesian coordinates (Å) of the optimized structure (BP86/def2-TZVP) of**RHgCl** (3b); one nitrogen atom coordinated to the mercury atom.

(2.2), 2.22			
Atom	X	У	Z
С	2.092836	3.853501	5.571074
С	2.222225	5.254090	5.658736
С	3.477468	5.836182	5.446384
Н	3.578212	6.923217	5.497905
С	4.591760	5.041681	5.167658
Н	5.565513	5.505993	5.002725
С	4.458616	3.657563	5.099324
Н	5.317419	3.022306	4.874951
С	3.208713	3.046214	5.296282
С	1.047092	6.144096	6.030813
Н	0.829018	6.021398	7.106057

Н	1.337978	7.206757	5.888301
С	3.125326	1.528287	5.268165
Н	3.511923	1.135230	6.224821
Н	2.054156	1.220820	5.219756
С	-0.101897	6.191555	3.883632
Н	0.742868	5.651838	3.428999
Н	0.090920	7.281266	3.771339
С	-1.398933	5.832253	3.167623
Н	-1.367052	6.173326	2.123659
Н	-1.542233	4.733487	3.178632
С	-2.625239	6.091755	5.144923
Н	-2.802303	5.002216	5.224026
Н	-3.495839	6.624623	5.550867
С	-1.365135	6.465488	5.918186
Н	-1.255791	7.572060	5.932181
Н	-1.452920	6.119686	6.960280
С	3.342764	1.170515	2.873287
Н	3.277011	2.257957	2.715198
Н	2.314188	0.750604	2.789369
С	4.228559	0.548675	1.799945
Н	3.773511	0.665869	0.806771
Н	5.218435	1.046969	1.801369
С	4.952670	-1.106172	3.293632
Н	5.968697	-0.667549	3.354407
Н	5.029923	-2.197823	3.391678
С	4.080655	-0.527109	4.402453
Н	3.102272	-1.059017	4.410523
Н	4.563035	-0.695614	5.378727
Ν	-0.188718	5.828954	5.306430
Ν	3.909606	0.914725	4.201597
0	-2.522906	6.474145	3.769674
0	4.393017	-0.856696	2.002662
Hg	0.190472	3.046824	5.812791
Cl	-1.914513	2.094050	6.104798

Table S7. Cartesian coordinates (Å) of the optimized structure (BP86/def2-TZVP) of**RHgCl** (3c); no nitrogen atom coordinated to the mercury atom.

(= -); -	0		
Atom	X	У	Z
С	2.530084	4.859333	4.333894
С	2.157891	5.165917	5.656670
С	2.915940	4.639723	6.712744
Η	2.617611	4.879051	7.734983
С	4.017142	3.823499	6.459313
Н	4.598335	3.418953	7.289984
С	4.376784	3.523208	5.146800
Η	5.240961	2.892097	4.931992
С	3.641669	4.037677	4.068489
С	1.004669	6.102049	5.982276
Н	1.410824	7.102309	6.213567

Н	0.366665	6.233570	5.074166
С	4.040158	3.630464	2.658902
Н	3.693909	2.598748	2.473450
Н	3.499968	4.271977	1.920224
С	-0.571880	4.471944	6.861344
Н	0.107776	3.664565	6.548720
Н	-1.299471	4.644708	6.035616
С	-1.326851	4.050723	8.116769
Н	-1.981371	3.194027	7.905397
Н	-0.603783	3.762513	8.905572
С	-1.407163	6.269710	8.868195
Н	-0.683173	6.064914	9.681983
Н	-2.119023	7.033881	9.209445
С	-0.658248	6.747815	7.628685
Н	-1.396421	7.066508	6.858263
Н	-0.039550	7.622917	7.884641
С	6.025021	5.012415	2.408338
Н	5.783448	5.510475	3.359767
Н	5.572478	5.610971	1.584836
С	7.537322	4.965512	2.222830
Н	7.946290	5.980342	2.123410
Н	8.003945	4.476012	3.100701
С	7.376940	2.938137	1.057549
Н	7.832029	2.372640	1.895107
Н	7.672690	2.468683	0.109220
С	5.859266	2.937305	1.207582
Н	5.404468	3.401386	0.303271
Н	5.494451	1.899665	1.273438
Ν	0.214400	5.680370	7.131686
Ν	5.479546	3.651028	2.430076
0	-2.175621	5.096421	8.595531
0	7.899444	4.267603	1.029132
Hg	1.430719	5.648746	2.749844
Cl	0.213984	6.547629	0.987077

Table S8. Cartesian coordinates (Å) of the optimized structure (BP86/def2-TZVP) ofthe anion $[(RTe)(Hg_2Cl_6)]^-$ (4a).

