Facile Synthesis and Platinum complexes of 4',5,5''-Trisubstituted- 2,2':6',2''terpyridines

Jianqiang Huo, Navamoney Arulsamy and John O. Hoberg*

Department of Chemistry, University of Wyoming, 1000 East Univ. Ave., Laramie, Wy 82071

Contact email: hoberg@uwyo.edu

Page 2-5: Experimental for 4a-g Page 6-49: NMR spectra

Experimental

All reactions were performed under an Argon atmosphere and solvents were purified prior to use. NMR spectra were recorded on a Bruker ARX400 MHz Bruker Spectrometer. Mass Spectra were recorded on a Voyager-DE PRO MALDI-TOF mass spectrometer. Fourier transform infrared spectra were recorded in pressed KBr pellets on a Perkin Elmer 1000 FTIR spectrometer. UV-visible absorption spectra were recorded on a Perkin Elmer Lambda 950 UV/vis spectrometer.

Synthetic procedures for the formation of **4a-g** from **3** as illustrated below.

1-(5-(4-methoxyphenyl)pyridin-2-yl)ethanone:

A suspension of (4-methoxyphenyl)boronic acid (71 mg, 0.47 mmol), **3** (78 mg, 0.39 mmol), K_2CO_3 (108 mg, 0.78 mmol), Pd(PPh₃)₄ (10 mg, 0.008 mmol) in toluene/H₂O (5:1) was heated to 105 °C for 15 h. The reaction was cooled to RT and extracted with EtOAc (20 mL x 3), dried MgSO₄, filtered and concentrated *in vacuo*. Flash chromatography on silica gel (5:1 cyclohexane/EtOAc) afforded 1-(5-(4-methoxyphenyl)pyridin-2-yl)ethanone **4a** (62 mg, 90%) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.86 (s, 1H), 8.07 (d, *J*=8.2 Hz, 1H), 7.94 (d, *J*=8.2 Hz, 1H), 7.57 (d, *J*=8.5 Hz, 2H), 7.02 (d, *J*=8.5 Hz, 2H), 3.86 (s, 3H), 2.74 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 199.7, 160.3, 151.6, 146.9, 139.3, 134.2, 129.1, 128.4, 121.8, 114.7, 55.4, 25.8. This data matched as described in reference.

1-(5-phenylpyridin-2-yl)ethanone (4b):

A suspension of phenylboronic acid (256 mg, 2.1 mmol), **3** (350 mg, 1.75 mmol), K_2CO_3 (483 mg, 3.5 mmol), Pd(PPh₃)₄ (10 mg, 0.008 mmol) in toluene/H₂O (5:1) was heated to 105 °C for 15 h. The reaction was cooled to RT and extracted with EtOAc (20 mL x 3), dried MgSO₄, filtered and concentrated *in vacuo*. Flash chromatography on silica gel (5:1 cyclohexane/EtOAc)

afforded 1-(5-phenylpyridin-2-yl)ethanone **4b** (280 mg, 81%) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.91(d, *J*=2.2 Hz, 1H), 8.12 (d, *J*=8.1 Hz, 1H), 8.01 (dd, *J*=8.1, 2.2 Hz, 1H), 7.63 (d, *J*=7.1 Hz, 2H), 7.50 (m, 3H), 2.77(s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 199.7, 152.2, 147.4, 139.8, 136.8, 134.9, 129.2, 128.8, 127.3, 121.8, 25.8.

1-(5-(3,5-bis(trifluoromethyl)phenyl)pyridin-2-yl)ethanone (4c):

