Electronic supporting information for

Tuning the spin-transition properties of pyrene decorated 2,6-Bispyrazolylpyridine based Fe(II) complexes

Rodrigo González-Prieto,^{*a*} Benoit Fleury,^{*a*} Frank Schramm,^{*a*} Giorgio Zoppellaro,^{*a,b*} Rajadurai Chandrasekar,^{*a,c*} Olaf Fuhr,^{*a*} Sergei Lebedkin,^{*a*} Manfred Kappes,^{*a*} and Mario Ruben*^{*a,d*}

^a Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.^bDepartment of Molecular Biosciences, University of Oslo, PO Box 1041 Blindern, Oslo NO-0316, Norway. ^cSchool of Chemistry, University of Hyderabad, Prof. C. R. Rao Road, Gachi Bowli, Hyderabad – 500 046, India. ^dInstitut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), 23 rue de Loess, BP§§, 67034 Strasbourg cedex 2, France. Fax: +49 (0) 7247 82 8976; Tel: +49 7247 82 6781; Email: mario.ruben@kit.edu

Compound	1
Empirical formula	$C_{54}H_{34}Cl_2FeN_{10}O_8$
Formula weight	1077.66
Crystal system	monoclinic
Space group	C2/c
<i>a</i> /pm	1518.0(3)
<i>b</i> /pm	836.9(2)
<i>c</i> /pm	3650.5(7)
β/°	100.69(3)
$V/10^{6} \text{ pm}^{3}$	4557(2)
Z	4
μ/mm^{-1}	0.522
Density/g cm ⁻³	1.571
F(000)	2208
Reflections collected	6333
Independent reflections	$3259 [R_{int} = 0.0484]$
Indp. reflections with $F_0 > 4\sigma(F_0)$	2169
Restrains / parameter	0 / 408
GooF on F ²	0.932
R_1 , w $R_2[I > 2\sigma(I)]$	0.0528, 0.1195
R_1 , w R_2 (all data)	0.0841, 0.1328
Largest difference peak, hole/e Å ⁻³	0.282 / -0.471

Table S1: Crystallographic and refinement data of 1

Figure S1. ¹H NMR spectrum of 2,6-di(1H-pyrazol-1-yl)-4-(pyren-1-yl)pyridine (L1) in CDCl₃.

Figure S2. ¹³C NMR spectrum of 2,6-di(1H-pyrazol-1-yl)-4-(pyren-1-yl)pyridine (L1) in CDCl₃.

Figure S3. ESI-TOF mass spectrum of 2,6-di(1H-pyrazol-1-yl)-4-(pyren-1-yl)pyridine (**L1**). Experimental (up) and simulated (down) isotopic distributions for the most intense peak; $L1+H^+$; are shown in the inset.

Figure S4. ¹H NMR spectrum of 4-(4'-hydroxymethylphenyl)-2,6-bis(pyrazol-1-yl)pyridine in CDCl₃.

CDCl₃.

Figure S6a. MALDI mass spectrum of 4-(4'-hydroxymethylphenyl)-2,6-bis(pyrazol-1-yl)pyridine.

Figure S6b. Experimental (up) and simulated (down) isotopic distributions of the most intense peak; M+H⁺.

Figure S7. ¹H NMR spectrum of 4-(2,6-di(1H-pyrazol-1-yl)pyridin-4-yl)benzyl 4-(pyren-1-yl)butanoate (**L2**) in CDCl₃.

Figure S8. ¹³C NMR spectrum of 4-(2,6-di(1H-pyrazol-1-yl)pyridin-4-yl)benzyl 4-(pyren-1-yl)butanoate (L2) in CDCl₃.

Figure S9. ESI-TOF mass spectrum of 4-(2,6-di(1H-pyrazol-1-yl)pyridin-4-yl)benzyl 4-(pyren-1-yl)butanoate (L2). Experimental (up) and simulated (down) isotopic distributions for the most intense peak; L2+H⁺; are shown in the inset.

Figure S10. (a) ¹H NMR spectrum of $[Fe(L1)_2](ClO_4)_2$ (1) in CD₃CN. Insets (b) and (c) show enlarged zones of the whole spectrum.

Figure S11. ESI-TOF spectrum of $[Fe(L1)_2](ClO_4)_2$ (1). Experimental (up) and simulated (down) isotopic distributions for the most intense peak; M^{2+} ; are shown in the inset.

Figure S12. FT-IR spectrum of [Fe(L1)₂](ClO₄)₂ (1).

Figure S13. $1/\chi_M$ versus *T* plot for [Fe(L1)₂](ClO₄)₂ (1).

Figure S14. (a) ¹H NMR spectrum of $[Fe(L2)_2](ClO_4)_2$ (2) in CD₃CN. Insets (b) and (c) show enlarged zones of the whole spectrum.

Figure S15. ESI-TOF spectrum of $[Fe(L2)_2](ClO_4)_2$ (2). Experimental (up) and simulated (down) isotopic distributions for the most intense peak; M^{2+} ; are shown in the inset.

Figure S16. FT-IR spectrum of $[Fe(L2)_2](ClO_4)_2$ (2).

Figure S17. (a) ¹H NMR spectrum of $[Fe(L2)_2](BF_4)_2 \cdot CH_3CN \cdot H_2O$ (3) in CD₃CN. Insets (b) and (c) show enlarged zones of the whole spectrum.

Figure S18. ESI-TOF spectrum of $[Fe(L2)_2](BF_4)_2 \cdot CH_3 CN \cdot H_2O$ (3). Experimental (up) and simulated (down) isotopic distributions for the most intense peak; M^{2+} ; are shown in the inset.

Figure S19. Emission spectra of compound **3** (polycrystalline) excited at 270 nm at different temperatures. The half-bandwidths of the excitation and emission monochromators corresponded to 4 nm

Figure S20. Normalized emission intensity of polycrystalline pyrene butyric acid as a function of the temperature. The excitation and emission wavelengths are 300 and 528 nm, respectively.