		-)(820)] (
Atom	X	У	Z
С	2.845973	4.441603	4.997332
С	3.062345	5.815302	5.111280
С	3.438469	6.343955	6.350393
Н	3.624167	7.415682	6.456745
С	3.571204	5.496228	7.456536
Н	3.862770	5.909420	8.423124
С	3.349801	4.119076	7.328175
Н	3.476602	3.462820	8.192406
С	2.996985	3.581242	6.087049
С	2.817247	6.629560	3.867187
Н	1.735776	6.829740	3.763389
Н	3.342165	7.601588	3.898121

С	2.853029	2.112475	5.789735
Н	3.803631	1.752391	5.351785
Н	2.624118	1.518898	6.692179
С	4.714232	5.814408	2.535308
Н	5.103130	5.208852	3.366746
Н	5.104145	6.846669	2.621881
С	5.144306	5.211635	1.206952
Н	6.236223	5.271206	1.115231
Н	4.864012	4.145586	1.139700
С	3.167956	5.851001	0.159235
Н	2.841056	4.794775	0.093162
Н	2.777036	6.388034	-0.716599
С	2.633249	6.502518	1.430160
Н	2.892691	7.578587	1.428292
Н	1.539386	6.400364	1.490928
С	0.434404	2.095537	5.326314
Н	0.349630	3.142812	5.650151
Н	0.321398	1.441505	6.211613
С	-0.639235	1.748551	4.300487
Н	-1.633036	1.849310	4.760504
Н	-0.575677	2.447067	3.442382
С	0.765240	0.218064	3.232474
Н	0.849003	0.857969	2.333438
Н	0.816597	-0.828770	2.909646
С	1.899575	0.502618	4.202979
Н	1.857963	-0.208316	5.049120
Н	2.865284	0.391168	3.688499
Ν	3.222935	5.880620	2.648291
Ν	1.796326	1.882640	4.763137
0	4.588893	5.945694	0.108675
0	-0.519013	0.404051	3.856357
Te	2.327951	3.623025	3.125207
Cl	8.305857	-0.822290	1.992418
Cl	5.966593	2.291578	3.894199
Cl	5.693315	1.901801	-0.190185
Hg	6.360201	0.597112	2.093945
Cl	1.577956	2.401271	0.219405
Cl	2.797546	-0.590372	-2.444578
Cl	4.026655	-0.701723	1.700727
Hg	3.408992	0.707943	-0.506058

Table S9. Cartesia	n coordi	nates (Å) of th	e optimized st	tructure (BP86	6/def2-TZVP) of
the cation [R]	<u>ej (40);</u>	both nitrogen	atoms coordin	lated to the tel	lurium atom.
	Atom	Х	У	Z	
		2 256222	4 008011	1 622205	

-1 (/)			
Atom	X	У	Z
С	3.256232	4.008011	4.622295
С	3.505127	5.374924	4.725814
С	3.901128	5.884494	5.967465
Н	4.109297	6.950085	6.081715
С	4.011896	5.028335	7.068718
Н	4.310479	5.431826	8.036197
С	3.743973	3.660598	6.943411
Н	3.838718	3.004439	7.810781

С	3.372505	3.134241	5.701195
С	3.249951	6.214043	3.498185
Η	2.180128	6.478908	3.448360
Η	3.828197	7.152422	3.511636
С	3.160976	1.666704	5.421715
Η	4.098658	1.224297	5.044766
Η	2.867832	1.111596	6.327819
С	5.034317	5.390411	2.007763
Η	5.504438	4.866149	2.851380
Η	5.419939	6.424650	1.977891
С	5.340325	4.692617	0.688381
Η	6.417680	4.742454	0.484650
Η	5.045132	3.625782	0.742344
С	3.275577	5.331372	-0.211954
Η	2.889867	4.290445	-0.190683
Η	2.835286	5.838151	-1.080425
С	2.885353	6.063489	1.066492
Η	3.191585	7.121720	0.995576
Η	1.798422	6.020729	1.225111
С	0.751506	1.647793	4.895415
Η	0.657694	2.676633	5.269894
Η	0.619806	0.952068	5.742737
С	-0.293788	1.355356	3.826208
Η	-1.297686	1.402305	4.267400
Η	-0.233682	2.109622	3.016495
С	1.149864	-0.116867	2.715485
Η	1.278488	0.577702	1.858832
Η	1.202122	-1.143376	2.330183
С	2.252317	0.106529	3.743982
Η	2.169759	-0.648079	4.545489
Η	3.244435	0.019903	3.278689
Ν	3.559214	5.453497	2.250559
Ν	2.134668	1.462907	4.355930
0	4.684274	5.329959	-0.403617
0	-0.140364	0.044542	3.290007
Te	2.679016	3.232944	2.763084

