Electronic Supplementary Information for:

Coumarin phosphorescence observed with N^N Pt(II) bisacetylide complex and its applications for luminescent oxygen sensing and triplet-triplet-annihilation based upconversion

Haiyang Sun, Huimin Guo,* Wenting Wu, Xin Liu, Jianzhang Zhao*

State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China. E-mail: zhaojzh@dlut.edu.cn (J.Z.); guohm@dlut.edu.cn (H.G.)

Index

General information	.S2
Scheme 1 S1. Synthesis of Pt-1	S2
Figure S1. ¹ H NMR of 1	S3
Figure S2. ¹ H NMR of 2	S3
Figure S3. ¹³ C NMR of 2	S4
Figure S4. TOF MS of L-c of 2	S4
Figure S5. ¹ H NMR of Pt- 1	. S5
Figure S6. ¹³ C NMR of Pt- 1	S5
Figure S7. HR-MALDI-MS of Pt- 1	S6
Figure S8. UV-Vis absorption spectra of Pt-1 and Pt-2 in toluene	S6
Figure S9. Lifetime of Pt-1	S7
Figure S10. Emission of Pt-1 at 77 K	S7
Figure S11. Emission of Pt-1 in solid state	S8
Figure S12. Optimzied T ₁ state geometry of Pt-1	S9
Table S1. NBO analysis of SOMOs of T ₁ state of Pt-1 .	S9
Table S2. Mulliken and NBO population analysis on T_1 and S_0 of Pt-1	510

Experimental section

General information

NMR spectra were taken on a 400 MHz Varian Unity Inova spectrophotometer. Mass spectra were recorded with a Q-TOF Micro MS spectrometer. UV-Vis spectra were taken on a HP8453 UV-visible spectrophotometer. Fluorescence spectra were recorded on a JASCO FP-6500 or a Sanco 970 CRT spectrofluorometer. Luminescence quantum yields were measured with [Ru(bpy)₂(Phen)][PF₆]₂ as the reference (Φ = 6.0 % in actonitrile).

Diode pumped solid state laser (DPSSL) with 473 nm or 532 nm were used as excitation soruce for the upconversion experiments. The diameter of the laser spot is ca. 3 mm. The output power of the DPSS laser can be adjusted continuously. The laser power was measured with phototube. For 532 nm laser, the variation of the power is less than \pm 5% over eight hours. The noise of the 532 nm DPSS laser is 20%-25% in the range of 1 kHz- 1 MHz. The noise of the 473 nm DPSS laser is 20%-25% in the range of 1 kHz- 1 MHz. For the upconversion experiments, the mixed solution of the complex (triplet sensitizer) and perylene (triplet acceptor) was degassed for at least 15 min with N₂ or Ar. Then the solution was excited with laser. The upconverted fluorescence of perylene was observed with fluorospectrometer. In order to repress the scattered laser, a black box with a small hole on it was put behind the fluorescent cell to trap the laser beam behind the vial (the small hole as the entrance of the laser into the black box). The upconversion quantum yields were calculated with a reported method.¹

In the two-site model for the oxygen sensing (please refer to the Fig. 13 in the main text), the O₂-sensitive dyes are treated as two different portions. Fraction of the two portions are defined as f_1 and f_2 , respectively ($f_1+f_2 = 1$), the two portions show different quenching constants (K_{SV1} and K_{SV2} , Eq. 1).

$$\frac{I_0}{I} = \frac{1}{\frac{f_1}{1 + K_{SV1}p_{O_2}} + \frac{f_2}{1 + K_{SV2}p_{O_2}}}$$
(Eq. 1)

Scheme S1. Synthesis of Pt-1.

Figure S1. ¹H NMR of 5 (CDCl₃, 400 MHz).

Figure S2. ¹H NMR of **2** (CDCl₃, 400 MHz).

Figure S3. ¹³C NMR of **2** (CDCl₃, 100 MHz).