Potassium 3,5-Bis(trifluorometnyl)phenyltrifluoroborate (183 mg, 0.57 mmol), **3** (114 mg, 0.57 mmol), K_2CO_3 (157 mg, 1.14 mmol), and Pd(PPh₃)₄ (10 mg, 0.008 mmol) were added to a solution of toluene/H₂O (5:1, 20 mL) and refluxed for 12 h. The mixture was cooled to RT, diluted with CH₂Cl₂ (50 mL) and washed once with H₂O (20 mL) and then brine (20 mL). The organic layer was dried (MgSO₄), filtered and concentrated *in vacuo*. Flash chromatography on silica gel, (3:1 cyclohexane/EtOAc) afforded **4c** (160 mg, 85%) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.94(d, *J*=2.0 Hz, 1H), 8.18 (d, *J*=8.9 Hz, 1H), 8.10 (d, *J*=2.0 Hz, 1H), 8.07 (s, 2H), 7.97 (s, 1H), 2.77 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ =199.4, 153.4, 147.4, 139.2, 136.9, 135.4, 127.4, 124.4, 122.4, 121.7, 25.8. IR (KBr) 1696, 1379, 699 cm⁻¹. HRMS (m/z) calculated for 334.0667 (M+H) C₁₅H₁₀F₆NO, found 334.0528 (M+H)⁺.

1-(5-(4-nitrophenyl)pyridin-2-yl)ethanone (4d):

A suspension of (4-nitrophenyl)boronic acid (125 mg, 0.75 mmol), **3** (150 mg, 0.75 mmol), K_2CO_3 (207 mg, 1.5 mmol), Pd(PPh_3)₄ (10 mg, 0.008 mmol) in toluene/H₂O (5:1) was heated to 120 °C for 15 h. The reaction was cooled to RT and extracted with EtOAc (20 mL x 3), dried MgSO₄, filtered and concentrated *in vacuo*. Flash chromatography on silica gel, (5:1 cyclohexane/EtOAc) afforded **4d** (100 mg, 55%) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.96(d, *J*=2.3 Hz, 1H), 8.40 (d, *J*=8.7 Hz, 2H), 8.20 (d, *J*=8.0 Hz, 1H), 8.09 (dd, *J*=8.0, 2.3 Hz, 1H), 7.80 (d, *J*=8.7 Hz, 2H), 2.79 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ =199.5, 153.3, 148.0, 147.6, 143.2, 137.5, 135.5, 128.2, 124.5, 121.9, 25.9. IR (KBr) 1690, 1522, 1345 cm⁻¹ HRMS (m/z) calculated for 243.0770 (M+H) C₁₃H₁₁N₂O₃, found 243.0776 (M+H)⁺.

1-(5-((trimethylsilyl)ethynyl)pyridin-2-yl)ethanone (4e):

A solution of **3** (407 mg, 2.03 mmol), trimethylsilylacetylene (0.6 mL, 4.07 mmol), PdCl₂(PhCN)₂ (39 mg, 0.10 mmol), PPh₃(53 mg, 0.20 mmol), and Cu(II)acetate (20 mg, 0.10 mmol) in diisopropylamine (20 mL) was heated at 80 °C for 4h. The reaction was cooled to r.t. and filtered to remove the precipitate of diisopropylamine hydrobromide salts. The solvent was removed and the residue was taken up in CH₂Cl₂. Extraction with H₂O (20 mL x 2), dried MgSO₄, filtered, and concentrated *in vacuo*. Flash chromatography on silica gel (3:1 cyclohexane/EtOAc) afforded **4e** (365 mg, 84%) as a brown oil. ¹H NMR (400 MHz, CDCl₃): δ 8.71 (s, 1H), 7.98 (d, *J*=2.3 Hz, 1H), 7.86 (d, *J*=2.3 Hz, 1H), 2.72 (s, 3H), 0.29 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ =199.4, 151.7, 139.6, 123.7, 120.8, 101.6, 100.9, 25.8, -0.29. IR (KBr) 1700, 1219, 862 cm⁻¹. HRMS (m/z) calculated for 218.1001 (M+H) C₁₂H₁₆NOSi, found 218.1055 (M+H)⁺.