Table S10. Cartesian coordinates (Å) of the optimized structure (BP86/def2-TZVP) of the cation $[\underline{\mathbf{RTe}}]^+$ (**4c**); one nitrogen atom coordinated to the tellurium atom.

<u>) (/</u>	, ••	400111 2 001 4 111	
Atom	X	У	Z
С	3.440378	4.087452	4.679429
С	3.840382	5.419994	4.749578
С	4.284252	5.910891	5.985542
Н	4.602581	6.951294	6.067473
С	4.323857	5.070101	7.101194
Н	4.666467	5.460841	8.059381
С	3.946819	3.725604	6.998490
Н	4.000046	3.074856	7.873529
С	3.513203	3.218291	5.769883

С	3.868857	6.218180	3.463458
Н	4.896096	6.280317	3.068067
Η	3.321355	5.535879	2.684143
С	3.200704	1.768054	5.508823
Η	4.096828	1.260045	5.115268
Η	2.879300	1.236228	6.418215
С	1.902818	7.625907	3.900184
Н	1.729821	7.009839	4.794068
Н	1.252075	7.247666	3.084058
С	1.554236	9.086733	4.188068
Н	0.476288	9.189977	4.367786
Н	2.100017	9.432142	5.087334
С	3.258296	9.854638	2.777144
Н	3.849705	10.215404	3.640518
Η	3.430643	10.524500	1.925043
С	3.676589	8.428384	2.419450
Н	3.175516	8.129893	1.476292
Н	4.764348	8.376872	2.264096
С	0.771624	1.874097	5.029303
Н	0.744199	2.903156	5.412305
Н	0.629833	1.176655	5.872289
С	-0.308411	1.639879	3.980745
Н	-1.298549	1.731245	4.445413
Н	-0.229334	2.400113	3.177970
С	1.037776	0.105052	2.828464
Н	1.189395	0.799417	1.974565
Н	1.029027	-0.918903	2.433336
С	2.171551	0.260381	3.834542
Н	2.061996	-0.486643	4.638686
Н	3.149568	0.127192	3.352634
Ν	3.309170	7.513700	3.505512
Ν	2.136494	1.617291	4.463270
0	1.865224	9.917493	3.074025
0	-0.229190	0.329772	3.429766
Те	2.670449	3.306523	2.883167

Table S11. Cartesian coordinates (Å) of the optimized structure (BP86/def2-TZVP) of the cation of $[\mathbf{RTe}]^+$ (4d); no nitrogen atom coordinated to the tellurium atom.

Atom	X	У	Z
С	0.101170	0.274599	0.098933
С	1.487199	0.343399	0.262202
С	2.118401	1.586420	0.133194
Н	3.197738	1.667990	0.273743
С	1.363745	2.726697	-0.163786
Н	1.860279	3.691707	-0.266192
С	-0.022839	2.639081	-0.330439
Н	-0.600092	3.532233	-0.576223
С	-0.667539	1.403731	-0.194919
С	2.189602	-0.935801	0.664049