Figure S4. TOF MS of 2.

Figure S5. ¹H NMR of **Pt-1** (CDCl₃, 400 MHz).

Figure S6. ¹³C NMR of Pt-**1** (CDCl₃, 100 MHz).

Figure S7. HR-MALDI-MS of Pt-1.

Figure S8. Comparison of the UV-Vis absorption spectra of **Pt-1** and **Pt-2** in toluene solution at room temperature. $c = 1.0 \times 10^{-5}$ mol/L. 20 °C.

Figure S9. The lifetime of Pt-1 by following decay at the bleaching wavelength. 20 °C.

Figure S10. Emission spectra of **Pt-1** in the solution of EtOH:MeOH (v/v= 4:1) in 77 K and room temperature (RT), $\lambda ex = 414$ nm.

Figure S11. Emission spectra of **Pt-1** in solid state, $\lambda ex = 420$ nm, 20 °C.

We performed NBO analysis on the optimized T_1 state, as shown in Table S1. We found that the SOMO states of T^1 are contributed by C73, C83 and the localized the interaction among C71, C72, C75, C76, O77 C78, C79, C80, C81, C83 and N86. This is consistent with the contour plot of the spin density. Due to the charge transfer involved from the electronic process during the excitation-annealing circle from S_0 to S_1 and then to T_1 , and the localization nature of the π and π^* states of the molecule, *dbbpy* part of the molecule also bear spin. To support this, we also performed population analysis. As the NBO doesn't provide information on spin population, we also studied the population of T_1 with respect to S_0 within Mulliken scheme. The results are shown in Table S2. It's apparent from Table S2 that the results of NBO and Mulliken analysis show the same trend. And, we show that the overall result of the excitation-annealing on the population is the formation of the localized spin state crossing *dbbpy* and the coumarin acetylide ligand. The IL character of the T^1 state is obvious. (In Table S2, the red highlighted items indicate a significant charge transfer).

Figure S12. Optimzied T₁ state geometry of **Pt-1**.

Table S1. NBO analysis of SOMOs of T₁ state of Pt-1.

NBO No. Bond Type		Occupation	Energy	Principal Delocalizations ^a		
			(a.u.)	(geminal,vicinal,remote)		
183	LP*(1) C 73	0.412	-0.131	520[0.668(p)C71-0.744(p)C72](v),		
				336[(p)O76](v),		
				329[(p)C73](g),		
				320[(p)C47] (v),		
				340[(p)077] (r)		
198	LP*(1) C 83	0.420 -0.093 559[0.549(p)077-0.836(sp		559[0.549(p)O77-0.836(sp ³)C78](v)		
				561[0.763(p)C79-0.647(p)C81](v),		
				428[(p)C83](g),		
				422[(p)C81](v),		
				419[(p)C80](v),		
				432[(p)N86](v)		

Table S2. Mulliken and NBO population analysis on T_1 and S_0 of Pt-1.