1-(5-(3-methyl-3-(THP-2-yloxy)but-1-ynyl)pyridin-2-yl)ethanone (4f):

A mixture of **3** (104 mg, 0.52 mmol), 2-((2-methylbut-3-yn-2-yl)oxy)tetrahydro-2*H*-pyran (352 mg, 2.0 mmol), Pd(PPh₃)₄ (10 mg, 0.008 mmol), CuI (50 mg, 0.26 mmol) in diisopropylamine (20 mL) was heated at 50 °C for 10h. The reaction was cooled to r.t. and filtered to remove the precipitate of diisopropylamine hydrobromide salts. The solvent was removed and the residue was taken up in CH₂Cl₂. Extraction with H₂O (20 mL x 2), dried (MgSO₄), filtered, and concentrated *in vacuo*. Flash chromatography on silica gel (3:1 cyclohexane/EtOAc) afforded **4f** (140 mg, 94%) as an oil. ¹H NMR (400 MHz, CDCl₃): δ 8.63 (s, 1H), 7.94 (d, *J*=2.3 Hz, 1H), 7.78 (d, *J*=2.3 Hz, 1H), 5.07 (s, 1H), 3.94 (m, 1H), 3.48 (m 1H), 1.84~1.37 (m, 12H). ¹³C NMR (100 MHz, CDCl₃): δ =199.2, 151.6, 151.3, 139.2, 123.5, 120.8, 98.2, 96.1, 80.3, 71.2, 63.2, 31.8, 30.2, 29.7, 25.7, 25.3, 20.3. IR (KBr) 3310, 1560, 855 cm⁻¹. HRMS (m/z) calculated for 288.1600 (M+H) C₁₇H₂₂NO₃, found 288.1621 (M+H)⁺.

2-((2-methylbut-3-yn-2-yl)oxy)tetrahydro-2*H*-pyran was synthesized via the published procedure of: Cowie, J.S.; Landor, P. D.; Landor, S.R. *J. Chem. Soc.*, *Perkin Trans. 1* **1973**, 3807.

1-(5-(2-methyl-3-butyn-2-ol)pyridin-2-yl)ethanone (4g):

A mixture of **3** (120 mg, 0.6 mmol), 2-methyl-3-butyn-2-ol (0.4, 1.2 mmol), Pd(PPh₃)₄ (10 mg, 0.008 mmol), CuI (50 mg, 0.26 mmol) in diisopropylamine (20 mL) was heated at 50 °C for 10h. The reaction was cooled to r.t. and filtered to remove the precipitate of diisopropylamine hydrobromide salts. The solvent was removed and the residue was taken up in CH₂Cl₂. Extraction with H₂O (20 mL x 2), dried (MgSO₄), filtered, and concentrated *in vacuo*. Flash chromatography on silica gel (3:1 cyclohexane/EtOAc) afforded **4g** (100 mg, 83%) as an oil. ¹H NMR (400 MHz, CDCl₃): δ 8.70 (s, 1H), 8.00 (d, *J*=8.5 Hz, 1H), 7.83 (d, *J*=8.5 Hz, 1H), 2.73 (s, 3H), 1.65 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ =199.4, 151.3, 139.4, 121.0, 100.2, 65.6, 65.4, 31.2, 31.0, 25.9. IR (KBr) 3210, 1697, 953 cm⁻¹. HRMS (m/z) calculated for 204.1025 C₁₂H₁₄NO₂, found 204.1001 (M+H)⁺.

-7.543

Electronic Suppl This journal is ©	ementary Material (ESI) for Dalt The Royal Society of Chemistry	on Transactions / 2011	199.756		160.393	151.669	139.403	129.128	114.764	
N7NNMINHNNNNNNNNNNNNNNNN	##YLDYADYDWDYNWMAINYNWNWNANNWNWNWNWNWNWNWNWNWNWN	naforaannaannaannaannaannaannaannaannaannaa	nantan ang ang ang ang ang ang ang ang ang a	w/www.w/w/www.aw/aw/fow/w/ww/wa/wa/fow/	I Indonantian Indon	Nyuwitanshi kuduktujunyi usotun	THE AND A T	layariwwa P Toyloobulayoonikiyya a	annan taalaa ka k	WMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
260	240	220	200	180	160	Ι	140	-	120	100

hunder han her der her her her her her her her her her h	ownwhithe ^{ll t} erveloppingeneration	halining an	inn gan gan gan gan gan gan gan gan gan g	NY WARANDA WANNA NA	WWW.componenting.componenting.com	/kwww.ynkum/kgwwkumwkglwftaulikhpk/symuk	Andar Managaran an a
1	80	60	40	20	0	-20	-4(