Η	2.418931	-0.968408	1.741607
Η	1.318354	-1.754622	0.566727
С	-2.143615	1.176546	-0.442084
Η	-2.389926	1.161010	-1.516330
Η	-2.287800	0.027988	-0.132221
С	3.279368	-1.327419	-1.529439
Η	2.647031	-0.500239	-1.877587
Η	2.839322	-2.280276	-1.883361
С	4.703571	-1.197596	-2.087264
Η	4.692843	-1.338331	-3.175383
Η	5.105432	-0.192100	-1.859784
С	5.640295	-2.093730	-0.134031
Η	6.060468	-1.111164	0.152553
Η	6.319863	-2.885066	0.206620
С	4.258521	-2.278222	0.509662
Η	3.913631	-3.313041	0.321811
Η	4.310440	-2.118062	1.595738
С	-2.925507	2.193990	1.678766
Η	-1.860831	2.209412	1.946431
Η	-3.410874	1.354480	2.214188
С	-3.608960	3.507071	2.084167
Η	-3.633533	3.592995	3.177777
Η	-3.047725	4.365791	1.669670
С	-5.028900	3.441765	0.220379
Η	-4.500502	4.292294	-0.250273
Η	-6.091075	3.487816	-0.051157
С	-4.422086	2.117300	-0.264608
Η	-5.044716	1.282347	0.109937
Η	-4.405371	2.076195	-1.362811
Ν	3.316335	-1.323615	-0.069618
Ν	-3.056535	1.990002	0.238855
0	5.552931	-2.204295	-1.549603
0	-4.959592	3.535498	1.638231
Te	-0.859352	-1.592772	0.302668

Table S12. Cartesian coordinates (Å) of the optimized structure (BP86/def2-TZVP)of the dianion $[Hg_2Cl_6]^{2-}$ (4e).

_

Atom	X	У	Z	
Cl	8.333915	-1.750968	0.885590	
Cl	6.600200	1.366764	3.232010	
Cl	5.883125	1.273770	-0.964135	
Hg	6.514037	-0.094459	1.222759	
Cl	1.645447	1.751008	-0.885468	
Cl	3.379020	-1.366687	-3.232067	
Cl	4.096215	-1.273872	0.964069	
Hg	3.465240	0.094445	-1.222759	

	12,11,01 110		
Atom	X	<u>y</u>	Z
С	3.183252	4.090252	4.678322
С	3.359312	5.469550	4.769337
С	3.619561	6.012086	5.999147
Н	3.766982	7.092144	6.095314
С	3.702121	5.215474	7.117909
Н	3.896655	5.669286	8.091124
С	3.537300	3.850214	7.024796
Н	3.628531	3.225240	7.916965
С	3.322097	3.255398	5.784558
С	3.172337	6.254173	3.499865
Н	2.104144	6.516778	3.388019
Н	3.748609	7.196269	3.505623
С	3.252234	1.779432	5.481080
Н	4.220911	1.442653	5.067877
Н	2.997327	1.164221	6.359286
С	5.021566	5.389276	2.218644
Н	5.426751	4.862812	3.094295
H	5.401545	6.428419	2.214990
C	5.421209	4.683112	0.950961
H	6.513225	4.707111	0.840278
Н	5.130709	3.615987	0.970809
C	3 467012	5.297721	-0.133625
H	3.088713	4.254243	-0.145146
H	3.088851	5,797340	-1.036936
C	2.998073	6.046130	1.094972
H	3.338251	7.097615	1.040730
H	1.898926	6.036325	1.165382
C	0.862322	1.662094	4 955369
H	0.729216	2.676389	5 364058
H	0.786572	0.944436	5.793382
C	-0.193763	1.335698	3,939028
H	-1 185729	1 316101	4 410307
H	-0.200043	2.075358	3 114832
C	1 335618	-0.072805	2 819808
H	1.407112	0.602806	1.942556
H	1 451470	-1.094794	2 439059
C	2 408439	0.217413	3 820403
H	2.363312	-0.519815	4 643262
Н	3 400104	0.151693	3 345670
N	3 540587	5 443699	2 330117
N	2 235401	1 563381	4 402610
$\hat{0}$	4 875426	5 325763	-0.194718
Ő	0.059642	0.019778	3 430623
U Te	2 720250	3 25/1870	2 828250
Cl	8 038136	_1 700680	0 657717
Cl	6 300288	1 /16205	3 035805
	5 870701	1.410273	0.03705/
CI	5.012121	1.307404	-0.757254

Table S13. Cartesian coordinates (Å) of the optimized (H atoms only) structure
(BP86/def2-TZVP) of the anion $[(\mathbf{RTe})(\mathbf{Hg}_2\mathbf{Cl}_6)]^-$ (4A).

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2011

Hg	6.524345	-0.044991	1.167766
Cl	1.936271	1.788628	-0.654922
Cl	3.674120	-1.427346	-3.033010
Cl	4.101686	-1.320516	0.940049
Hg	3.450063	0.033939	-1.164972