No.	C	T ¹			S ⁰		Diff.	
	сі.	Mulliken	NBO	Spin	Mulliken	NBO	Mulliken	NBO
1	С	-0.364	-0.116	0.014	-0.357	-0.117	-0.006	0.001
2	С	0.506	0.026	0.043	0.509	0.010	-0.002	0.016
3	С	-0.432	-0.123	-0.015	-0.428	-0.118	-0.004	-0.004
4	С	0.218	0.134	0.054	0.209	0.116	0.009	0.018
5	С	-0.218	0.072	0.011	-0.228	0.068	0.010	0.004
6	С	0.211	0.123	0.024	0.209	0.116	0.002	0.007
7	С	-0.432	-0.114	0.008	-0.428	-0.118	-0.004	0.005
8	С	0.508	0.014	0.012	0.509	0.010	-0.001	0.004
9	С	-0.362	-0.106	0.038	-0.357	-0.117	-0.005	0.010
10	С	-0.230	0.061	-0.012	-0.228	0.068	-0.003	-0.007
11	Н	0.254	0.119	-0.001	0.257	0.121	-0.003	-0.001
12	Н	0.321	0.131	-0.001	0.327	0.133	-0.006	-0.002
13	Н	0.253	0.119	-0.003	0.257	0.121	-0.004	-0.002
14	н	0.316	0.129	-0.001	0.327	0.133	-0.011	-0.004
15	Ν	-0.369	-0.242	0.027	-0.357	-0.250	-0.013	0.007
16	Ν	-0.391	-0.251	0.013	-0.357	-0.250	-0.035	-0.001
17	Pt	0.850	0.245	0.093	0.784	0.188	0.066	0.057
18	С	-0.196	-0.022	0.017	-0.227	-0.081	0.032	0.059
19	н	0.237	0.110	-0.001	0.238	0.110	-0.001	-0.001
20	н	0.237	0.110	0.000	0.238	0.110	-0.001	-0.001
21	С	0.160	0.004	0.000	0.158	0.004	0.001	0.000
22	С	0.160	0.003	-0.003	0.158	0.004	0.002	-0.001
23	С	-0.713	-0.328	0.000	-0.713	-0.328	0.000	0.000
24	н	0.200	0.109	0.000	0.200	0.109	0.000	0.000
25	н	0.210	0.114	0.000	0.211	0.114	-0.001	0.000
26	н	0.200	0.109	0.000	0.200	0.109	0.000	0.000
27	С	-0.667	-0.319	0.000	-0.666	-0.319	-0.001	0.000
28	н	0.198	0.110	0.000	0.199	0.110	-0.001	0.000
29	н	0.207	0.111	0.000	0.207	0.111	0.000	0.000
30	Н	0.212	0.110	0.000	0.213	0.110	-0.001	0.000
31	С	-0.667	-0.319	0.000	-0.666	-0.319	-0.001	0.000
32	Н	0.212	0.110	0.000	0.213	0.110	-0.001	0.000
33	Н	0.207	0.111	0.000	0.207	0.111	0.000	0.000
34	Н	0.198	0.110	0.000	0.199	0.110	-0.001	0.000
35	С	-0.667	-0.318	0.001	-0.666	-0.319	-0.001	0.001
36	Н	0.213	0.110	0.000	0.213	0.110	0.000	0.000
37	Н	0.198	0.109	0.000	0.199	0.110	-0.001	0.000
38	Н	0.207	0.111	0.000	0.207	0.111	0.000	0.000
39	С	-0.667	-0.318	0.001	-0.666	-0.319	-0.001	0.001
40	н	0.198	0.109	0.000	0.199	0.110	-0.001	0.000
41	н	0.213	0.110	0.000	0.213	0.110	0.000	0.000
42	н	0.207	0.111	0.000	0.207	0.111	0.000	0.000
43	С	-0.713	-0.328	0.000	-0.713	-0.328	-0.001	0.000