H₃CO.) ∩ 0

4a

-25.867

77.424

Electronic Supplementary Material (ESI) for Daton Transactions This journal is © The Royal Society of Chemistry 2014 ດັດດັດດີ ແຜ່ຜູ້ແຜ່ຜູ້

5

∟⊣ 3.07

2

h

3

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2011

199.775

-152.260 -147.454 -139.832 -136.894 -134.992 -129.294 -128.899 -127.335 121.812

260

240

220

200

180

160

140

120

1Ó0

8

-25.901

80

60

40

20

Ó

5

4

3

2.771

199.408

10

260	240	220	200	180	160	140	120	100

างหมายของของพุทธาตุสุดเมือง เมือง	 กงกองพระสะเสกงกุลเองจากเคยในพระสะคามในการ 	างหางและและสามารถและสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถ 	ฟ(กมานหาสหมายหายมาฟะกมุณ) ฟ(กมานหาสหมายหายมาฟะกมุณ)	-20	₩YMWIJ10124TW91WIKU9UMu 1

-25.801

517	
199.	

153.347	148.078	143.260	135.515 135.515	128.255	124.533 121.931
1.1		1		1	1.1

www.anaidafapawalaawanyay ^{aala} ndaddiyaadaalaaydaabaadafabeena na tadawahanddiilayaahaada	hole with the second	tugkavinantinpottinidan potininidinini potinini talipavila (non	jeviseenetisteeneepep)lanvondeleinetveleineereteviseereneere
---	---	---	--

-25.922

0	\sim
ň	U
-	~

60

40

Ů

-20

-4(

-151.783 -151.685

123.763 120.833

101.676

80

60

199.407

`Si`_

	1				I			I
26	60 240	220	200	180	160	140	120	100

-20 40 20 -4(

Ó

25.855

-0.263

-139.278

-98.258 -96.143

199.258

		I	
			I
	1		
1			

								16
260	240	220	200	180	160	140	120	100

31.904 30.211 29.760 25.773 25.332 25.332 -80.312 -71.202 -63.240

-4(

80

60

40

20

0

-20

199.462

		·					•
260	240	220	200	180	160	140	

120

18

100

80

60

40

20

Ó

 \mathbb{V}

Electronic Supplementary Material (ESI) for Daltor This journal is © The Royal Society of Chemistry 2	n Transactions 2011	150.387	147.646	 129.184	121.329	

Electronic Supplementary Material (ESI) for Dalton Transactions + 9+ This journal is © The Royal Society of Chemistry 2006666 CCCC 66666 CCCCC 66666 CCCCC 66666 CCCCC

5

Madamana (Matamana)	hlmaladhaddalladdalladdalladdalladdaladda	INMANANANANANANANANANANANANANANANANANANA	ulli apala ana ana ana ana ana ana ana ana ana	OLWWYDDIWNWNWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	ANN	NAN INTERNA AN INTERNATION OF A DAMAGE	Dallyyyddwy

80

40

Ó

-20

ppm 9

Electronic Supplementary Material (ESI) for Dalton T This journal is © The Royal Society of Chemistry 20	Fransactions 1100 0 55 1 100 0 55 1 55 1	148.993	137.660 136.958 136.958 135.245 135.203	129.199 128.637 128.284 127.143		
						H ₃ CO
	1					
NYDYMANYN MANNANDANNAN MANNANNAN MANNANNANNAN MANNANNANNANNANNANNANNANNANNANNANNANNANN	1m1/1/1m2/1m1/1m1/1m1/1m1/1m1/1m1/1m1/1m	underlanger and rank man and a state and a state and a state a state and a state a sta		hinn hundren and the second statement of the second statem	Hysonyether Werengetonlow	hybelfhybewycyndaennynewecenneweryndwanewhywrananiweuwaddynaeddwn