44	Н	0.199	0.109	0.000	0.200	0.109	0.000	0.000
45	Н	0.199	0.109	0.000	0.200	0.109	0.000	0.000
46	Н	0.210	0.114	0.000	0.211	0.114	-0.002	-0.001
47	С	0.195	-0.099	-0.009	0.195	-0.095	0.000	-0.004
48	С	-0.420	-0.056	0.017	-0.421	-0.064	0.001	0.009
49	С	0.071	0.407	0.001	0.071	0.407	0.000	0.000
50	С	0.443	-0.078	-0.004	0.443	-0.076	0.000	-0.002
51	н	0.263	0.116	-0.001	0.263	0.116	-0.001	0.000
52	0	-0.262	-0.309	-0.001	-0.267	-0.311	0.005	0.002
53	0	-0.294	-0.278	0.000	-0.295	-0.278	0.000	0.000
54	С	0.152	0.189	0.005	0.153	0.186	0.000	0.002
55	С	-0.430	-0.078	0.005	-0.431	-0.081	0.001	0.002
56	С	-0.486	-0.158	-0.003	-0.487	-0.157	0.001	-0.001
57	С	-0.362	-0.141	-0.002	-0.363	-0.140	0.000	-0.001
58	Н	0.231	0.111	0.000	0.231	0.111	0.000	0.000
59	С	0.407	0.112	0.005	0.407	0.110	0.000	0.003
60	Н	0.265	0.118	0.000	0.264	0.118	0.001	0.000
61	Н	0.231	0.110	0.000	0.230	0.109	0.001	0.000
62	Ν	-0.163	-0.230	0.003	-0.164	-0.232	0.000	0.002
63	С	-0.597	-0.206	0.000	-0.597	-0.206	0.000	0.000
64	С	-0.595	-0.206	0.000	-0.595	-0.206	0.000	0.000
65	н	0.224	0.106	0.000	0.224	0.106	0.001	0.000
66	Н	0.206	0.109	0.000	0.205	0.109	0.000	0.000
67	Н	0.224	0.106	0.000	0.224	0.106	0.001	0.000
68	Н	0.220	0.105	0.000	0.220	0.105	0.000	0.000
69	Н	0.207	0.109	0.000	0.206	0.109	0.001	0.000
70	Н	0.220	0.105	0.000	0.220	0.105	0.000	0.000
71	С	0.183	0.024	0.262	0.195	-0.095	-0.012	0.119
72	С	-0.478	0.121	0.475	-0.421	-0.064	-0.057	0.185
73	С	0.072	0.405	-0.001	0.071	0.407	0.001	-0.003
74	С	0.500	-0.084	-0.079	0.443	-0.076	0.057	-0.008
75	Н	0.263	0.105	-0.033	0.263	0.116	0.000	-0.011
76	0	-0.267	-0.243	0.128	-0.267	-0.311	0.001	0.068
77	0	-0.308	-0.274	0.021	-0.295	-0.278	-0.014	0.004
78	С	0.133	0.243	0.148	0.153	0.186	-0.019	0.057
79	С	-0.440	-0.001	0.202	-0.431	-0.081	-0.009	0.080
80	С	-0.476	-0.177	-0.073	-0.487	-0.157	0.011	-0.020
81	С	-0.348	-0.158	-0.068	-0.363	-0.140	0.014	-0.018
82	Н	0.230	0.107	-0.013	0.231	0.111	-0.001	-0.004
83	С	0.387	0.186	0.195	0.407	0.110	-0.020	0.076
84	Н	0.263	0.119	0.003	0.264	0.118	-0.001	0.001
85	Н	0.228	0.110	0.002	0.230	0.109	-0.002	0.000
86	Ν	-0.154	-0.162	0.113	-0.164	-0.232	0.009	0.070
87	С	-0.597	-0.210	-0.013	-0.597	-0.206	0.000	-0.004
88	С	-0.595	-0.210	-0.013	-0.595	-0.206	0.000	-0.004
89	Н	0.228	0.111	0.009	0.224	0.106	0.004	0.005

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is C The Royal Society of Chemistry 2011

90	н	0.207	0.109	0.000	0.205	0.109	0.001	0.000
91	Н	0.228	0.111	0.009	0.224	0.106	0.004	0.005
92	Н	0.223	0.110	0.009	0.220	0.105	0.004	0.005
93	Н	0.208	0.110	0.000	0.206	0.109	0.001	0.000
94	н	0.223	0.110	0.009	0.220	0.105	0.004	0.005
95	С	-0.229	0.138	0.363	-0.233	-0.070	0.004	0.208
96	С	-0.217	-0.065	0.023	-0.227	-0.081	0.010	0.016
97	С	-0.241	-0.080	-0.015	-0.233	-0.070	-0.008	-0.010