ppm 9 8 6

ĊI N Ń. \mathbf{i}

5

1e

0.929

3

4

3.353

Electronic Supplementary This journal is © The Roy	/ Material (al Cociety	ESI) for [of Chemi	Dation Transactions stry 2011	.021	628	.587	25396 2586
	152.	149	140.	136	129	1120	

ppm	160

mannannannyaannyahahahahan	NJANNARATANANADINJUN DUMANJUN MANANANANANANANANA	nun manan mana Manan manan mana	wanalawalawalahana	nyylytenenynynynny	nnnunnunnnnnnunnunn	(minanaphilinaa malandi	UNIMANDUNANAMANA	MAANAANAANAANAANAANAANAANAANAANAANAANAAN	KANTALANAN MANANANANANANA JA	unnunununununun	numurun munu numur	And Marina Marina and M	manutha lannahanan	MANALAWANIN MANANANA	uyunanaharayyunandaharina	Muditalian M	WHAT HI MATANAMA
														30			
260	240	Ι	220	Ι	200	1	180	Ι	160	I	140	1	120	T	100	I	80

60

40

-20

NY MATAWANA MANANA M

Ů

5

-3.356

3

4

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{G}}$ The Royal Society of Chemistry 2011

			· ·		· · · · ·		1	
ppm 180	170	160	150	140	130	120	110	

1						
90) 8	0 70	60	50	40	30

-96.354

81.017	71.467	63.499			32.053 30.498 29.927 25.940 25.422	20.553					
s da hura ni minal	ի ուսեներին հետություններին հետություններին հետություններին հետություններին հետություններին հետություններին հետո		shed Adamstitike isk navdsakka Massike M	Ya Maha, Maka, k 4	al at the first state of the second	16.00.Wh 16.10.001-60	ar Minud Maasah sisa du n	s in cash an a cash	estato MILTO est bilitati ficatori	Դովիլը ուսվերեն մուն և	เล ปีปีเปิด 1 ปี 1

	1	1				
8	60 6	0 40	20) 0	-20	0 -40

$\left| \right|$

/Ń H₃CO

3.07

	I		I		
6.0	5.5	5.0	4.5	4.0	3.5

Electronic Supplementary Material (ESI) for Dalton Trainsactions This journal is © The Royal Society of Chemistry 2011 00 10 00 10 40 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1	 147.228	 	130.147	121.299		
					H ₃ CO	$\begin{array}{c} ()\\ ()\\ ()\\ ()\\ ()\\ ()\\ ()\\ ()\\ ()\\ ()\\$

						36	
ppm 170	160	150	140	130	120	110	-

-20

-4(

183.271

-155.112 -154.569 -150.221 139.494 -129.253 -129.055 -127.310 -127.310 -122.585 -119.147 V

6a

20

40

60

80

-20

-4(

8.729

8.3348 8.3342 8.327 8.327 8.327 8.321 8.167 8.167

6.	5

5.0

6b

nn Anton i t	a na dharra a dhara ar an a	ווייייוויייייו	, to so the second s				e e radi	42
260	240	220	200	180	160	140	120	100

-20.163 -59.997 13.527

60

80

40

20

-20

-4(

6C

						43	3	
			1					-
16	15	14	13	12	11	10	9	

This journal is © The Royal Society of Chemistry 2011	161.83 161.83 161.83 161.83 161.83 161.83 161.83 123.28 114.99	55.111 26.629	
T OTFO			
H ₃ CO ⁺ Cl ⁺ CH ₃ 6C			
60 240 220 200 180	44	80 60 40	

		55.1 26.6	
OTf⊖			
$H_{3}CO + CI + CI + OCH_{3}$			
	140 160 140 160 100 160 100	80 60 40 	50 0 -50 -4

8.222

-8.128

7.0

6.6

6.8

6.4

6.2

6.0

5.8

-20

-4(

Ó

<u>6e</u>

260		

1Ó0

Ó

-4(

-20